**Electronic Supplementary Information for** 

# Coupling reaction of thioamides with sulfonyl azides: an efficient catalyst-free click-type ligation under mild conditions

Muhammad Aswad, Junya Chiba,\* Takenori Tomohiro, Yasumaru Hatanaka\*

Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama 930-0194 (Japan)

## **Synthetic Procedures**

**General.** <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained at 500 and 125 MHz, respectively, on a Varian Gemini 500 spectrometer. IR spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ESI-HRMS analyses were carried out on a JEOL JMS-T100LC mass spectrometer or Thermo LTQ Orbitrap XL ETD. Melting points were determined with Yanako MP-S3 and not corrected.

**Materials.** The following compounds, mesyl azide, so benzenesulfonyl azide, so N-methyl thioacetamide, so N-methyl thioacetami

### Detailed synthetic procedures for new compounds 1c, 1i, 1m, 1o, 1p, and 3b.

*N*-Methyl-*N'*-methanesulfonylacetamidine (1c). An EtOH (1 mL) solution of *N*-methyl thioacetamide (89 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at reflux for 10 h (or at room temperature for 15 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 5) to give 1c (147 mg (98%) for reflux or 12 mg (8%) for rt) as a colorless solid. Mp 137–138°C; IR (KBr) 3314, 1600, 1561, 1250, 1118, 1092, 793 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 8.46 (brs, 1 H), 2.87 (s, 3 H), 2.66 (d, J = 4.5 Hz, 3 H), 2.34 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 165.5, 42.8, 42.7, 27.9, 27.8, 19.7, 19.6 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>4</sub>H<sub>11</sub>N<sub>2</sub>O<sub>2</sub>S: 151.0541; found 151.0533.

*N*-Phenyl-*N*'-methanesulfonylacetamidine (1i). An EtOH (1 mL) solution of thioacetanilide (152 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent at that temperature, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give 1i (155 mg (73%) for rt or 206 mg (97%) for reflux) as a colorless solid. 1i also formed by using of H<sub>2</sub>O as a solvent at room temperature for 5 h in 94% isolated yiled. Mp 109–110°C; IR (KBr) 3315, 1583, 1551, 1265, 1123, 798 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 10.15 (brs, 1 H), 7.64 (d, J = 8.0 Hz, 2 H), 7.36 (t, J = 8.0 Hz, 2 H), 7.15 (t, J = 8.0 Hz, 1 H), 2.99 (s, 3 H), 2.47 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 163.1, 138.2, 128.8, 128.7, 124.8, 124.7, 121.5, 121.4, 42.9, 42.8, 20.8, 20.7 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>9</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>S: 213.0698; found 213.0690.

*N*-Methyl-*N*-phenyl-*N*'-methanesulfonylacetamidine (1m). A H<sub>2</sub>O (0.5 mL) suspension of *N*-methyl-*N*-phenyl thioacetamide (82 mg, 0.5 mmol) and mesyl azide (303 mg, 2.5 mmol) was vigorously stirred at room temperature for 8 h. After removal of the solvent at ambient temperature in vacuo, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 20 : 1) to give 1m (97 mg, 87%) as a colorless solid. Mp 106–107°C; IR (KBr) 1548, 1267, 1119, 1084, 807 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 7.51 (t, J = 7.5 Hz, 2 H), 7.43 (t, J = 7.5 Hz, 1 H), 7.38 (d, J = 7.5 Hz, 2 H), 3.28 (s, 3 H), 2.99 (s, 3 H), 2.14 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 165.1, 143.1, 130.0, 128.3, 127.1, 43.2, 43.1, 18.8 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>10</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S: 227.0854; found 227.0852.

*N,N*-Diphenyl-*N'*-methanesulfonylacetamidine (10). A H<sub>2</sub>O (0.5 mL) suspension of *N,N*-diphenyl thioacetamide (113 mg, 0.5 mmol) and mesyl azide (303 mg, 2.5 mmol) was vigorously stirred at room temperature for 15 h. After removal of the solvent at ambient temperature in vacuo, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 5 : 1) to give **1o** (119 mg, 83%) as a colorless solid. Mp 192–193°C; IR (KBr) 1538, 1491, 1274, 1123, 819 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 7.33–7.43 (brm, 10 H), 2.80 (s, 3 H), 2.32 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 166.2, 129.6 (br), 128.0 (br), 42.8, 42.6, 19.4, 19.3 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>15</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>S: 289.1011; found 289.1014.

*N*,*N*-Diphenyl-*N*'-benzenesulfonylacetamidine (1p). A H<sub>2</sub>O (0.5 mL) suspension of *N*,*N*-diphenyl thioacetamide (113 mg, 0.5 mmol) and benzenesulfonyl azide (458 mg, 2.5 mmol) was vigorously stirred at room temperature for 15 h. After removal of the solvent at ambient temperature in vacuo, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 5 : 1) to give 1p (173 mg, 99%) as a colorless solid. Mp 184–185°C; IR (KBr) 1535, 1272, 1144, 1089, 807 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 7.28–7.64 (brm, 15 H), 2.35 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 166.8, 143.4, 143.1 (br), 142.1 (br), 131.68, 131.65, 131.60, 131.57, 129.9 (br), 129.1 (br), 128.7, 128.6, 128.2 (br), 127.3 (br), 125.5, 125.4, 19.7, 19.6 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>20</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>S: 351.1167; found 351.1165.

*N*-(2-Piperidone-2-yl)benzenesulfonamide (3b). A H<sub>2</sub>O (1 mL) suspension of 2-thiopiperidone (115 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was vigorously stirred at room temperature for 1 h. After removal of the solvent at ambient temperature in vacuo, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 5) to give **3b** (236 mg, 99%) as a colorless solid. Mp 141–142°C; IR (KBr) 3226, 3140, 3066, 2969, 1614, 1405, 1276, 1148, 847, 754 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ) δ 8.91 (brs, 1 H), 7.79 (dd, J = 6.8, 1.8 Hz, 2 H), 7.51–7.57 (m, 3 H), 3.22 (brd, J = 2.5 Hz, 2 H), 2.55 (brd, J = 6.5 Hz, 2 H), 1.62–1.64 ppm (m, 4 H); <sup>13</sup>C NMR (DMSO- $d_6$ ) δ 166.9, 143.8, 131.5, 128.7, 125.9, 125.8, 41.6, 28.6, 20.6, 18.7 ppm; HRMS calcd for MH<sup>+</sup>, C<sub>11</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S: 239.0854; found 239.0851.

### Synthetic procedures for known compounds with simple assignment.

*N*-Methanesulfonylacetamidine (1a). <sup>S9</sup> [Method A] A H<sub>2</sub>O, EtOH, MeOH, DMF, THF, MeCN, acetone, EtOAc, or CHCl<sub>3</sub> (1 mL) solution of thioacetamide (75 mg, 1 mmol) and mesyl azide (121 mg, 1 mmol) was stirred at room temperature for 15 h. After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give 1a (86 mg (63%) for H<sub>2</sub>O, 51 mg (37%) for EtOH, 40 mg (29%) for MeOH, 17 mg (12%) for DMF, 25 mg (18%) for THF, 22 mg (16%) for MeCN, 23 mg (17%) for acetone, 23 mg (17%) for EtOAc, or 19 mg (14%) for CHCl<sub>3</sub>) as a colorless solid. [Method B]

An EtOH (1 mL) solution of thioacetamide (75 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent at that temperature, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give **1a** (90 mg (66%) for rt or 133 mg (98%) for reflux) as a colorless solid. **1a** also formed by using of H<sub>2</sub>O as a solvent at room temperature for 15 h in 97% isolated yiled. HNMR (DMSO- $d_6$ )  $\delta$  8.26 (brs, 1 H), 7.75 (brs, 1 H), 2.84 (s, 3 H), 2.06 ppm (s, 3 H);  $^{13}$ C NMR (DMSO- $d_6$ )  $\delta$  167.0, 41.9, 41.8, 21.5 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>3</sub>H<sub>9</sub>N<sub>2</sub>O<sub>2</sub>S: 137.039; found 137.038.

*N*-Benzenesulfonylacetamidine (1b). S10 An EtOH (1 mL) solution of thioacetamide (75 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent at that temperature, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give **1b** (137 mg (69%) for rt or 194 mg (98%) for reflux) as a colorless solid. **1b** also formed by using of H<sub>2</sub>O as a solvent at room temperature for 13 h in 98% isolated yiled. H NMR (DMSO- $d_6$ ) δ 8.46 (brs, 1 H), 8.05 (brs, 1 H), 7.80 (dd, J = 8.0, 2.0 Hz, 2 H), 7.59 (tt, J = 8.0, 2.0 Hz, 1 H), 7.53 (t, J = 8.0 Hz, 2 H), 2.05 ppm (s, 3 H); C NMR (DMSO- $d_6$ ) δ 167.8, 143.2, 131.8, 131.7, 128.9, 128.8, 126.0, 125.9, 21.5 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>8</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>SNa: 211.036; found 211.002.

