Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids

Hai-Bian Wu,^a Xian-Tao Ma^a and Shi-Kai Tian*^{ab}

^{*a*} Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Supporting information

Table of contents

General information	S-2
Preparation of alcohol 1g	S-2
General procedure for the stereospecific cross-coupling of enantioenriched	allylic
alcohols with boronic acids	S-4
Analytical data for the products	S-4
References	S-12
Copies of ¹ H NMR and ¹³ C NMR spectra	S-14
Copies of HPLC traces	S-6 1

General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-400 FT spectrometer (400 MHz and 100 MHz, respectively) using tetramethylsilane as an internal reference. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). High pressure liquid chromatography (HPLC) analyses were performed on a Hewlett-Packard 1200 Series instrument equipped with an isostatic pump using a Daicel Chiralpak column (AD, OD, OD-H, or OJ, 250 x 4.6 mm) with isopropanol/hexanes as mobile phase, and the UV detection was monitored at 254 or 220 nm. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin-Elmer 343 polarimeter with a sodium lamp at $\lambda = 589$ nm and reported as $[\alpha]_D^{T^{\circ}C}$ (c = g/100 mL, solvent). Melting points are uncorrected.

Except alcohol **1g**, the chiral allylic alcohols we used are known compounds. Alcohols **1a-i**, **1l**, and **1m** were prepared by sharpless kinetic resolution,¹ and alcohols **ent-1j** and **ent-1k** were synthesized from (*S*)-ethyl lactate² according to literature procedures. Their absolute configuration was assigned by comparison of the optical rotation (or the chiral HPLC trace) with that reported in the literature.^{1b-c,3,4} The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, and TCI, and used as received.

Abbreviations: Ac = acetyl, Am = amyl, BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, BINOL = 1,1'-binaphthol, dba = dibenzylideneacetone, DIPT = diisopropyl tartrate, DMAP = 4-dimethylamiopryidine, DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide, dppb = 1,4-bis(diphenylphosphino)butane, MS = molecular sieves, TBHP = *tert*-butyl hydroperoxide, THF = tetrahydrofuran, TMEDA = N,N,N',N'-tetramethylethylenediamine, Ts = *p*-toluenesulfonyl.

Preparation of alcohol 1g

(1) Preparation of rac-1g

To a solution of (E)-4-pyridinylbut-3-en-2-one⁵ (1.47 g, 10.0 mmol) in a mixed solvent of tetrahydrofuran and methanol (1:1, 20 mL) at 0 °C was added portionwise sodium borohydride (454 mg, 12.0 mmol). After being stirred for 30 min, the mixture was warmed slowly to room temperature and stirred for 1 h. The mixture was quenched with water (10 mL), evaporated to remove the organic solvents, and extracted with ethyl acetate (50 mL). The organic phase was washed successively with water (20 mL) and brine (20 mL), dried over sodium sulfate, and concentrated. The residue was purified by silica gel chromatography (dichloromethane/methanol,

15:1) to give **rac-1g** (1.24 g, 83%) as a yellow oil.⁶

(2) Resolution of rac-1g

A mixture of rac-1g (746 mg, 5.0 mmol), L-(+)-DIPT (703 mg, 3.0 mmol), and 4 Å molecular sieves (1.00 g) in dichloromethane (20 mL) was cooled to -20 °C under nitrogen and stirred for 30 min. Ti(OⁱPr)₄ (852 mg, 0.88 mL, 3.0 mmol) and TBHP (5.0-6.0 M in dichloromethane, 1.0 mL) was added subsequently. After being stirred for 2 h, the mixture was added an aqueous solution (15 mL) of FeSO₄·7H₂O (1.39 g), filtered under vacuum, and washed with dichloromethane (20 mL). The organic phase was separated and the aqueous phase was extracted with dichloromethane $(3 \times 20 \text{ mL})$. The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, and concentrated to give a residue, which was purified by silica gel chromatography (dichloromethane/methanol, 15:1) to give chiral alcohol 1g (162 mg, 22%) as a yellow oil.⁶ The ee was determined to be 93% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, *i*-PrOH/hexane = 15/85, flow rate = 1.0 mL/min): t_R (minor) = 9.8 min, t_R (major) = 11.9 min. $[\alpha]_D^{20}$ = -15 (c = 6.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.48-8.41 (m, 1H), 7.72-7.65 (m, 1H), 7.27-7.21 (m, 1H), 6.55 (d, J = 16.0 Hz, 1H), 6.34 (dd, J = 16.0, 6.0 Hz, 1H), 4.56-4.47 (m, 1H), 2.60 (s, br, 1H), 1.39 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 148.2, 136.4, 133.0, 132.6, 125.3, 123.5, 68.4, 23.4.

(3) Assignment of the absolute configuration of alcohol 1g

To a solution of chiral alcohol 1g (74.6 mg, 0.50 mmol), triethylamine (75.9 mg, 0.11 mL, 0.75 mmol), and DMAP (3.1 mg, 5 mol %) in dichloromethane (10 mL) was added portionwise *p*-toluenesulfonyl chloride (114 mg, 0.60 mmol) at 0 °C. The mixture was warmed to room temperature, stirred overnight, and filtered. The filtrate was washed with water, dried over anhydrous sodium sulfate, and evaporated under vacuum to give crude 1g-Ts.

