Supplementary Information:

Labelling Studies on the Biosynthesis of Terpenes in Fusarium fujikuroi

Christian A. Citron,^a Nelson L. Brock,^a Bettina Tudzynski,^b Jeroen S. Dickschat^{*a}

^a Institut für Organische Chemie, Hagenring 30, 38106 Braunschweig

^b Institut für Biologie and Biotechnologie der Pflanzen, Schlossplatz 8, 48143 Münster

Email: j.dickschat@tu-braunschweig.de

I. General Information

Chemicals were obtained from Acros Organics (Geel, Belgium) or Sigma Aldrich Chemie GmbH (Steinheim, Germany) and used without purification. All reactions were performed under an inert atmosphere (N₂) in flamedried flasks. Solvents were purified by distillation and dried according to standard methods. Thin-layer chromatography was performed with 0.2 mm precoated plastic sheets Polygram® Sil G/UV254 (Machery-Nagel). Column chromatography was carried out using Merck silica gel 60 (70-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV II-300 (300 MHz), DRX-400 (400 MHz), AV III-400 (400 MHz) or AV II-600 (600 MHz) spectrometers, and were referenced against TMS (δ = 0.00 ppm) for ¹H-NMR and CDCl₃ (δ = 77.01 ppm) for ¹³C NMR. For measurements in [²H₆]DMSO it was referenced against TMS (δ = 0.00 ppm) for ¹H NMR and [²H₆]DMSO (δ = 39.51 ppm) for ¹³C NMR. IR spectra were recorded with a Bruker Tensor 27 ATR (attenuated total reflectance). GC-MS analyses were carried out with an HP6890 gas chromatograph connected to an HP5973 mass selective detector fitted with a BPX-5 fused silica capillary column (25 m, 0.25 mm i. d., 0.25 µm film). Instrumental parameters were (1) inlet pressure, 77.1 kPa, He 23.3 mL min⁻¹, (2) injection volume, 2 µL, (3) transfer line, 300 °C, and (4) electron energy 70 eV. The GC was programmed as follows: 5 min at 50 °C increasing at 10 °C min⁻¹ to 320 °C, and operated in split mode (20:1, 60 s valve time). The carrier gas was He at 1 mL min⁻¹. Retention indices (*I*) were determined from a homologous series of *n*-alkanes (C₈-C₃₈).

II. Culture Conditions

For the analyses of volatile terpenes cultures of *Fusarium fujikuroi* IMI58289 were grown on CM-agar amended with a 2 mM concentration of $[2^{-13}C]$ mevalonolactone for 5 d at 28 °C and then analysed by CLSA.¹ In order to gain larger amounts of material for NMR analysis overexpression strains of *Fusarium* were used that have been reported in a previous work.² In particular, for the collection of α -acorenol the mutant strain SC6 was used, while for collection of koraiol SC4 was cultivated. For the extraction of cyclonerodiol and gibberellins 5 pieces of a CM agar plate were used to inoculate a Darken preculture that was grown for 3 d at 28 °C. For analysis of cyclonerodiol, 500 µL of the preculture were transferred into 10% ICI medium (50 mL) containing 2 mM [2⁻¹³C]mevalonolactone, and cultivation was extended for 6 d prior to filtration and extraction with hexane. For gibberellin analysis, 300 µL of the preculture were transferred into 10% ICI medium (30 mL) and grown for 6 d at 28 °C on a rotary shaker prior to filtration and extraction with ethyl acetate. After one and two days of cultivation, 2 mM [2⁻¹³C]mevalonolactone were added to the culture. The organic layers were dried and the solvent was removed under reduced pressure followed by NMR analysis.

CM medium: salt solution (50 mL), trace element solution (1 mL), vitamin solution (1 mL), yeast extract (1.0 g), peptone (2.0 g), casamino acids (1.0 g), glucose (10 g), agar (15 g), H₂O (950 mL).

Salt solution for CM: KCl (10.4 g), MgSO₄ x 7 H₂O (10.4 g), KH₂PO₄ (30.4 g), H₂O (1000 mL).