*N*-Methyl-*N'*-benzenesulfonylacetamidine (1d). S11 An EtOH (1 mL) solution of *N*-methyl thioacetamide (89 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 3 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, hexane : EtOAc = 1 : 2) to give 1d (32 mg (15%) for rt or 198 mg (94%) for reflux) as a colorless solid. HNMR (DMSO- $d_6$ ) δ 8.73 (brs, 1 H), 7.80 (dd, J = 8.5, 1.5 Hz, 2 H), 7.52–7.58 (m, 5 H), 2.69 (d, J = 4.0 Hz, 3 H), 2.20 ppm (s, 3 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 166.2, 144.0, 131.5, 128.84, 128.75, 125.83, 125.79, 28.1, 28.0, 19.9, 19.8 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>SNa: 235.052; found 235.057.

*N,N*-Dimethyl-*N'*-methanesulfonylacetamidine (1e). S12 An EtOH (1 mL) solution of *N,N*-dimethyl thioacetamide (103 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give 1e (103 mg (62%) for rt or 156 mg (95%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ )  $\delta$  3.07 (s, 3 H), 2.97 (s, 3 H), 2.87 (s, 3 H), 2.39 ppm (s, 3 H);  $^{13}$ C NMR (DMSO- $d_6$ )  $\delta$  165.5, 43.14, 43.05, 38.44, 38.39, 38.0, 37.9, 17.6, 17.5 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>5</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>SNa: 187.052; found 187.110.

*N*,*N*-Dimethyl-*N*'-benzenesulfonylacetamidine (1f). S12 An EtOH (1 mL) solution of *N*,*N*-dimethyl thioacetamide (103 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 5 : 1) to give 1f (135 mg (77%) for rt or 221 mg (97%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 7.79 (dd, J = 7.8, 1.5 Hz, 2 H), 7.51–7.56 (m, 5 H), 3.09 (s, 3 H), 2.99 (s, 3 H), 2.36 ppm (s, 3 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 166.0, 144.3, 131.4, 128.7, 125.70, 125.66, 38.74, 38.69, 38.4, 38.3, 17.7, 17.6 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>10</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S: 227.0854; found 227.0850.

*N*-Methanesulfonylbenzamidine (1g). S13 An EtOH (1 mL) solution of thiobenzamide (137 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 12 h).

After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give **1g** (8 mg (4%) for rt or 96 mg (96%) for reflux) as a colorless solid. <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  8.93 (brs, 1 H), 8.02 (brs, 1 H), 7.89 (dd, J = 8.0, 1.0 Hz, 2 H), 7.60 (tt, J = 8.0, 1.0 Hz, 1 H), 7.50 (t, J = 8.0 Hz, 2 H), 3.01 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  162.2, 133.5, 132.3, 132.2, 128.5, 128.4, 127.82, 127.79, 41.5, 41.4 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>8</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>SNa: 221.036; found 221.010.

*N*-Benzenesulfonylbenzamidine (1h). S13 An EtOH (1 mL) solution of thiobenzamide (137 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 12 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, hexane : EtOAc = 1 : 1) to give 1h (11 mg (4%) for rt or 249 mg (96%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 9.10 (brs, 1 H), 8.27 (brs, 1 H), 7.94 (dd, J = 7.8, 1.3 Hz, 2 H), 7.85 (dd, J = 7.8, 1.3 Hz, 2 H), 7.55–7.64 (m, 4 H), 7.47 ppm (t, J = 7.8 Hz, 2 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 162.7, 142.4, 133.2, 132.5, 132.2, 129.0, 128.9, 128.5, 128.4, 128.0, 127.9, 126.1 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>SNa: 283.052; found 282.964.

*N*-Phenyl-*N*'-benzenesulfonylacetamidine (1j). S14 An EtOH (1 mL) solution of thioacetanilide (152 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 5 : 1) to give 1j (234 mg (85%) for rt or 274 mg (99%) for reflux) as a colorless solid. 1j also formed by using of H<sub>2</sub>O as a solvent at room temperature for 4 h in 97% isolated yiled. H NMR (DMSO- $d_6$ ) δ 10.39 (brs, 1 H), 7.83 (dd, J = 7.5, 1.5 Hz, 2 H), 7.55–7.61 (m, 5 H), 7.33 (t, J = 7.8 Hz, 2 H), 7.15 (t, J = 7.5 Hz, 1 H), 2.47 ppm (s, 3 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 163.7, 143.3, 137.8, 131.9, 129.0, 128.8, 125.8, 125.1, 121.8, 121.7, 20.9, 20.8 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S: 275.0854; found 275.0853.

*N*-Phenyl-*N*'-methanesulfonylbenzamidine (1k). S13 An EtOH (1 mL) solution of *N*-phenyl thiobenzamide (213 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 12 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, hexane: EtOAc = 2:1) to give 1k (14 mg (5%) for rt or 261 mg (95%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 10.33 (brs, 1 H), 7.73 (brd, J = 7.5 Hz, 2 H), 7.61 (dd, J = 7.5, 1.5 Hz, 2 H), 7.55 (tt, J = 7.8, 1.5 Hz, 1 H), 7.50 (t, J = 7.5 Hz, 2 H), 7.38 (t, J = 7.8 Hz, 2 H), 7.18 (t, J = 7.5 Hz, 1 H), 2.94 ppm (s, 3 H); H2C NMR (DMSO- $d_6$ ) δ 162.4, 138.4, 134.5, 130.6, 128.7, 128.6, 128.2, 127.9, 125.1, 125.0, 122.0, 43.3, 43.2 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S: 275.085; found 275.098.

*N*-Phenyl-*N'*-benzenesulfonylbenzamidine (11). S15 An EtOH (1 mL) solution of *N*-phenyl thiobenzamide (213 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 12 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, hexane : EtOAc = 2 : 1) to give 11 (48 mg (14%) for rt or 325 mg (97%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 10.56 (brs, 1 H), 7.65 (dd, J = 7.8, 1.5 Hz, 2 H), 7.45–7.60 (m, 10 H), 7.31 (t, J = 8.3 Hz, 2 H), 7.16 ppm (t, J = 7.3 Hz, 1 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 162.9, 143.4, 138.1, 134.1, 131.6, 130.7, 128.8, 128.7, 128.6, 128.2, 127.9, 125.8, 125.3, 122.2 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>19</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>SNa: 359.083; found 359.076.

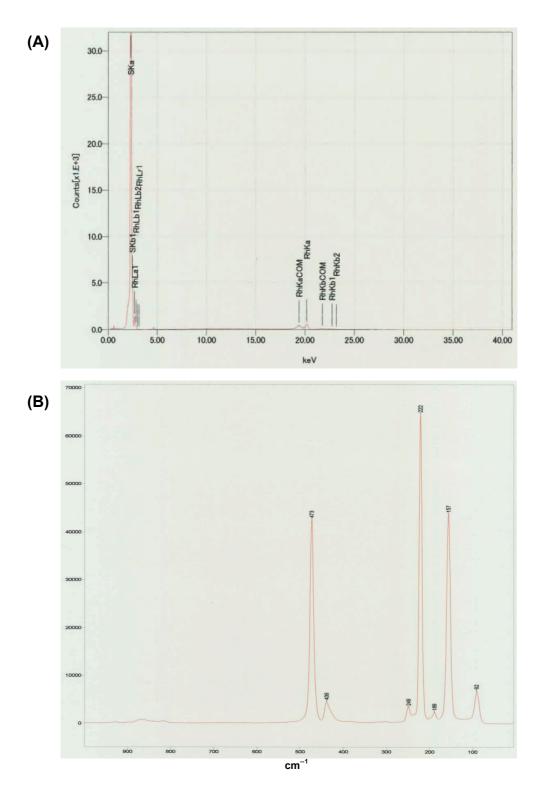
*N*-Methyl-*N*-phenyl-*N*'-benzenesulfonylacetamidine (1n). S16 A H<sub>2</sub>O (0.5 mL) suspension of *N*-methyl-*N*-phenyl thioacetamide (82 mg, 0.5 mmol) and benzenesulfonyl azide (458 mg, 2.5 mmol) was

vigorously stirred at room temperature for 6 h. After removal of the solvent at ambient temperature in vacuo, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give **1n** (143 mg, 99%) as a colorless oil. <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  7.89 (d, J = 7.5 Hz, 2 H), 7.56–7.62 (m, 3 H), 7.50 (t, J = 7.5 Hz, 2 H), 7.39–7.44 (m, 3 H), 3.28 (s, 3 H), 2.16 ppm (s, 3 H); <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  165.6, 143.8, 142.8, 131.7, 129.9, 128.9, 128.8, 128.5, 127.0, 1268, 125.8, 40.0, 19.10, 19.05 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>15</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>S: 289.1011; found 289.1008.