To a mixture of crude **1g-Ts** and potassium carbonate (34.6 mg, 0.25 mmol) in *t*-butyl alcohol (25 mL) and water (5 mL) at 0 °C was added dropwise an aqueous solution (20 mL) of potassium permanganate (20.5 mg, 0.13 mmol), potassium carbonate (34.6 mg, 0.25 mmol), and sodium metaperiodate (535 mg, 2.50 mmol). The resulting mixture was stirred at 0 °C for 30 min and warmed to room temperature. The mixture was stirred at room temperature for 48 h, cooled to 0 °C, and quenched

with aqueous HCl (1 M, 3.0 mL). Solid sodium pyrosulfite was added until the reddish color disappeared and then the mixture was evaporated to remove *t*-butyl alcohol. The resulting aqueous solution was extracted with dichloromethane (3 × 50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous sodium sulfate, and concentrated to give a residue, which was purified by silica gel chromatography (ethyl acetate/petroleum ether, 1:3) to give acid **1g-Ts-O** (21.2 mg, 17%, two steps) as a yellowish solid.⁴ m.p. 126-127 °C; $[\alpha]_D^{20} = +29$ (*c* = 1.00, CHCl₃), lit.⁴: $[\alpha]_D^{25} = -34.9$ (1% solution in chloroform, *S*-enantiomer); ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, br, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 4.97 (q, *J* = 6.8 Hz, 1H), 2.45 (s, 3H), 1.55 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 145.4, 133.1, 129.9, 128.0, 73.2, 21.7, 18.3.

General procedure for the stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids

A mixture of enantioenriched allylic alcohol **1** (or **ent-1**, 0.50 mmol), boronic acid **2** (0.60 mmol), TMEDA (5.8 mg, 10 mol %), and Pd₂(dba)₃ (11.5 mg, 2.5 mol %) in a mixed solvent of dioxane and *tert*-amyl alcohol (1:1, 3.5 mL) was stirred vigorously under nitrogen at room temperature for 5 min and then heated at 110 °C for 15 h. The mixture was cooled to room temperature and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (0:100 ~ 1:5) or ethyl acetate/dichloromethane (1:100 ~ 1:25), to give alkene **3** (or **ent-3**).

The purified products were found to have the same α/γ and E/Z ratios for their regioisomers and stereoisomers (if any), respectively, as the crude ones according to ¹H NMR spectrometric analysis. The absolute configuration of products **3a**, **3b**, **3e**, **ent-3j**, **ent-3k**, **3n**, **3o**, and **3t** was assigned by comparison of the optical rotation with that reported in the literature, and that of the rest of products was assigned by analogy.

Analytical data for the products

3a,⁷ colorless oil; $[\alpha]_D^{20} = -37$ (*c* = 1.02, CHCl₃), lit.⁷: $[\alpha]_D^{20} = +34$ (*c* = 1.0, CHCl₃, *R*-enantiomer, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.15 (m, 10H),

6.45-6.33 (m, 2H), 3.68-3.59 (m, 1H), 1.46 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 137.6, 135.2, 128.5, 127.3, 127.0, 126.2, 126.1, 42.6, 21.2. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 0.5/99.5, flow rate = 0.5 mL/min): t_R (major) = 15.6 min, t_R (minor) = 18.1 min.

ent-3a,⁷ colorless oil; $[\alpha]_D{}^{20} = +35$ (c = 0.98, CHCl₃), lit.⁷: $[\alpha]_D{}^{20} = +34$ (c = 1.0, CHCl₃, *R*-enantiomer, 95% ee). The ee was determined to be 97% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 0.5/99.5, flow rate = 0.5 mL/min): t_R (minor) = 16.1 min, t_R (major) = 18.4 min.

3b,⁷ colorless oil; $[\alpha]_D^{20} = -47$ (c = 1.02, CHCl₃), lit.⁷: $[\alpha]_D^{20} = +44$ (c = 1.0, CHCl₃, *R*-enantiomer, 92% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.13 (m, 10H), 6.40 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 7.2 Hz, 1H), 3.34-3.27 (m, 1H), 1.88-1.76 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 137.6, 134.2, 129.5, 128.4, 127.7, 127.0, 126.2, 126.1, 51.0, 28.8, 12.3. The ee was determined to be 97% by HPLC analysis (Chiralpak OJ, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 11.9 min, t_R (minor) = 18.2 min.

3c,⁸ colorless oil; $[\alpha]_D^{20} = -36$ (c = 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.13 (m, 10H), 6.44-6.33 (m, 2H), 3.09-2.98 (m, 1H), 2.10-1.97 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 137.7, 133.2, 130.3, 128.4, 128.0, 127.0, 126.1, 126.0, 57.6, 33.2, 21.2, 20.9. The ee was determined to be 91% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, *i*-PrOH/hexane = 1/99, flow rate = 1.0 mL/min): t_R (minor) = 5.1 min, t_R (major) = 5.6 min.