Trace element solution for CM: FeSO₄ x 7 H₂O (10 g), MgSO₄ x 7 H₂O (50 g), H₂O (1000 mL).

Vitamin solution for CM: biotin (500 mg), nicotinic acid (50 g), *p*-aminobenzoic acid (16 g), pyridoxal hydrochloride (20 g), H_2O (1000 mL).

Darken preculture: saccharose (30 g), corn steep solids (15 g), CaCO₃ (7.0 g), (NH₄)₂SO₄ (0.5 g), H₂O (1000 mL).

10% ICI medium: glucose (80 g), MgSO₄ x 7 H₂O (1.0 g), KH₂PO₄ (0.5 g), NH₄NO₃ (0.5 g), trace element solution (2 mL), H₂O (998 mL).

Trace element solution for ICI: H₃BO₃ (2.9 g), MnCl₂ x 4 H₂O (1.8 g), ZnSO₄ x 7 H₂O (222 mg), Na₂Mo₂O₇ x 2 H₂O (79 mg), Co(NO₃)₂ x 6 H₂O (49 mg), H₂O (100 mL).

III. Synthesis of [2-13C]mevalonolactone

Scheme 1 Synthesis of $[2^{-13}C]$ mevalonolactone (12): a) LDA, $[2^{-13}C]$ ethyl acetate, -78 °C, THF, 89%; b) H₂, Pd/C, 40 bar, 40 °C, methanol, 71%.

The synthesis of $[2^{-13}C]$ mevalonolactone (12) was carried out as outlined in Scheme 1 in a procedure that is very similar to previously reported approaches by Tanabe.^{3,4} Starting from ketone 15⁵ an aldol addition of $[2^{-13}C]$ ethyl acetate gave 16 in high yield. Subsequent deprotection under H₂ atmosphere gave 12 after filtration from the catalyst.

Synthesis of [2-¹³C]ethyl 5-(benzyloxy)-3-hydroxy-3-methylpentanoate (16): A solution of diisopropylamine (574 mg, 5.7 mmol, 2.1 eq.) in 25 mL of dry THF was cooled to 0 °C and treated with a 1.6 M solution of *n*-BuLi (3.6 mL, 5.7 mmol, 2.1 eq.) in hexane. After stirring for 1 h at 0 °C it was cooled to -78 °C and [2-¹³C]ethyl acetate (500 mg, 5.7 mmol, 2.1 eq.) was added in 10 mL of dry THF dropwise. Stirring was continued for 30 min, then ketone 15⁵ (482 mg, 2.7 mmol, 1.0 eq.) was added in 6 mL dry THF. The reaction mixture was stirred for further 45 min at -78 °C and 45 min at room temperature. It was quenched by the addition of distilled water and extracted three times with ethyl acetate. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Column chromatography with hexane/ethyl acetate (5:1) yielded 16 (641 mg, 2.4 mmol, 89%) as colourless oil.⁶

¹H NMR (400 MHz, CDCl₃): δ = 7.36 (m, 5H), 4.50 (s, 2H), 4.17 – 4.09 (m, 2H), 3.68 (ddd, *J* = 6.3, 1.1 Hz, 2H), 2.70 (dd, *J* = 33.0, 15.3 Hz, 1H), 2.37 (dd, *J* = 33.0, 15.0 Hz, 1H), 1.93 – 1.89 (m, 2H), 1.29 (d, 4.2 Hz, 3H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 172.4 (d, *J* = 56.6 Hz, CO), 137.9 (C_q), 128.3 (2x CH), 127.6 (CH), 127.5 (2x CH), 73.2 (CH₂), 70.7 (d, *J* = 37.4, C_q), 66.9 (d, *J* = 2.2 Hz, CH₂), 60.4 (CH₂), 45.5 (¹³CH₂), 45.0 (d, *J* = 17.8 Hz, CH₂), 27.2 (d, *J* = 17.8 Hz, CH₃), 14.1 (CH₃) ppm.