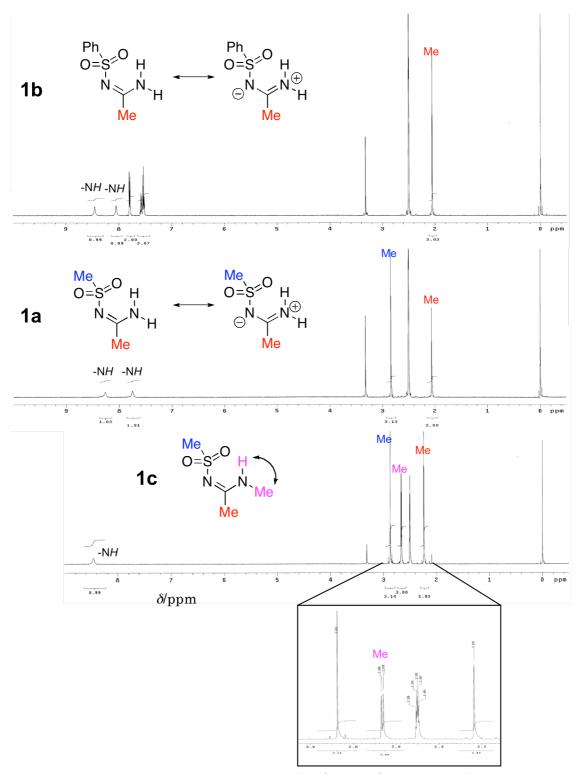
*N*-(2-Pyrrolidone-2-yl)methanesulfonamide (2a). S17 An EtOH (1 mL) solution of thiopyrrolidone (101 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 14 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1:5) to give 2a (12 mg (8%) for rt or 158 mg (97%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 8.73 (brs, 1 H), 3.38 (t, J = 7.0 Hz, 2 H), 2.84 (s, 3 H), 2.71 (t, J = 8.0 Hz, 2 H), 1.98 ppm (tt, J = 8.0, 7.0 Hz, 2 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 171.5, 44.9, 41.8, 41.7, 31.3, 20.5 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>5</sub>H<sub>11</sub>N<sub>2</sub>O<sub>2</sub>S: 163.054; found 163.053.

*N*-(2-Pyrrolidone-2-yl)benzenesulfonamide (2b). S18 An EtOH (1 mL) solution of thiopyrrolidone (101 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 14 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give 2b (11 mg (5%) for rt or 213 mg (95%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 9.00 (brs, 1 H), 7.57 (dd, J = 7.5, 1.5 Hz, 2 H), 7.57 (tt, J = 7.5, 1.5 Hz, 1 H), 7.53 (t, J = 7.5 Hz, 2 H), 3.38 (t, J = 7.0 Hz, 2 H), 2.70 (t, J = 8.0 Hz, 2 H), 1.96 ppm (tt, J = 8.0, 7.5 Hz, 2 H); Hz C NMR (DMSO- $d_6$ ) δ 172.2, 143.4, 131.6, 128.9, 128.8, 125.93, 125.87, 44.9, 31.4, 20.4 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>10</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>S: 225.070; found 225.069.

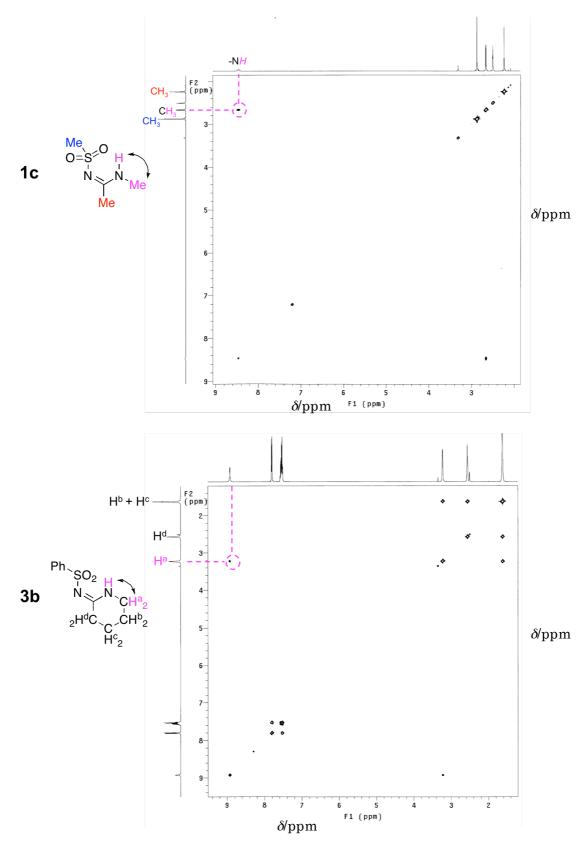
*N*-(2-Piperidone-2-yl)methanesulfonamide (3a). S19 An EtOH (1 mL) solution of thiopiperidone (115 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 20 min). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 5) to give 3a (162 mg (92%) for rt or 172 mg (97%) for reflux) as a colorless solid. H NMR (DMSO- $d_6$ ) δ 8.54 (brs, 1 H), 3.23 (brd, J = 2.5 Hz, 2 H), 2.83 (s, 3 H), 2.56 (brs, 2 H), 1.65–1.67 ppm (m, 4 H); H (DMSO- $d_6$ ) δ 166.0, 42.14, 42.06, 41.5, 28.8, 20.8, 18.8 ppm; ESI-MS calcd for MH<sup>+</sup>, C<sub>6</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>S: 177.070; found 177.069.


*N*-(1-Aza-2-cycloheptanone-2-yl)methanesulfonamide (4a). An EtOH (1 mL) solution of ε-thiocaprolactam (129 mg, 1 mmol) and mesyl azide (606 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent, the residue was chromatographed (SiO<sub>2</sub>; eluent, CH<sub>2</sub>Cl<sub>2</sub>: EtOAc = 1 : 1) to give 4a (95 mg (50%) for rt or 171 mg (90%) for reflux) as a colorless solid. HN NMR (DMSO- $d_6$ ) δ 8.41 (brs, 1 H), 3.30–3.34 (m, 2 H), 2.85 (s, 3 H), 2.55–2.57 (m, 2 H), 1.65–1.70 (m, 2 H), 1.57–1.59 (m, 2 H), 1.50–1.52 ppm (m, 2 H);  $^{13}$ C NMR (DMSO- $d_6$ ) δ 172.2, 43.8, 42.4, 42.3, 35.0, 29.9, 28.9, 24.0 ppm; ESI-MS calcd for MNa<sup>+</sup>, C<sub>7</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>SNa: 213.067; found 213.078.

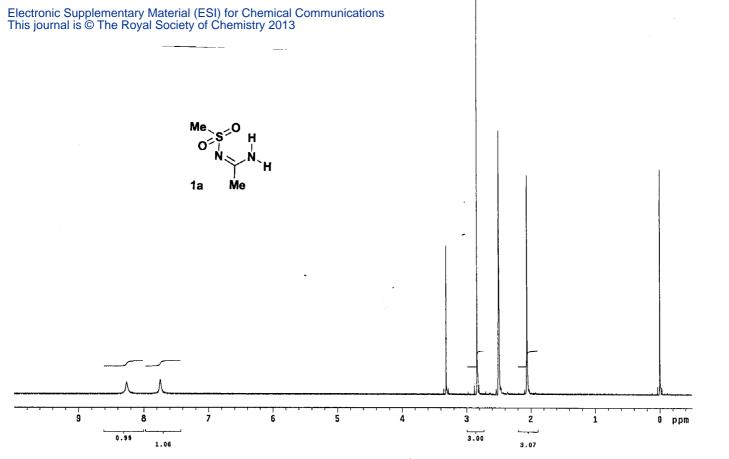
*N*-(1-Aza-2-cycloheptanone-2-yl)benzenesulfonamide (4b). S20 An EtOH (1 mL) solution of  $\varepsilon$ -thiocaprolactam (129 mg, 1 mmol) and benzenesulfonyl azide (916 mg, 5 mmol) was stirred at room temperature for 15 h (or at reflux for 1 h). After removal of the solvent, the residue was chromatographed


(SiO<sub>2</sub>; eluent, hexane : EtOAc = 1 : 1) to give **4b** (132 mg (52%) for rt or 230 mg (91%) for reflux) as a colorless solid. <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  8.77 (brs, 1 H), 7.84 (dd, J = 7.0, 2.0 Hz, 2 H), 7.59 (tt, J = 7.0, 2.0 Hz, 1 H), 7.54 (t, J = 7.0 Hz, 2 H), 3.34 (dd, J = 10.5, 5.5 Hz, 2 H), 2.59 (dd, J = 11.0, 5.5 Hz, 2 H), 1.60–1.64 (m, 2 H), 1.42–1.45 ppm (m, 2 H); <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  173.0, 143.9, 132.5, 129.52, 129.45, 126.6, 43.8, 34.5, 29.8, 28.7, 23.7 ppm; ESI-MS calcd for MNa<sup>+</sup>,  $C_{10}H_{13}N_2O_2SNa$ : 275.083; found 274.999.