3d,⁹ colorless oil; $[\alpha]_D^{20} = -16$ (*c* = 1.28, CHCl₃); H NMR (400 MHz, CDCl₃) δ

7.34-7.16 (m, 7H), 6.85-6.79 (m, 2H), 6.35 (d, J = 16.0 Hz, 1H), 6.24 (dd, J = 16.0, 6.8 Hz, 1H), 3.78 (s, 3H), 3.65-3.57 (m, 1H), 1.45 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 145.9, 133.2, 130.4, 128.4, 127.9, 127.3, 127.2, 126.1, 113.9, 55.3, 42.5, 21.3. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 6.2 min, t_R (minor) = 6.6 min.

3e,⁷ colorless oil; $[\alpha]_D^{20} = -36$ (c = 1.00, CHCl₃), lit.⁷: $[\alpha]_D^{20} = +33$ (c = 1.0, CHCl₃, *R*-enantiomer, 91% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.15 (m, 9H), 6.40-6.30 (m, 2H), 3.68-3.56 (m, 1H), 1.46 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 136.1, 136.0, 132.6, 128.6, 128.5, 127.4, 127.3, 127.3, 126.3, 42.6, 21.1. The ee was determined to be 96% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane, flow rate = 0.8 mL/min): t_R (major) = 16.5 min, t_R (minor) = 18.6 min.

3f, colorless oil; $[\alpha]_D^{20} = -12$ (c = 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 7.6, 2.0 Hz, 1H), 7.34-7.23 (m, 4H), 7.21-7.13 (m, 2H), 6.93-6.72 (m, 3H), 6.37 (dd, J = 16.0, 6.8 Hz, 1H), 3.82 (s, 3H), 3.70-3.60 (m, 1H), 1.47 (d, J = 6.8Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 146.0, 135.7, 128.4, 128.0, 127.3, 126.6, 126.5, 126.1, 123.1, 120.6, 110.8, 55.5, 43.0, 21.4; HRMS (EI) calcd for C₁₇H₁₈O (M) 238.1358, found 238.1359. The ee was determined to be 96% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 5.2 min, t_R (minor) = 5.8 min.

3g, colorless oil; $[\alpha]_D^{20} = -59$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.42 (d, J = 4.0 Hz, 1H), 7.68-7.62 (m, 1H), 7.36-7.16 (m, 6H), 6.46 (dd, J = 16.0, 6.4 Hz, 1H), 6.37 (d, J = 16.0 Hz, 1H), 3.70-3.61 (m, 1H), 1.48 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 148.1, 145.0, 137.7, 133.1, 132.6, 128.6, 127.3, 126.4, 125.0, 123.3, 42.7, 21.0; HRMS (EI) calcd for C₁₅H₁₅N (M) 209.1204, found 209.1206. The ee was determined to be 92% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 10/90, flow rate = 1.0 mL/min): t_R (major) = 12.1 min, t_R (minor) = 16.2 min.

3h, obtained as a 97:3 mixture of α/γ isomers , yellow oil; $[\alpha]_D^{20} = -48$ (*c* = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.16 (m, 6H), 6.42-6.28 (m, 2H), 6.22-6.12 (m, 2H), 3.65-3.54 (m, 1H), 1.44 (d, *J* = 7.2 Hz 3H); Partial ¹H NMR for the minor γ -isomer: δ 6.03 (d, *J* = 3.6 Hz, 1H), 5.89-5.79 (m, 1H), 5.56-5.45 (m, 1H), 4.67 (d, *J* = 7.6 Hz, 1H), 1.72 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 145.4, 141.4, 134.2, 128.5, 127.3, 126.3, 117.4, 111.1, 106.7, 42.3, 21.1; HRMS (EI) calcd for C₁₄H₁₄O (M) 198.1045, found 198.1049. The ee was determined to be 95% by HPLC analysis (Chiralpak OD, λ = 254 nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 9.9 min, t_R (minor) = 11.6 min.

3i,⁹ obtained as a 88:12 mixture of α/γ isomers, colorless oil; $[\alpha]_D^{20} = -9.8$ (c = 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.10 (m, 5H), 5.55 (dd, J = 15.6, 6.8 Hz, 1H), 5.41 (dd, J = 15.6, 6.4 Hz, 1H), 3.45-3.33 (m, 1H), 1.98-1.86 (m, 1H), 1.78-1.60 (m, 4H), 1.32 (d, J = 7.2 Hz, 3H), 1.29-0.99 (m, 6H); Partial ¹H NMR for the minor γ -isomer: δ 2.91-2.78 (m, 1H). The ee was determined to be 97% by HPLC analysis (Chiralpak OJ, $\lambda = 220$ nm, *i*-PrOH/hexane = 1/99, flow rate = 1.0 mL/min): t_R (minor) = 16.1 min, t_R (major) = 17.5 min.