MS (EI, 70 eV): *m*/*z* (%) = 267 (<1) [M]⁺, 234 (1), 179 (1), 160 (15), 143 (8), 132 (7), 107 (7), 91 (100), 77 (17), 65 (20), 43 (38).

GC (BPX-5): *I* = 1909.

IR (ATR): $\tilde{v} = 3499$ (br), 3064 (w), 2977 (w), 1715 (s), 1454 (m), 1369 (m), 1325 (m), 1192 (s), 1096 (s), 1027 (s), 698 (s) cm⁻¹.

Synthesis of [2-¹³C]mevalonolactone (12): Compound 16 (481 mg, 1.8 mmol, 1.0 eq.) was dissolved in 20 mL methanol and treated with 5% Pd/C (200 mg, 0.1 mmol, 0.05 eq.). The reaction mixture was stirred for 2 h under an atmosphere of H₂ (40 bar) at 40 °C. After cooling to room temperature it was filtered over a pad of silica and concentrated under reduced pressure. The residue was taken up into 20 mL of CH₂Cl₂. A catalytic amount of *p*-TsOH was added and it was stirred over night at room temperature. Another silica gel filtration and removal of the solvent gave 12 (170 mg, 1.3 mmol, 71%) as colourless oil.

¹H NMR (400 MHz, CDCl₃): δ = 4.61 (ddd, *J* = 11.3, 8.6, 5.9 Hz, 1H), 4.36 (ddd, *J* = 11.3, 9.1, 4.6 Hz, 1H), 2.86 - 2.65 (m, 1H), 2.52 - 2.33 (m, 1H), 1.94 - 1.89 (m, 2H), 1.40 (d, *J* = 4.4 Hz, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.9$ (d, J = 50.2 Hz, CO), 68.0 (d, J = 39.1 Hz, C_q), 66.1 (d, J = 1.7 Hz, CH₂), 44.6 (¹³CH₂), 36.0 (d, J = 19.3 Hz, CH₂), 27.2 (t, J = 2.0 Hz, CH₃) ppm. MS (EI, 70 eV, MSTFA): m/z (%) = 202 (<1) [M]⁺, 188 (16), 145 (100), 116 (48), 101 (15), 83 (18), 75 (70), 45 (32). GC (BPX-5, MSTFA): I = 1385. IR (ATR): $\tilde{v} = 3418$ (br), 2972 (w), 2929 (w), 1702 (s), 1457 (w), 1397 (m), 1262 (s), 1228 (s), 1126 (s), 1068 (s), 1023 (m) cm⁻¹.

Synthesis of α -cedrene (14): A CLSA extract obtained from *Fusarium fujikuroi* SC4 containing ¹³C-labelled α -acorenol after feeding of [2-¹³C]mevalonolactone was concentrated with a gentle stream of nitrogen. The residue was stirred in 88% aqueous formic acid for 10 min. The resulting product was extracted with 1 mL of CDCl₃, dried over MgSO₄ and directly subjected to NMR analysis.⁷

¹³C NMR (150 MHz, CDCl₃): δ = 119.2 (CH), 36.1 (CH₂), 27.6 (CH₃, major peak, ca. 90%), 25.6 (CH₃, minor peak, ca. 10%) ppm.

IV. Biosynthesis of *ent*-kaurene

Scheme 2 Biosynthesis of labelled *ent*-kaurene 4 from [2-¹³C]-12.

V. Literature

- 1 K. Grob and F. Zürcher, J. Chromatogr., 1976, 117, 285.
- 2 N. L. Brock, K. Huss, B. Tudzynski and J. S. Dickschat, ChemBioChem, 2013, 14, 311.
- 3 J. A. Lawson, W. T. Colwell, J. I. De Graw, R. H. Peters, R. L. Dehn and M. Tanabe, Synthesis, 1975, 729.
- 4 M. Tanabe and R. H. Peters, Org. Synth., 1981, **60**, 92.
- 5 J. S. Dickschat, C. A. Citron, N. L. Brock, R. Rîclea and H. Kuhz, Eur. J. Org. Chem., 2011, 3339.
- 6 L. O. Zamir and C.-D. Nguyen, J. Label. Compd. Radiopharm., 1988, 25, 1189.
- 7 T. G. Randall and R. G. Lawton, J. Am. Chem. Soc., 1969, 91, 2127.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure 1 13 C NMR spectrum of commercially available gibberellic acid (5) in [2 H₆]DMSO.