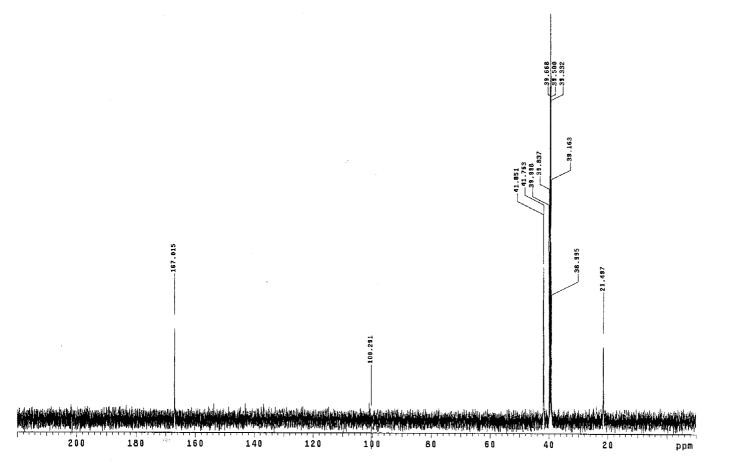
#### **References for ESI**

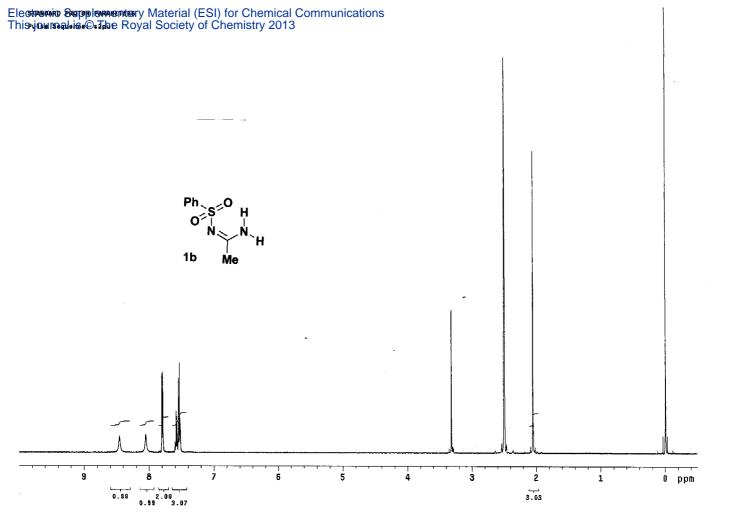

- S1 R. L. Danheiser, R. F. Miller, R. G. Brisbois and S. Z. Park, J. Org. Chem., 1990, 55, 1959.
- S2 M. Flipo, M. Desroses, N. Lecat-Guillet, B. Villemagne, N. Blondiaux, F. Leroux, C. Piveteau, V.
- Mathys, M.-P. Flament, J. Siepmann, V. Villeret, A. Wohlkönig, R. Wintjens, S. H. Soror, T. Christophe,
- H. K. Jeon, C. Locht, P. Brodin, B. Déprez, A. R. Baulard and N. Willand, J. Med. Chem., 2012, 55, 68.
- S3 M. Zimnicka, J. A. Gregersen and F. Tureček, J. Am. Chem. Soc., 2011, 133, 10290.
- S4 B. Yde, N. M. Yousif, U. Pedersen, I. Thomsen and S.-O. Lawesson, Tetrahedron, 1984, 40, 2047.
- S5 S. Raucher and P. Klein, J. Org. Chem., 1981, 46, 3558.
- S6 R. S. Varma and D. Kumar, Org. Lett., 1999, 1, 697.
- S7 C. Heyde, I. Zug and H. Hartmann, Eur. J. Org. Chem., 2000, 3273.
- S8 N. D. Koduri, H. Scott, B. Hileman, J. D. Cox, M. Coffin, L. Glicksberg and S. R. Hussaini, *Org. Lett.*, 2012, **14**, 440.
- S9 S.-O. Chua, M. J. Cook and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 2, 1974, 546.
- S10 C. Maccallini et al, J. Med. Chem., 2009, **52**, 1481.
- S11 P. Oxley and W. F. Short, J. Chem. Soc., 1948, 1514.
- S12 R. Neidlein and U. J. Klotz, Monatshefte Chem., 1985, 116, 651.
- S13 R. B. Tinkler, J. Chem. Soc. (B), 1970, 1052.
- S14 V. B. Julius and R. Walter, Ber. Deut. Chem. Ges. (B), 1934, 67B, 1762.
- S15 V. L. Dubina, L. N. Shchebitchenko, I. Y. Kozak and N. V. Dubina, Zh. Org. Khim., 1986, 22, 2590.
- S16 M. Xu, C. Kuang, Z. Wang and Q. Yang, *Synlett. (B)*, 2010, 2664.
- S17 A. Wusiman, X. Tusun and C.-D. Lu, Eur. J. Org. Chem., 2012, 3088.
- S18 Commercially available.
- S19 A. Wusiman, X. Tusun and L. Bo, Huaxue Shiji, 2012, 34, 833.
- S20 V. A. Plit and S. I. Burmistrov, Ukr. Khim. Zh., 1958, 24, 467.




**Figure S1**. (A) Energy dispersive X-ray fluorescence (JEOL JSX3201A) and (B) Raman (RENISHAW JRS-SYSTEM1000) spectra for yellow precipitation formed in the coupling reaction mixture.

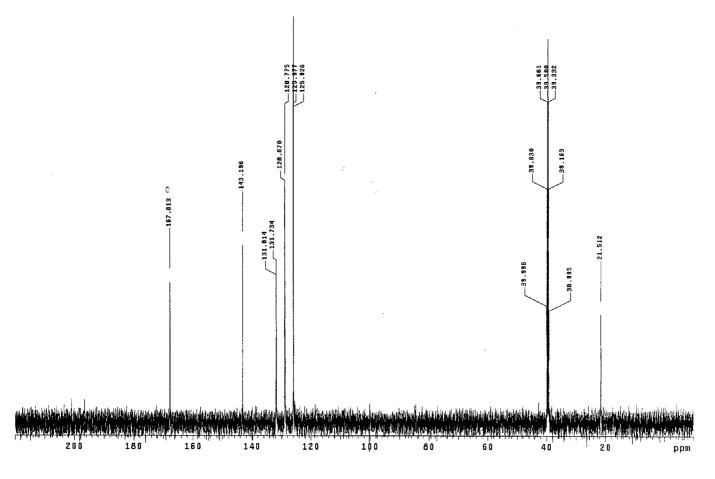



**Figure S2**. Assignment of Me groups of  $R^1$ ,  $R^2$ , and  $R^3$  for 1a–c in  $^1H$  NMR spectra (500 MHz, 25°C, DMSO- $d_6$ ). Due to the 'C=N double-bond character' of the resonance structures in the amine-type tautomers, 1a and 1b have the two distinct -NH protons. The -NMe protons of 1c are observed as doublet indicating coupling to the N-H proton in the amine-type form. For amidine 1c, predominant "amine-type tautomer" was also assigned by  $^1H$ - $^1H$  COSY (see Figure S3).



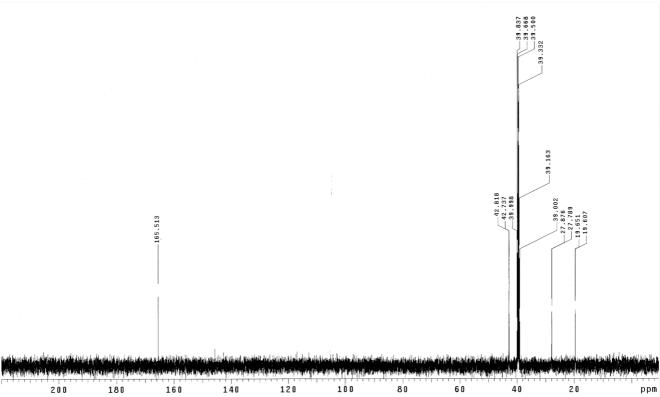

**Figure S3**.  ${}^{1}\text{H-}{}^{1}\text{H COSY spectra for }\mathbf{1c} \text{ and } \mathbf{3b} \text{ (500 MHz, DMSO-} d_{6}\text{)}.$ 