ent-3j,¹⁰ colorless oil; $[\alpha]_D{}^{20} = +19$ (c = 1.01, CHCl₃), lit.¹⁰: $[\alpha]_D{}^{25} = +15.5$ (c = 0.3, CHCl₃ for *R*-enantiomer, 85% ee, 95:5 *E/Z*); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (m, 2H), 7.25-7.16 (m, 3H), 7.12 (dd, J = 15.6, 6.4 Hz, 1H), 5.81 (dd, J = 15.6, 1.6 Hz, 1H), 3.72 (s, 3H), 3.66-3.57 (m, 1H), 1.43 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 152.9, 143.3, 128.7, 127.3, 126.8, 119.7, 51.5, 42.1, 20.2. The ee was determined to be 96% by HPLC analysis (Chiralpak OD, $\lambda = 220$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 5.8 min, t_R (minor) = 6.9 min.

ent-3k,² colorless oil; $[\alpha]_D^{20} = -6.2$ (c = 0.80, CHCl₃), lit.²: $[\alpha]_D^{24} = +4.85$ (c = 0.79, CHCl₃, *S*-enantiomer, 83% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.27 (m, 2H), 7.26-7.15 (m, 3H), 7.07 (dd, J = 15.2, 6.8 Hz, 1H), 6.13 (dd, J = 15.2, 1.6 Hz, 1H), 3.68-3.57 (m, 1H), 3.45-3.28 (m, 4H), 1.43 (d, J = 6.8 Hz, 3H), 1.18-1.09 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.5, 144.1, 128.5, 127.3, 126.5, 119.5, 42.3, 42.2, 40.8, 20.8, 14.8, 13.2. The ee was determined to be 97% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 10.1 min, t_R (minor) = 11.1 min.

31,¹¹ colorless oil; $[\alpha]_D^{20} = -29$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 2H), 7.30-7.22 (m, 2H), 7.20-7.08 (m, 5H), 6.43-6.32 (m, 2H), 3.64-3.53 (m, 1H), 2.32 (s, 3H), 1.44 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 137.6, 135.7, 135.5, 129.2, 128.4, 128.3, 127.2, 127.0, 126.1, 42.1, 21.3, 21.0. The ee was determined to be 99% by HPLC analysis (Chiralpak OJ, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (major) = 11.8 min, t_R (minor) = 16.7 min.

3m, white solid, m.p. 58-59 °C; $[\alpha]_D^{20} = -28$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.50 (m, 4H), 744-7.24 (m, 9H), 7.21-7.15 (m, 1H), 6.49-6.34 (m, 2H), 3.73-3.60 (m, 1H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 141.0, 139.2, 137.5, 135.1, 128.7, 128.5, 127.7, 127.2, 127.1, 127.0, 126.2, 42.2, 21.2; HRMS (EI) calcd for C₂₂H₂₀ (M) 284.1565, found 284.1563. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 1.0 mL/min): t_R (minor) = 8.7min, t_R (major) = 11.1 min.

3n,⁷ colorless oil; $[\alpha]_D^{20} = -39$ (c = 1.09, CHCl₃), lit.⁷: $[\alpha]_D^{20} = +29$ (c = 1.0, CHCl₃, *R*-enantiomer, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.17 (m, 7H), 7.04-6.95 (m, 2H), 6.43-6.30 (m, 2H), 3.67-3.58 (m, 1H), 1.44 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4 (d, $J_{C-F} = 242.3$ Hz), 141.2 (d, $J_{C-F} = 3.2$ Hz), 137.4, 135.0, 128.7 (d, $J_{C-F} = 7.5$ Hz), 128.5, 127.1, 126.1, 115.2 (d, $J_{C-F} = 21.0$ Hz), 41.8, 21.3. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane, flow rate = 0.3 mL/min): t_R (minor) = 55.7 min, t_R (major) = 64.3 min.

30,⁷ colorless oil; $[\alpha]_D{}^{20} = -33$ (c = 1.00, CHCl₃), lit.⁷: $[\alpha]_D{}^{20} = +29$ (c = 1.0, CHCl₃, *R*-enantiomer, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.37-7.17 (m, 7H), 6.45-6.31 (m, 2H), 3.90 (s, 3H), 3.74-3.65 (m, 1H), 1.47 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 151.0, 137.3, 134.2, 129.9, 129.2, 128.5, 128.2, 127.3, 126.2, 52.0, 42.6, 21.0. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 2/98, flow rate = 0.8 mL/min): t_R (minor) = 12.4 min, t_R (major) = 13.8 min.

3p,¹² brown oil; $[\alpha]_D^{20} = -19$ (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.15 (m, 5H), 7.13-7.03 (m, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.58 (s, 1H), 6.55-6.48 (m, 1H), 6.44-6.31 (m, 2H), 3.75-3.33 (m, 3H), 1.42 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 146.4, 137.6, 135.3, 129.4, 128.5, 128.3, 127.0, 126.1, 117.7, 114.1, 113.1, 42.5, 21.1. The ee of compound **3p** was determined to be 99% after being converted to compound **3q** by acylation (see below).

