Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid–liquid phase separation

Koji Nakano,^a Ryuhei Fujie,^b Ryo Shintani,^b and Kyoko Nozaki*^b

 ^a Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
^b Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Supplementary Information

I. General

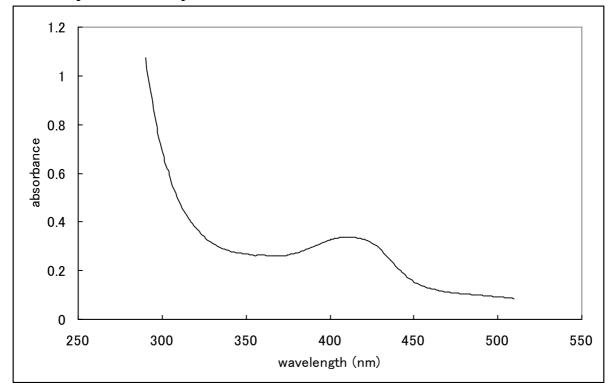
NMR spectra were recorded on JEOL JNM-ECP500 or JEOL JNM-ECS400 spectrometers. Size-exclusion chromatography analyses were performed with Shodex KF-804L columns using THF as an eluent and the molecular weights were calibrated against standard polystyrene samples. UV-VIS spectra were recorded on SHIMADZU UV-3150 spectrometer. ICP analyses were carried out using Thermo Fisher SCIENTIFIC iCAP 6300 ICP spectrometer.

Propylene oxide (Kanto Chemical) was distilled over CaH_2 under argon prior to use. Complex 1 was synthesized following the literature procedure.¹ Bis(triphenylphosphine)iminium chloride (Aldrich) was recrystallized from CH_2Cl_2/Et_2O prior to use.

II. Copolymerization Reactions

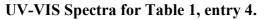
General Procedure for Table 1 and Table 2, Cycle 1.

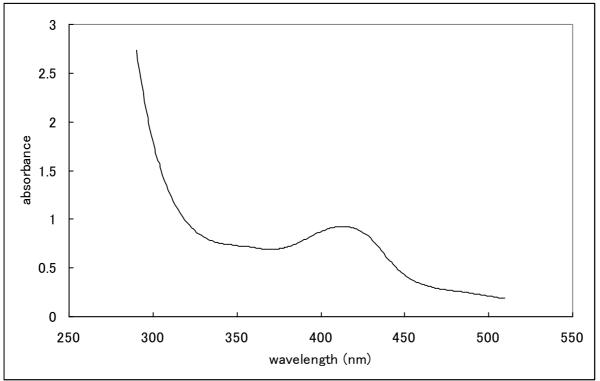
Propylene oxide (4.0 mL, 57 mmol) was added to a 50 mL stainless steel autoclave containing complex **1** (9.4 mg, 14 µmol) and bis(triphenylphosphine)iminium chloride (4.2 mg, 7.2 µmol) under argon. This was pressurized with CO₂ (2.0 MPa) and the mixture was stirred for 13 h at 22 °C. After removal of the remaining CO₂, the reaction mixture was transferred to a vial with CH₂Cl₂ and concentrated under vacuum. The residue was dissolved in CH₂Cl₂ (6.0 mL) and carboxylic acid (28 µmol) was added to it. The mixture was stirred for 2 h at room temperature and the solvent was removed under vacuum. This was dissolved in MeCN (10 mL) and extracted with hexane (20 mL x 3). The hexane phase was concentrated and the amount of cobalt complex was estimated by UV-VIS spectroscopy in CH₂Cl₂. The MeCN phase was concentrated to afford poly(propylene carbonate), which was analyzed by ¹H NMR in CDCl₃ and by size-exclusion chromatography in THF.


General Procedure for Table 2, Cycles 2–6.

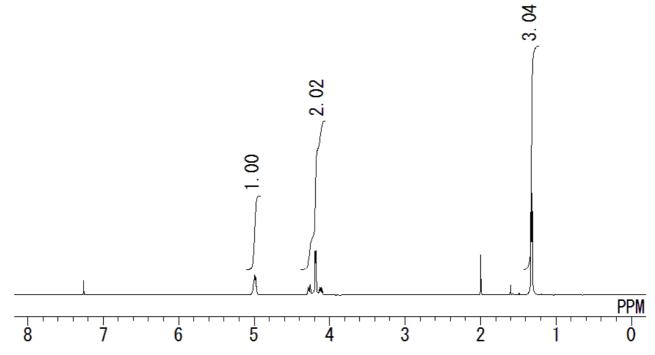
The recovered cobalt complex from the hexane phase was dried under vacuum (0.06 Torr) for 1 h at room temperature in an 80 mL glass Schlenk tube. This was then dissolved in 1000 equiv of propylene oxide (0.96–0.78 mL) and transferred into a 50 mL stainless steel autoclave containing bis(triphenylphosphine)iminium chloride (0.5 equiv to cobalt) under argon. The Schlenk tube was washed with propylene oxide (1000 equiv x 3) and this was also

¹ M. Tokunaga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, *Science* 1997, 277, 936.


transferred into the autoclave. The autoclave was pressurized with CO_2 (2.0 MPa) and the mixture was stirred for 13 h at 22 °C. After removal of the remaining CO_2 , the reaction mixture was transferred to a vial with CH_2Cl_2 and concentrated under vacuum. The residue was dissolved in CH_2Cl_2 (6.0 mL) and myristic acid (2.0 equiv to cobalt) was added to it. The mixture was stirred for 2 h at room temperature and the solvent was removed under vacuum. This was dissolved in MeCN (10 mL) and extracted with hexane (20 mL x 3). The hexane phase was concentrated and the amount of cobalt complex was estimated by UV-VIS spectroscopy in CH_2Cl_2 . The MeCN phase was concentrated to afford poly(propylene carbonate), which was analyzed by ¹H NMR in CDCl₃ and by size-exclusion chromatography in THF.


III. Representative UV-VIS and ¹H NMR Spectra

UV-VIS Spectra for Complex 1.


Complex 1 (16.8 mg, 25.3 µmol) was dissolved in CH₂Cl₂ to make a 500 mL solution ($c = 5.07 \times 10^{-5}$ M). The absorbance A at λ_{max} (411 nm) was determined to be 0.338 using a cell having optical path length l = 1.00 cm. Based on $A = \varepsilon \cdot c \cdot l$, ε was calculated to be 6.67 x 10^{3} M⁻¹·cm⁻¹.

The residue of the hexane phase was dissolved in CH₂Cl₂ to make a 100 mL solution. The absorbance A at λ_{max} (411 nm) was determined to be 0.927 using a cell having optical path length l = 1.00 cm. Based on $A = \varepsilon c \cdot l$ and assuming $\varepsilon = 6.67 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$, c was calculated to be 1.39 x 10⁻⁴ M. This led to the estimated amount of removed cobalt being 13.9 µmol, which corresponded to 96% of the used complex **1** (9.6 mg, 14.5 µmol).

¹H NMR for Poly(propylene carbonate) in CDCl₃.