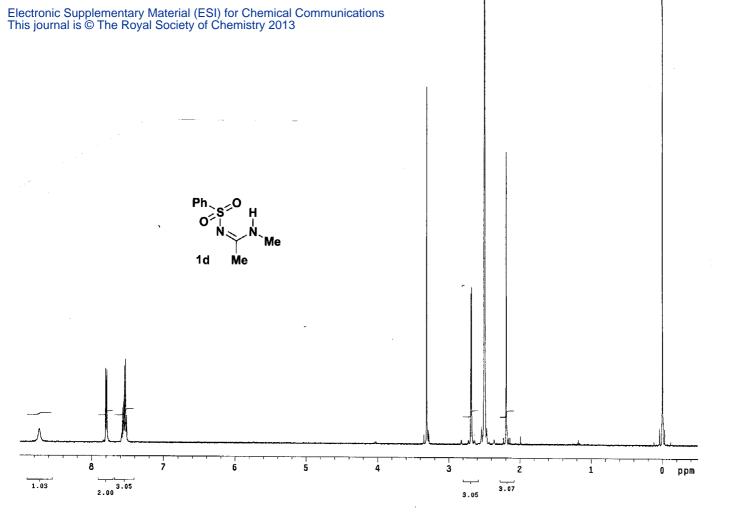


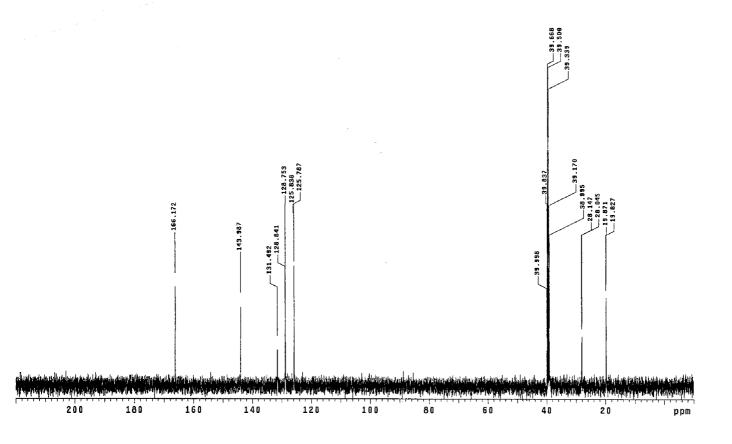


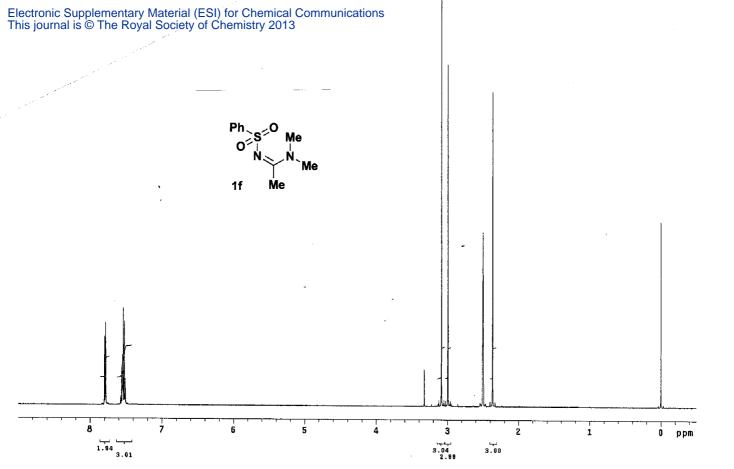




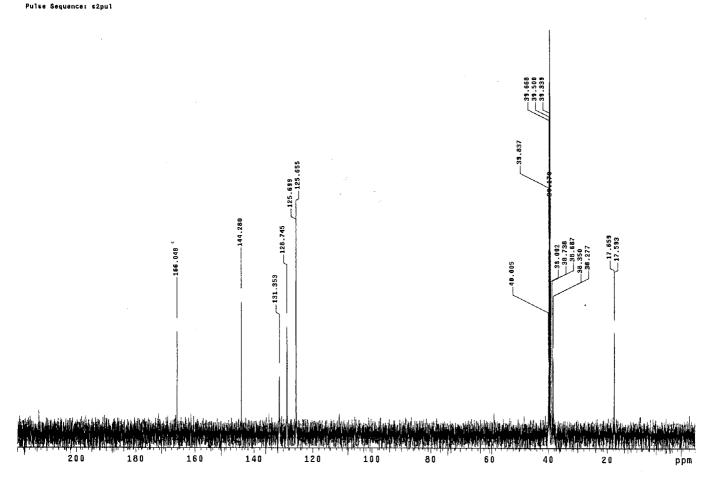


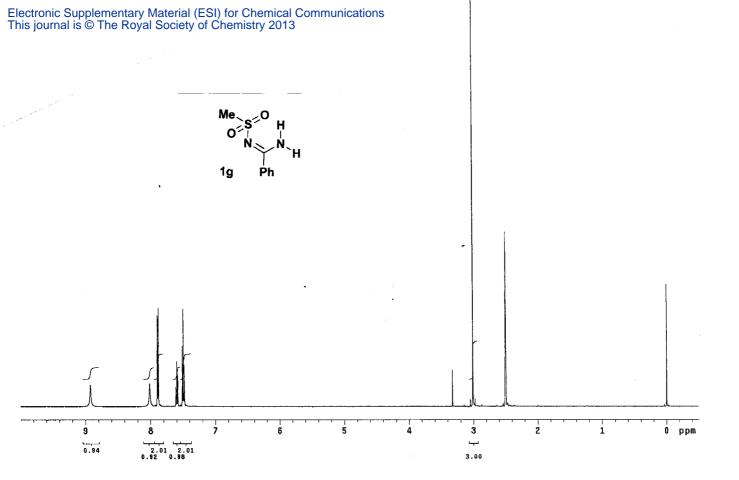



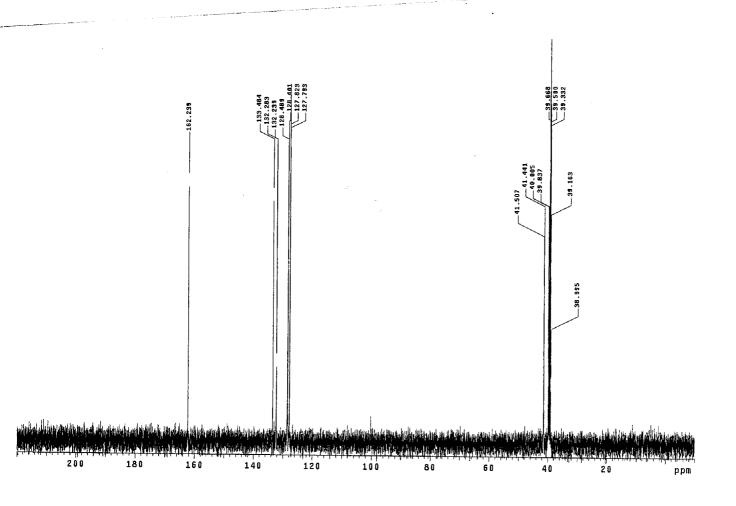


Pulse Sequence: 52pul

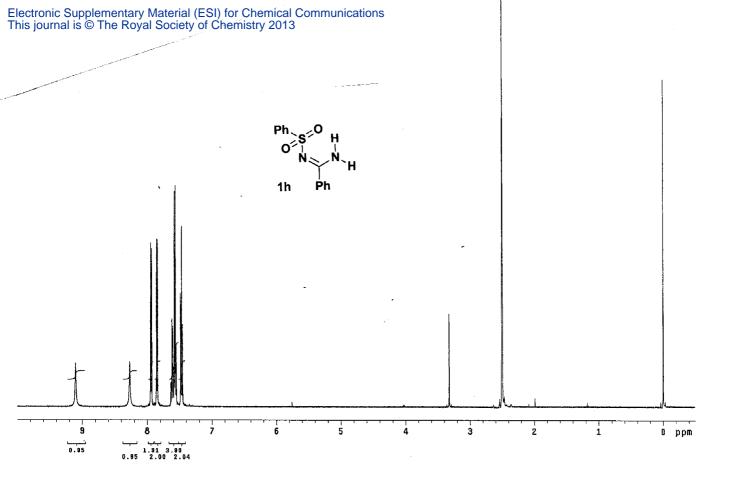


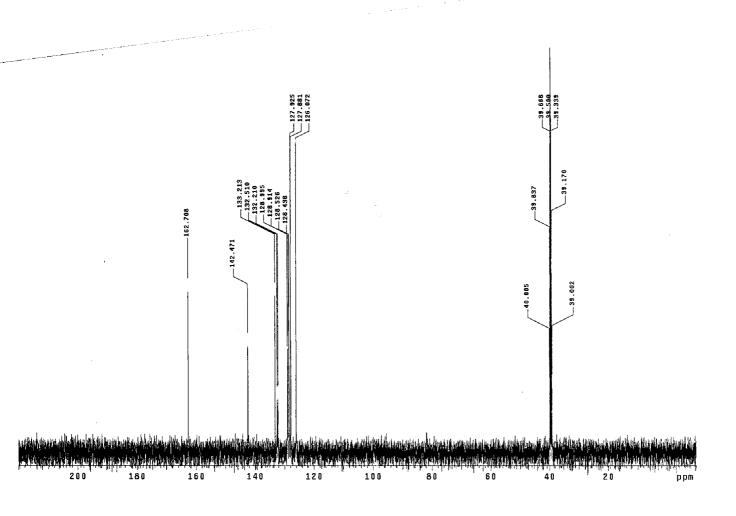


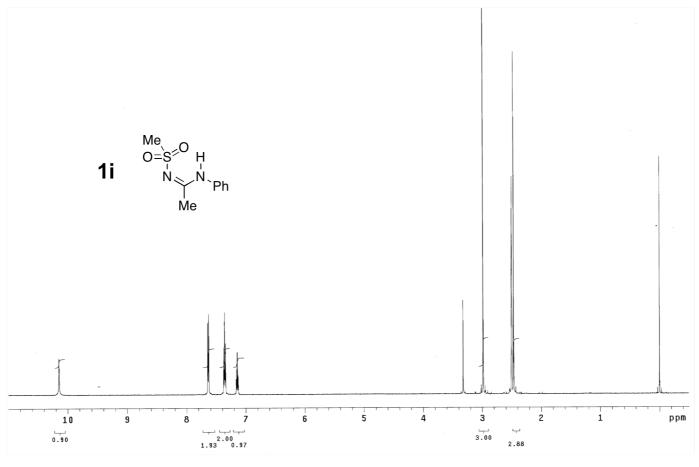



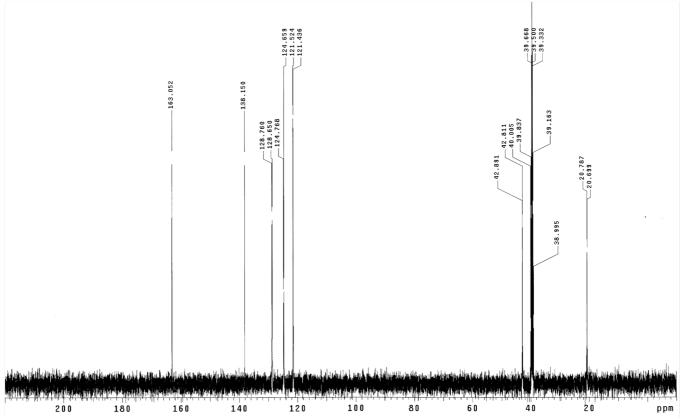