3q, obtained as a 98:2 mixture of α/γ isomers , colorless oil; $[α]_D^{20} = -14$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.15 (m, 9H), 7.01 (d, J = 7.6 Hz, 1H), 6.44-6.31 (m, 2H), 3.65-3.56 (m, 1H), 2.13 (s, 3H), 1.44 (d, J = 7.2 Hz, 3H); Partial ¹H NMR for the minor γ-isomer: δ 1.72 (d, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 146.7, 138.1, 137.5, 134.9, 129.1, 128.7, 128.5, 127.1, 126.2, 123.3, 118.8, 117.9, 42.5, 24.6, 21.1; HRMS (EI) calcd for C₁₈H₁₉NO (M) 265.1467, found 265.1474. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 10/90, flow rate = 1.0 mL/min): t_R (major) = 11.6 min, t_R (minor) = 14.1 min.

3r, colorless oil; $[\alpha]_D^{20} = -8.4$ (c = 0.96, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 1H), 7.91-7.86 (m, 1H), 7.48-7.43 (m, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.31-7.25 (m, 2H), 7.22-7.17 (m, 1H), 6.45-6.31 (m, 2H), 3.90 (s, 3H), 3.73-3.65 (m, 1H), 1.48 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 146.0, 137.4, 134.5, 132.0, 130.4, 129.1, 128.5, 128.4, 127.6, 127.2, 126.2, 52.1, 42.5, 21.2; HRMS (EI) calcd for C₁₈H₁₈O₂ (M) 266.1307, found 266.1306. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 1/99, flow rate = 0.8 mL/min): t_R (major) = 18.2 min, t_R (minor) = 21.2 min.

3s, colorless oil; $[\alpha]_D^{20} = -46$ (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.33 (m, 2H), 7.30-7.23 (m, 3H), 7.21-7.15 (m, 2H), 7.12-7.06 (m, 1H), 7.05-6.98 (m, 1H), 6.48-6.34 (m, 2H), 4.00-3.91 (m, 1H), 1.46 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6 (d, *J*_{C-F} = 243.8 Hz), 137.5, 133.6, 132.5 (d, *J*_{C-F} = 14.5 Hz), 129.1, 128.5, 128.4 (d, *J*_{C-F} = 4.8 Hz), 127.7 (d, *J*_{C-F} = 8.2 Hz), 127.1, 126.2, 124.1 (d, *J*_{C-F} = 3.5 Hz), 115.5 (d, *J*_{C-F} = 22.5 Hz), 35.7 (d, *J*_{C-F} = 2.4 Hz), 20.2; HRMS (EI) calcd for C₁₆H₁₅F (M) 226.1158, found 226.1157. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, λ = 254 nm, hexane, flow rate = 0.8 mL/min): t_R (minor) = 13.9 min, t_R (major) = 14.8 min.

3t,¹³ white solid, m.p. 55-56 °C; $[\alpha]_D{}^{20} = -29$ (c = 2.10, CHCl₃), lit.¹³: $[\alpha]_D{}^{24} = -21$ (c = 8.40, CHCl₃, *S*-enantiomer, 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.72 (m, 3H), 7.69 (s, 1H), 7.48-7.15 (m, 8H), 6.55-6.34 (m, 2H), 3.87-3.70 (m, 1H), 1.55 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 137.5, 135.1, 133.7, 132.3, 128.8, 128.5, 128.0, 127.6, 127.1, 126.3, 126.2, 125.9, 125.3, 125.2, 42.6, 21.1. The ee was determined to be 99% by HPLC analysis (Chiralpak OD + Chiralpak OD-H), $\lambda = 254$ nm, *i*-PrOH/hexane = 0.8/99.2 flow rate = 1.0 mL/min): t_R (major) = 19.0 min, t_R (minor) = 20.0 min.

3u,⁹ white solid, m.p. 52-54 °C; $[\alpha]_D^{20} = -186$ (c = 2.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.75-7.70 (m, 1H), 7.54-7.40 (m, 4H), 7.37-7.32 (m, 2H), 7.30-7.24 (m, 2H), 7.21-7.14 (m, 1H), 6.55 (dd, J = 16.0, 5.6 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H), 4.51-4.41 (m, 1H), 1.61 (d, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 137.6, 135.0, 134.0, 131.4, 128.9, 128.5, 127.0, 126.9, 126.1, 125.9, 125.6, 125.4, 123.8, 123.5, 37.3, 20.8. The ee was determined to be 98% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, *i*-PrOH/hexane = 1/99, flow rate = 0.8 mL/min): t_R (minor) = 23.5 min, t_R (major) = 24.8 min.