Figure 2 ¹³C NMR spectrum of a crude ethyl acetate extract from *Fusarium fujikuroi* after feeding of $[2^{-13}C]$ -12. Asterisks indicate ¹³C-labelled carbons of GA₃ and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling.

Figure 3 ¹³C NMR spectrum of the crude ethyl acetate extract from *Fusarium fujikuroi* after feeding of $[2^{-13}C]$ -**12** mixed with unlabelled gibberellic acid (**5**). Asterisks indicate ¹³C-labelled carbons of GA₃ and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling.

Figure 4 (A, D, G, J) Expansions of ¹³C NMR spectrum of commercially available gibberellic acid (**5**); (B, E, H, K) Expansions of ¹³C NMR spectrum of the crude ethyl acetate extract from *Fusarium fujikuroi* after feeding of [2-¹³C]-**12**; (C, F, I, L) Expansions of ¹³C NMR spectrum of the crude ethyl acetate extract from *Fusarium fujikuroi* after feeding of [2-¹³C]-**12** mixed with unlabelled gibberellic acid (**5**). Relevant ¹³C NMR peaks of carbons into which labelling from [2-¹³C]-**12** was incorporated are shown in red boxes.

Figure 6 ¹³C NMR spectrum of a crude CLSA headspace extract from *F. fujikuroi* SC6 after feeding of [2-¹³C]-**12**. Asterisks indicate ¹³C-labelled carbons of α -acorenol (1) and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling. GC-MS analysis of the headspace extract showed that labelled 1 was the main compound in the headspace extract that coeluted with an authentic standard.

Figure 7 ¹³C NMR spectrum of the crude CLSA headspace extract from *F. fujikuroi* SC6 after feeding of [2-¹³C]-**12** mixed with unlabelled α -acorenol (1). Asterisks indicate ¹³C-labelled carbons of 1 and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling.

Figure 9 ¹³C NMR of the CLSA extract obtained from *F. fujikuroi* SC6 after feeding of $[2^{-13}C]$ -**12** and conversion of α -acorenol to α -cedrene (**14**) with formic acid (NMR of corresponding α -acorenol sample: Figure 6). Asterisks indicate ¹³C-labelled carbons of **14** and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling. The ¹³C signal and methyl group labelled by a dot indicate minor incorporation (ca. 10%) into the second geminal methyl group.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure 10 ¹³C NMR spectrum of the crude CLSA headspace extract from *F. fujikuroi* SC6 after feeding of [2-¹³C]-**12** and conversion of α -acorenol to α -cedrene with formic acid mixed with unlabelled α -cedrene (**14**). Asterisks indicate ¹³C-labelled carbons of **14** and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure 12 ¹³C NMR spectrum of a crude CLSA headspace extract from *F. fujikuroi* SC4 after feeding of $[2^{-13}C]$ -**12**. Asterisks indicate ¹³C-labelled carbons of koraiol (**2**) and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling. GC-MS analysis of the headspace extract showed that labelled **2** was the main compound in the headspace extract that coeluted with an authentic standard.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure 13 ¹³C NMR spectrum of the crude CLSA headspace extract from *F. fujikuroi* SC4 after feeding of [2- 13 C]-**12** mixed with unlabelled koraiol (**2**). Asterisks indicate ¹³C-labelled carbons of **2** and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling.

Figure 15 ¹³C NMR spectrum of a crude ethyl acetate extract from *Fusarium fujikuroi* cultivated in 10% ICI after feeding of $[2-^{13}C]-12$. Asterisks indicate ¹³C-labelled carbons of cyclonerodiol (3) and arrows point to the respective enhanced ¹³C signals due to incorporation of labelling. GC-MS analysis of the liquid culture extract showed that labelled 3 was one of the major compounds that coeluted with an authentic standard.