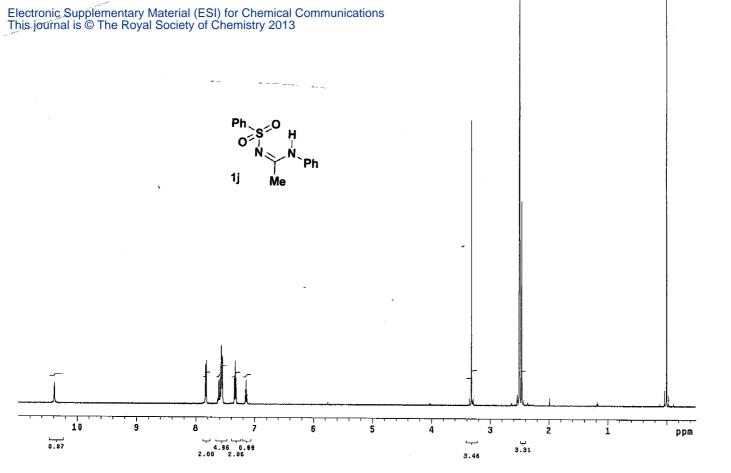



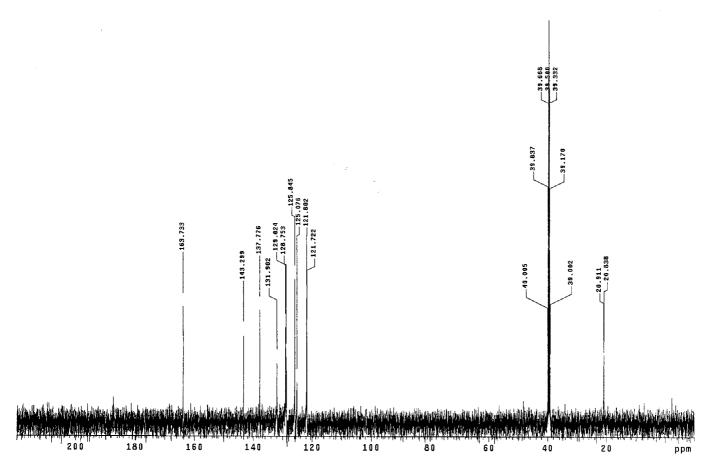



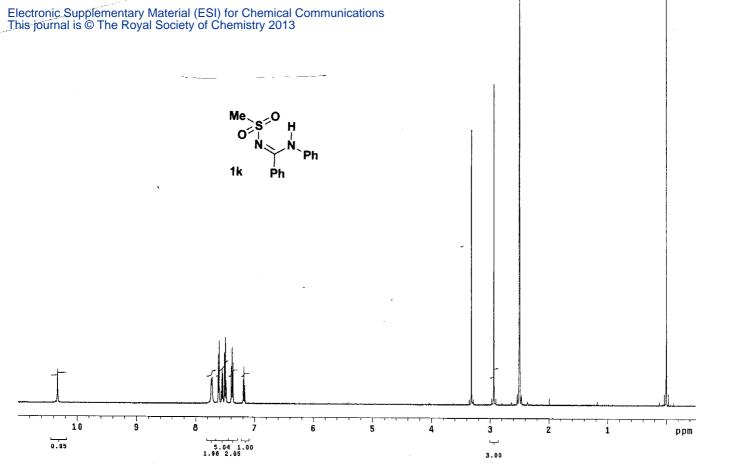





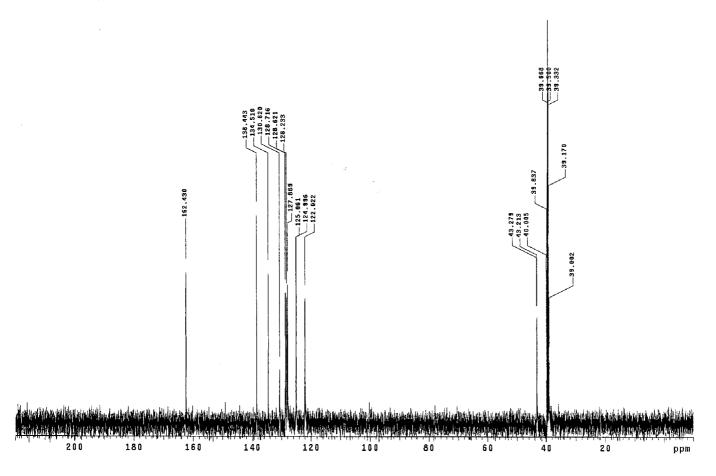


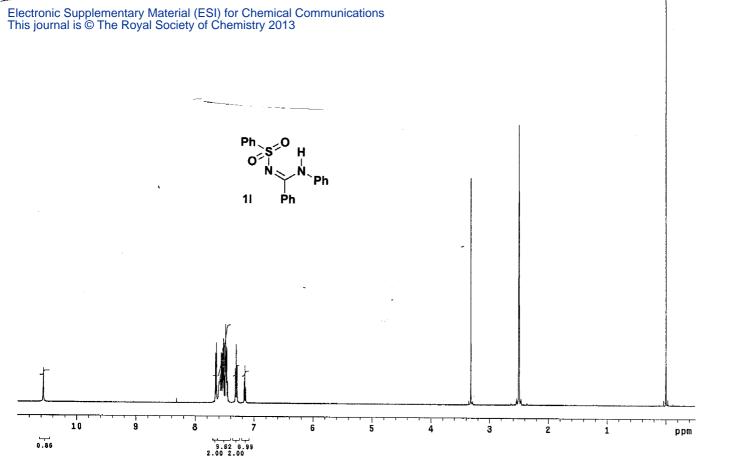



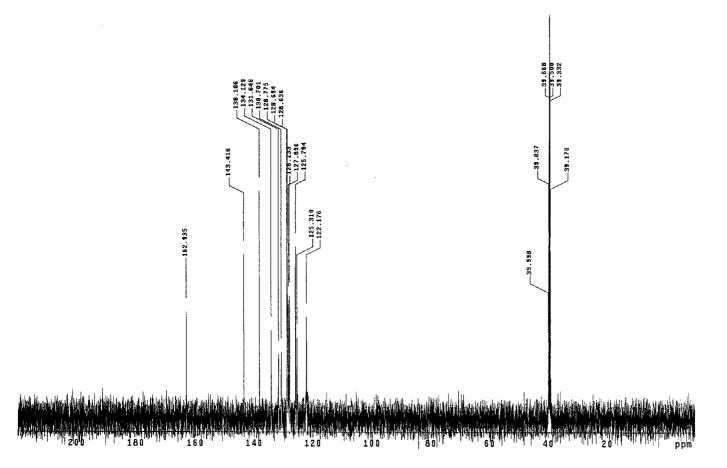


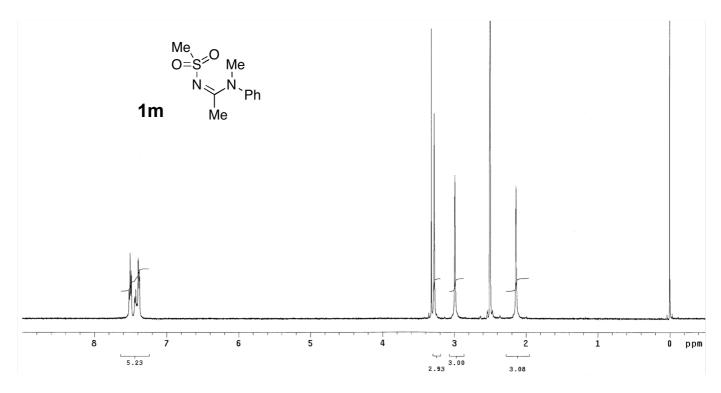


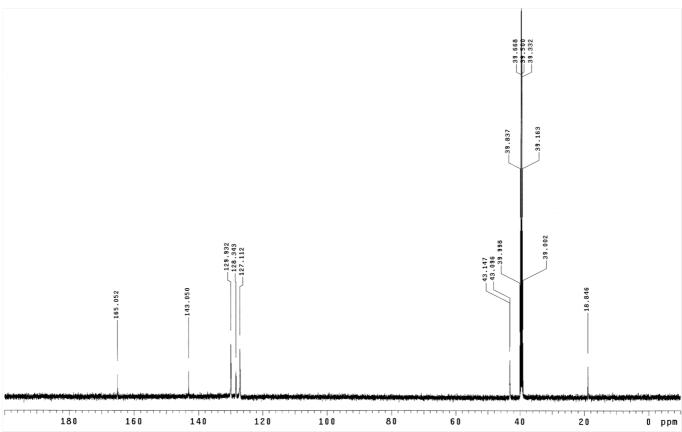


Pulse Sequence: s2pul

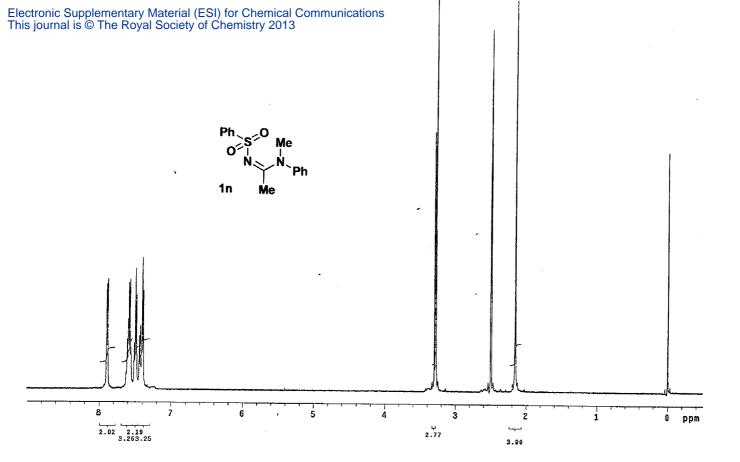


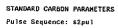