3v, white solid, m.p. 58-60 °C; $[\alpha]_D^{20} = -66$ (c = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 7.2 Hz, 1H), 8.63 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.67 (s, 1H), 7.65-7.51 (m, 4H), 7.34 (d, J = 7.2 Hz, 2H), 7.28-7.23 (m, 2H), 7.19-7.15 (m, 1H), 6.59 (dd, J = 16.0, 6.0 Hz, 1H), 6.49 (d, J = 16.0 Hz, 1H), 4.49-4.38 (m, 1H), 1.66 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.6, 134.8, 131.8, 130.8, 129.6, 129.3, 128.5, 128.4, 127.1, 126.6,

126.5, 126.2, 126.1, 124.5, 124.3, 123.3, 122.4, 37.5, 20.6; HRMS (EI) calcd for $C_{24}H_{20}$ (M), 308.1565, found 308.1556. The ee was determined to be 99% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, *i*-PrOH/hexane = 0.7/99.3, flow rate = 1.0 mL/min): t_R (minor) = 9.7 min, t_R (major) = 10.5 min.

3w, colorless oil; $[\alpha]_D{}^{20} = -13$ (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.33-7.15 (m, 5H), 6.87-6.81 (m, 2H), 6.45-6.33 (m, 2H), 6.28-6.20 (m, 1H), 6.13-6.05 (m, 1H), 3.79 (s, 3H), 3.23-3.13 (m, 1H), 1.28 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 137.7, 134.5, 132.1, 130.4, 128.6, 128.5, 128.2, 127.2, 127.0, 126.1, 113.9, 55.3, 40.0, 20.3; HRMS (EI) calcd for C₁₉H₂₀O (M), 264.1514, found 264.1510. The ee was determined to be 94% by HPLC analysis (Chiralpak AD, λ = 254 nm, *i*-PrOH/hexane = 1/99, flow rate = 1.0 mL/min): t_R (major) = 8.6 min, t_R (minor) = 9.7 min.

3x,¹⁴ colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.17 (m, 10H), 7.15-7.10 (m, 4H), 6.66 (dd, J = 16.0, 7.6 Hz, 1H), 6.34 (d, J = 16.0 Hz, 1H), 4.85 (d, J = 7.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 140.6, 137.4, 136.0, 132.8, 131.2, 129.2, 128.6 128.5, 127.3, 126.4, 126.3, 53.8, 21.0.

References

- (a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K. B. Sharpless, *J. Am. Chem. Soc.*, 1987, **109**, 5765; (b) M. Sasaki, H. Ikemoto, M. Kawahata, K. Yamaguchi and K. Takeda, *Chem. Eur. J.*, 2009, **15**, 4663; (c) G. H. P. Roos and A. R. Donovan, *Synlett*, 1996, 1189.
- 2 T. Hata, R. Bannai, M. Otsuki and H. Urabe, Org. Lett., 2010, 12, 1012.
- (a) E. Brenna, C. D. Negri, C. Fuganti, F. G. Gatti and S. Serra, *Tetrahedron:* Asymmetry, 2004, 15, 335; (b) V. B. Birman and H. Jiang, Org. Lett., 2005, 7, 3445; (c) S. Sgalla, G. Fabrizi, R. Cirilli, A. Macone, A. Bonamore, A. Boffi and S. Cacchi, *Tetrahedron: Asymmetry*, 2007, 18, 2791; (d) C. M. Binder, A. Bautista, M. Zaidlewicz, M. P. Krzemiński, A. Oliver and B. Singaram, J. Org. Chem., 2009, 74, 2337; (e) S. Akai, R. Hanada, N. Fujiwara, Y. Kita and M. Egi, Org. Lett., 2010, 12, 4900.

- 4 A. V. Kurkin, D. S. Belov and M. A Yurovskaya, *Chem. Heterocycl. Compd.*, 2008, 44, 1123.
- 5 K. Zumbansen, A. Döhring and B. List, Adv. Synth. Catal., 2010, 352, 1135.
- 6 For a racemic form, see: Y. Tamaru, Y. Yamada, Z. Yoshida, J. Org. Chem., 1978, **43**, 3396.
- 7 M.-B. Li, Y, Wang and S.-K. Tian, Angew. Chem. Int. Ed., 2012, 51, 2968.
- 8 For a racemic form, see: Y. Uozumi, H. Danjo and T. Hayashi, J. Org. Chem., 1999, 64, 3384.
- 9 For a racemic form, see: C. Li, J. Xing, J. Zhao, P. Huynh, W. Zhang, P. Jiang and Y. J. Zhang, *Org. Lett.*, 2012, **14**, 390.
- 10 A. Baeza, C. Nájera and J. M. Sansano, Eur. J. Org. Chem., 2007, 1101.
- 11 For a racemic form, see: Z.-Q. Liu, Y. Zhang, L. Zhao, Z. Li, J. Wang, H. Li and L.-M. Wu, *Org. Lett.*, 2011, **13**, 2208.
- 12 For a racemic form, see: B. J. Stokes, S. M. Opra and M. S. Sigman, *J. Am. Chem. Soc.*, 2012, **134**, 11408.
- 13 P. Maity, D. M. Shacklady–McAtee, G. P. A. Yap, E. R. Sirianni and M. P. Watson, *J. Am. Chem. Soc.*, 2013, **135**, 280.
- 14 G. W. Kabalka, G. Dong and B. Venkataiah, Org. Lett., 2003, 5, 893.