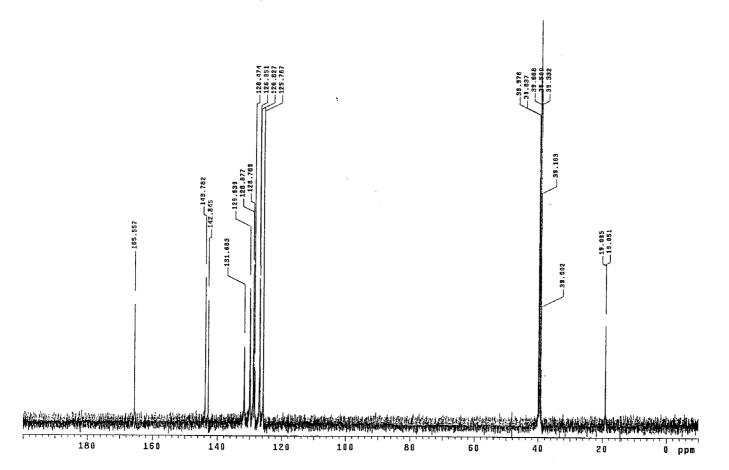



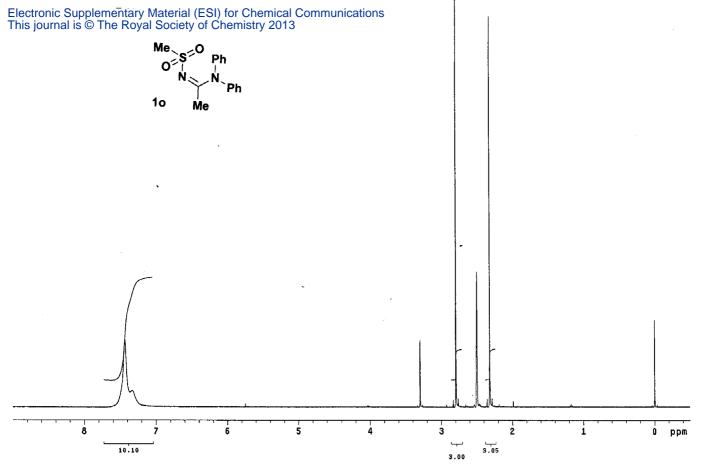



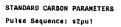



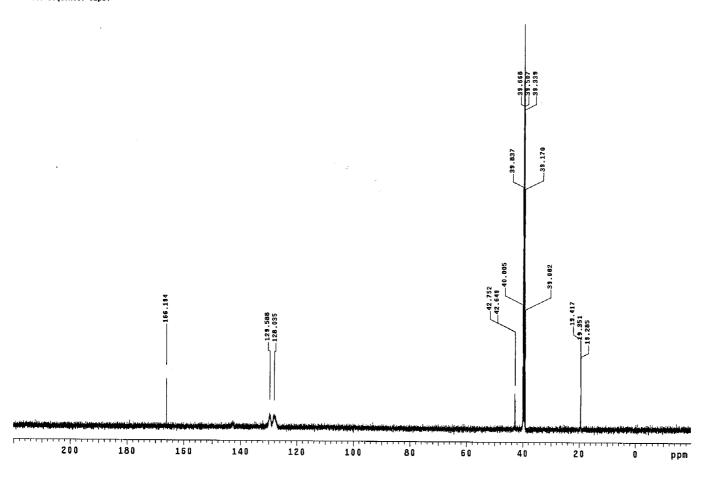



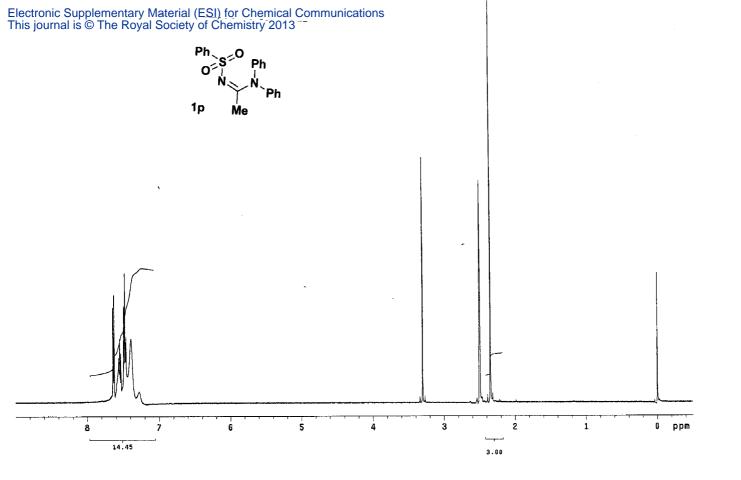



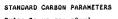



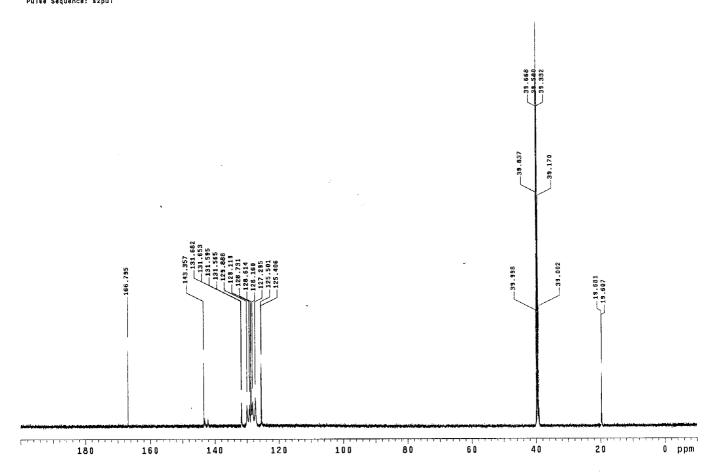



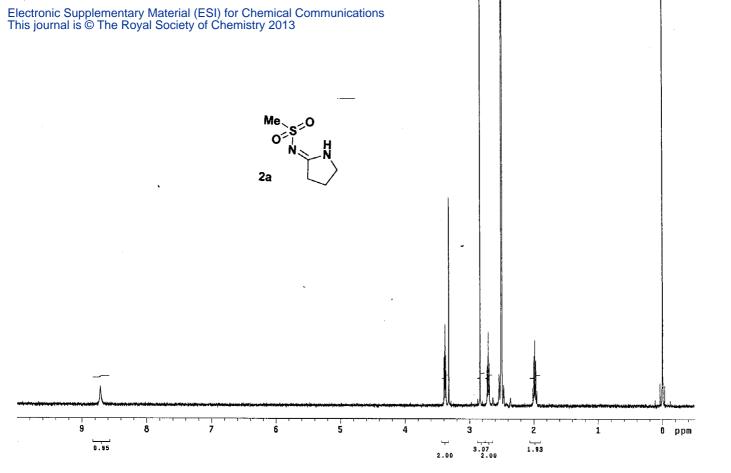



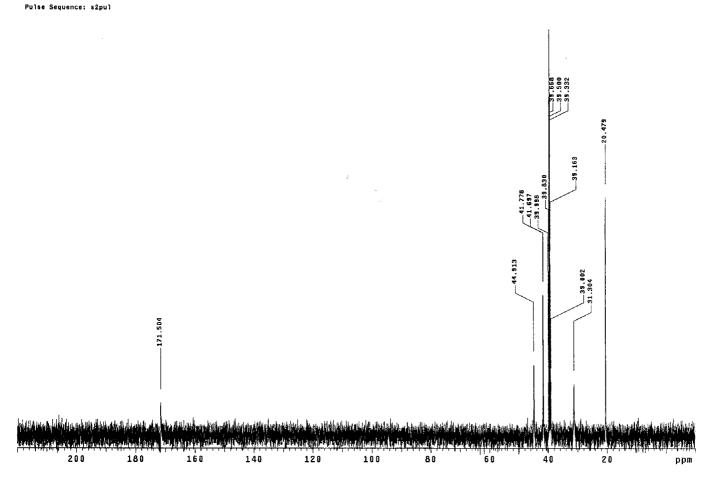



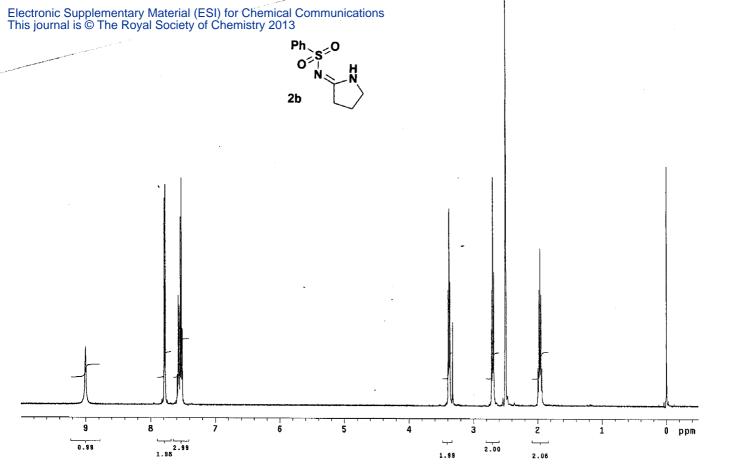



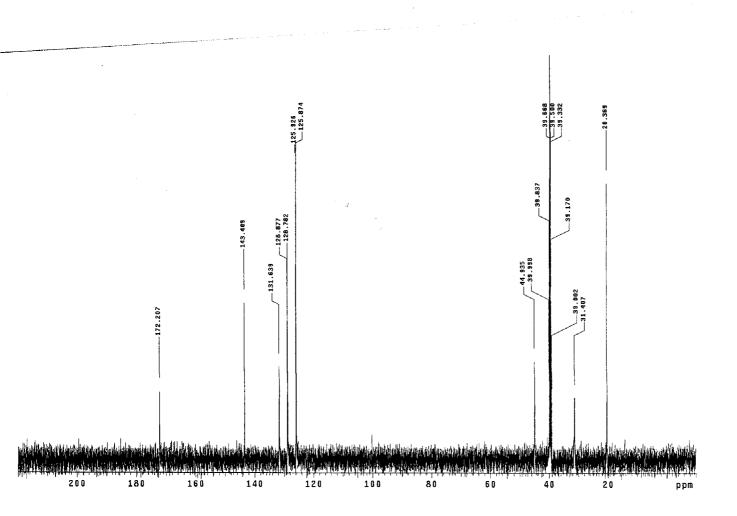



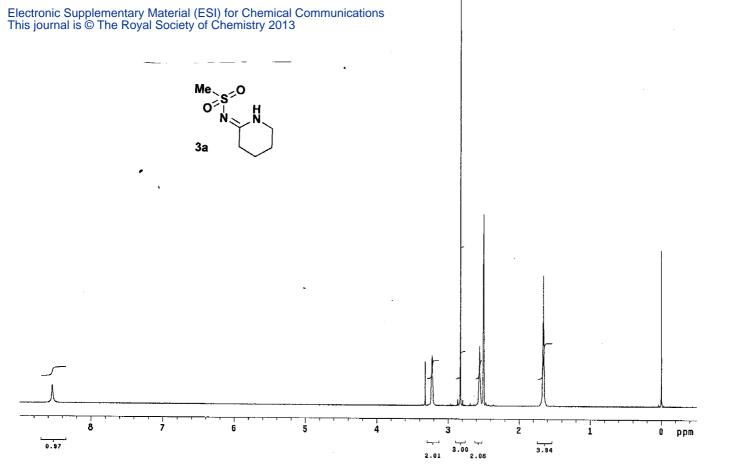



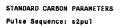


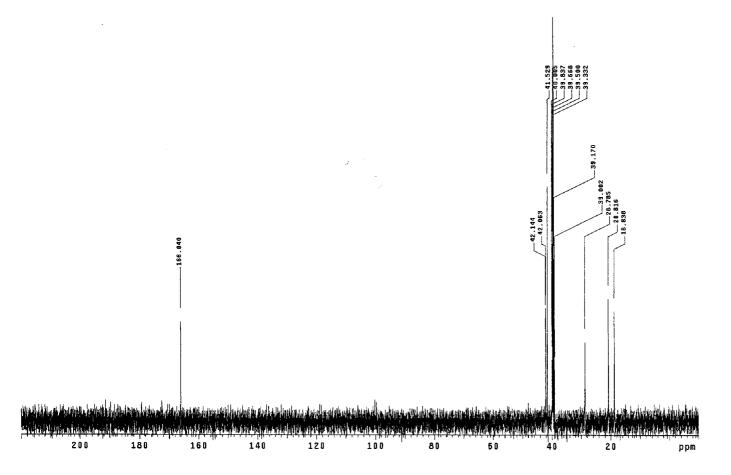



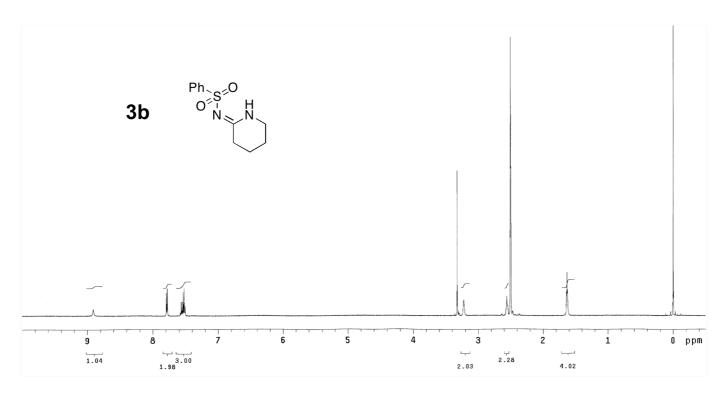



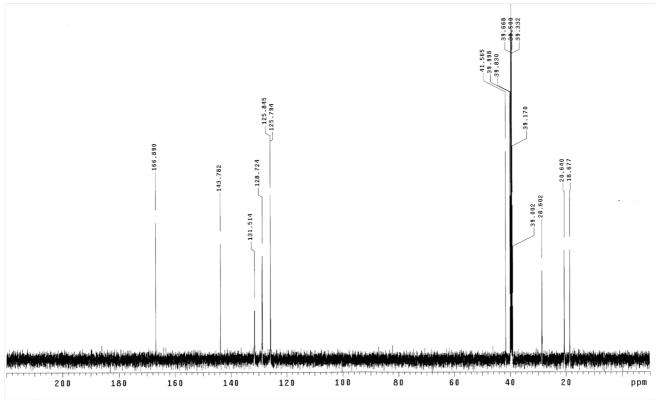





STANDARD CARBON PARAMETERS



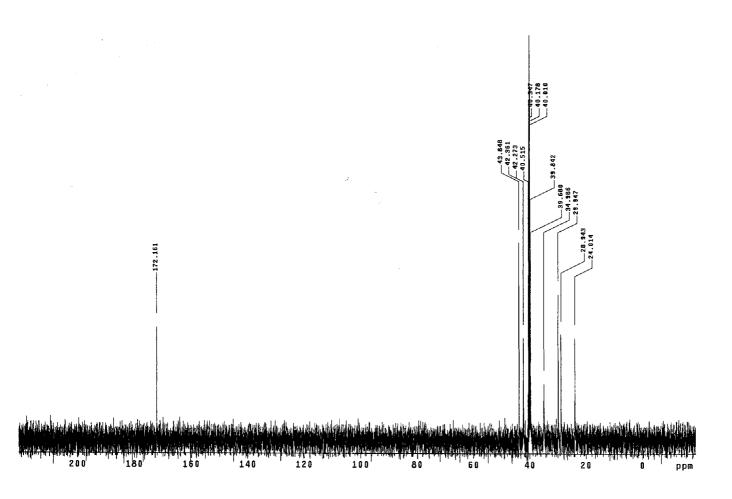












6.98

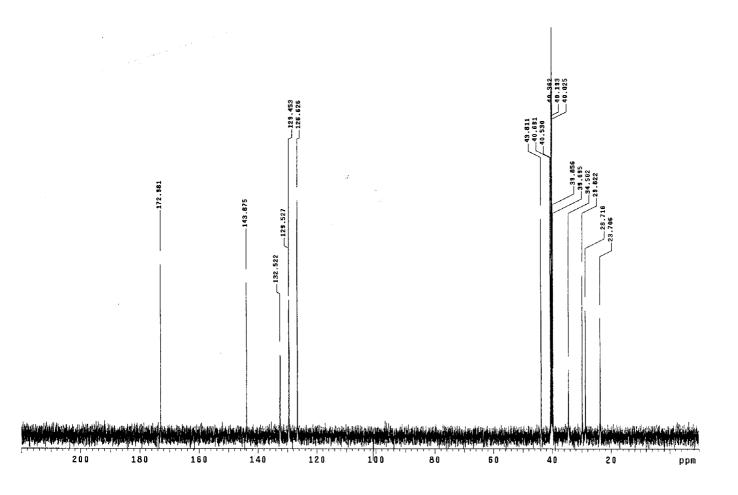
2

2.21 2.20.71

7 7 2.36

0 ppm




4.03

2.00

2.09

0.97

3.05