a last	0.00	· 1					- 1 La	and the second second			- -	12/2 12/2	·			18 14	10 Mar 10	rud lines			- 1 A		- 16j - 1
)0	190	180)	170	160	150	140	130	120	110	0	100	90	80	1	70	60	50	40	30	20	10	0
												II (p	pm)										

		-					1					12		12 12		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· .			_
)0	190	18	80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
f1 (ppm)																						

1.00	The second second	The second second	· · · · · · · · · · · · · · · · · · ·		and in a	and show the	and and	7. 2.4		10 and 10 and 10	1000	· · · · · · · · · · · · · · · · · · ·			and the second second		 Interview 	10 No. 10		- C C
)0	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90	80	70	60	50	40	30	20	10	0

1.000	the second second	·			and income	· .	and the second second	and the second	10 A 10 A 10 A	10 million 100	· 1				a set and a		10 million	- 10 m		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										II (pi	om)									

-	1	· ·					- 1						1 1		12	1 1	1 1		 	-	-				
1000		100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1.10 1.10 1.10	1997	7.4.4.4.4.4	1		1000	100	1.1	1.14	1.0	1.4.4.4				100		0.000	
00	1	00	180	170	160	15	0	140	130	1.20	110		100	00	80	70	60	50	40		20	20	1	10	0
10	1	30	100	110	100	10		140	100	120	110		100	30	30	10	00	00	-10		30	21		10	0
												f	f1 (pp	m)											

NA	1.1.1	100	1.1	0.0	2.5 · · · · · · · · · · · · · · · · · · ·			1.1.1		1.1	1. Col			903	3-1	<u> </u>	10 NO.	1.11			10 Mar			2.01	1.10		 	- Cerci - 10		127 128	 	 	_
1.00		dian -		The sec					100	- A	1.000	·	(d)	7. 1.8%	- 15 S	·	Call and		100		S	3		100	- C.	1.	1.0	- 10 State	2.62	1 A A	100	- 195	
)0	1	90		180	170	13	160		150	1	10	130)	120	1	10	100	10	90	8	0	70)	60		50	40	3	0	20	10	0	
																	f1 (r	(mqc															

																							_
a second	100	1.1	1			1	and the second	100 100	7	1.1	1210	· · · · · · · · · · · · · · · · · · ·			100	1		1. The second			100		
)0	19	0	180	170	160	150	140	130	120	110	100	90	80	70	60	50	4	0	30	20	10	0	
											fl (pp	m)											

1			1	· 1		1	· 1		- L	·					1			12	· · ·			1	· · · ·		- 1	100
)0	19	0	180	170)	160	15	0	140	130	120	110	0	100	90	80)	70	60	50)	40	30	20	10	0
														f1 (pp	m)											

lar.	·		1 '	1. 1	· · · · ·		and the second	· aller				1		1		ra line		· 1	· 1		· · · · ·
)0	19	0	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											fl (ppm))									

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	16.035	6368.6	169.9	0.5844	0.799	50.047
2	18.595	6356.6	131	0.7541	0.802	49.953

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	15.561	9720.2	271	0.5567	0.733	99.412
2	18.098	57.4	1.3	0.7523	0.939	0.588

rumber	Time	7 Hou	mengin	Widdii	Symmetry	1 Hou (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	16.035	6368.6	169.9	0.5844	0.799	50.047
2	18.595	6356.6	131	0.7541	0.802	49.953

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	16.123	245.8	6.9	0.5544	0.925	1.452
2	18.397	16682.9	361.2	0.7384	0.702	98.548

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.781	74641.2	2173.7	0.5273	0.396	49.335
2	17.27	76652.3	1022.2	1.07	0.336	50.665

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.946	34542.3	1057.2	0.4727	0.601	98.737
2	18.173	416.2	6.4	0.8688	0.896	1.263

Number	Time	Alea	neight	wiaui	Symmetry	Alea (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.16	27629.6	2384.3	0.1818	0.774	49.813
2	5.646	27837.5	2419.2	0.1794	0.785	50.187

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.109	956.2	76.3	0.1928	0.925	4.284
2	5.585	21363.5	1653.2	0.2017	0.76	95.716

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	6.454	16706.1	1610.5	0.1618	0.869	49.354
2	6.849	17143.7	1525.7	0.1748	0.866	50.646

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	6.187	20440.7	1857.1	0.1735	0.854	97.216
2	6.577	585.4	45.2	0.1905	0.63	2.784

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	17.202	12917.2	347.5	0.5559	0.466	49.802
2	18.803	13020	313.8	0.6166	0.465	50.198

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	16.455	4107.7	123.8	0.4977	0.583	98.142
2	18.559	77.8	2.1	0.6151	0.729	1.858

Г

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.192	26340.8	2239.9	0.1823	0.672	49.330
2	5.748	27056	2146	0.1937	0.672	50.670

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.213	25577.6	2357.5	0.1673	0.651	98.065
2	5.753	504.7	39.8	0.1831	0.644	1.935

rumber	TIME	Inca	meight	widdii	Symmetry	7 HCa (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.852	4167.2	126	0.4833	0.496	49.928
2	15.543	4179.2	98.5	0.6261	0.535	50.072

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	12.123	7930.8	225	0.5132	0.464	95.870
2	16.179	341.7	7.9	0.6386	0.647	4.130

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	9.468	1003.7	47.1	0.3114	0.537	48.589
2	11.243	1062	39.5	0.3892	0.511	51.411

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	9.93	33715.8	1459.1	0.3851	0.577	97.564
2	11.609	841.8	30.2	0.4646	0.587	2.436

rumoer	TIME	Inca	meight	widdii	Symmetry	7 Hea (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	15.845	5874.6	205.7	0.4293	0.597	48.492
2	17.254	6240.1	99.2	0.9331	0.56	51.508

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	16.113	168.7	6.9	0.3722	0.708	1.692
2	17.483	9802.4	179.1	0.8161	0.484	98.308

	-		0		J	
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.727	4572.9	380.4	0.181	0.652	50.451
2	6.801	4491.2	326	0.2073	0.685	49.549

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	5.813	27612.2	2189.8	0.1922	0.666	97.995
2	6.882	565	36.3	0.2281	0.611	2.005

2

11.032

46743.5

1936.9

0.3689

0.685

50.471

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	10.134	16039	749.1	0.3255	0.714	98.598
2	11.146	228	9.9	0.3264	0.811	1.402

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.803	19801.9	670.1	0.4569	0.702	99.483
2	16.688	103	2.2	0.5993	0.932	0.517

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	8.693	147.5	7.9	0.2846	0.73	0.452
2	11.052	32508.4	803.7	0.5767	0.214	99.548

Nulliber	Time	Alea	neigin	wiaui	Symmetry	Alea (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	54.734	26022.7	248.1	1.5762	0.526	50.237
2	64.587	25776.8	198.9	1.9458	0.548	49.763

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	55.726	378.6	4.4	1.1089	0.776	0.624
2	64.34	60302.7	445.3	2.0151	0.431	99.376

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	12.367	1951.2	76	0.3883	0.742	49.911
2	13.814	1958.2	68.1	0.4361	0.743	50.089

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	12.383	136.9	5.5	0.383	0.766	0.545
2	13.777	24982.7	820	0.4617	0.591	99.455

Number	TIME	Alca	ineight	wituti	Symmetry	AICa (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.414	1582.9	480.3	0.498	0.633	49.153
2	13.664	16373.5	387.1	0.705	0.608	50.847

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.519	2469.2	75.5	0.495	0.673	99.273
2	13.876	18.1	5.5E-1	0.5447	0.945	0.727

rumoer	Time	Incu	mengine	Witden	by milletry	1 Heu (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.621	11869.4	360.9	0.4958	0.642	49.213
2	13.889	12249.1	283	0.6506	0.592	50.787

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	11.56	17660.4	511.3	0.5238	0.629	99.518
2	14.052	85.6	2.3	0.5463	0.713	0.482

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	18.234	44743.5	1096.6	0.6187	0.57	99.551
2	21.203	201.6	4.6	0.6369	0.75	0.449

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	13.395	2380.1	94.4	0.3772	0.632	49.623
2	14.599	2416.2	82.9	0.4332	0.625	50.377

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	13.89	151.2	3.4	0.7307	1.408	0.581
2	14.764	25871.6	874.1	0.4371	0.456	99.419

	(min)	(mAU.s)	(mAU)	(min)	factor	
1	18.794	2509	99.5	0.3874	0.763	49.876
2	19.82	2521.5	94.8	0.4079	0.766	50.124

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	18.965	22249.7	857.1	0.399	0.692	99.381
2	20.046	138.6	5.1	0.4003	0.499	0.619

Number	THIC	Alca	neight	wituti	Symmetry	Alca (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	23.118	12013.9	302.5	0.6163	0.982	50.097
2	24.695	11967.5	275.7	06739	0.955	49.903

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	23.51	328.1	8.9	0.6115	1.336	1.166
2	24.775	27809.6	672.7	0689	0.93	98.834

Number	TIME	Alca	ineight	wituti	Symmetry	AICa (70)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	9.46	3282.7	181.6	0.2735	0.696	49.597
2	10.281	3336	164.5	0.3064	0.701	50.403

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	9.655	37.1	2.3	0.2642	0.861	0.617
2	10.474	5978.1	288.1	0.3149	0.692	99.383

	(min)	(mAU.s)	(mAU)	(min)	factor	
1	8.639	2322.6	141.4	0.2542	0.872	49.868
2	9.736	2335	127.4	0.2851	0.885	50.132

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU.s)	(mAU)	(min)	factor	
1	8.565	2260.6	134.2	0.262	0.856	96.872
2	9.66	73	4	0.2868	0.903	3.128