Supporting information for:

A C_{3v}-symmetrical tribenzotriquinacene-based threefold Nheterocyclic carbene. Coordination to rhodium(I) and stereoelectronic properties

Candela Segarra, Jens Linke, Elena Mas-Marzá, Dietmar Kuck and Eduardo Peris

General methods	S1
1. Synthesis and characterization of compounds	S1
1.1. Synthesis of compound 5	S 1
1.2. Synthesis of compound 6	S2
1.3. Synthesis of compound 3	S2
1.4. Synthesis of compound 7	S2
2. Electrochemical measurements	S 3
3. Spectra	S4-S8
3.1. ¹ H and ¹³ C NMR spectra of 5	S 4
3.2. ¹ H and ¹³ C NMR spectra of 6	S5
3.3. ¹ H and ¹³ C NMR spectra of 3	S 6
3.4. ¹ H and ¹³ C NMR spectra of 7	S 7
3.5. High Resolution Mass Spectra of 3	S 8
4. X-Ray Crystallography Table S1. Summary of crystal data, data collection, and structure refinement details	S9
5. Computational details	S10-S21
References	S21

General methods. All operations were carried out by using standard Schlenk techniques under nitrogen atmosphere unless otherwise stated. Solvents were purified on MBraun SPS or purchased from Aldrich and degassed prior to use by purging with nitrogen and kept over molecular sieves. All other reagents were used as received from commercial suppliers. Column chromatrography was performed using the solvent systems indicated on silica gel (63-200 µm). NMR spectra were recorded on a Varian Mercury 300 and a Varian NMR System 500 MHz spectrometers, and referenced (¹H, ¹³C) as follows: CDCl₃ (δ 7.26, 77.16), CD₂Cl₂ (δ 5.32, 53.84), CD₃CN (δ 1.94, 1.32), C_6D_6 (δ 7.16, 128.06). Electrospray mass spectra (ESIMS) were recorded on a Micromass Quatro LC instrument; nitrogen was employed as drying and nebulizing gas. Accurate mass measurements were performed by use of a Q-TOF premier mass spectrometer with electrospray source (Waters, Manchester, UK) operating at a resolution of ca. 16 000 (fwhm). Elemental analyses were carried out on a EuroEA3000 Eurovector Analyzer. $[Rh(COD)Cl]_2^1$, $[RhCl(BimNtBu_2)(COD)]^2$ (BimNtBu = 1,3di(*tert*-butyl)-benzimidazolylidene), 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride $(IPr \cdot HCl)^3$, and hexabromotribenzotriguinacene⁴ were synthesized as previously reported.

1. Synthesis and characterization of compounds

1.1. **Synthesis** of 2,3,6,7,8b,10,11-Hexakis(tert-butylamine)-4b,8b,12b,12dtetramethyl-4b,8b,12b,12d-tetrahydrodibenzo[2,3:4,5]pentaleno[1,6-ab]indene (5). A mixture of [Pd(OAc)₂] (4.8 mg, 0.022 mmol), 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride (IPr·HCl, 18 mg, 0.043 mmol), NaOtBu (6 mg, 0.065 mmol) and toluene (10 mL) was stirred for 30 min at room temperature. After this time, the solution was added via oven dried cannula into a Schlenk containing hexabromotribenzotriguinacene (250 mg, 0.31 mmol) and NaOtBu (214 mg, 2.22 mol) in toluene (10 mL). Tert-butylamine (0.233 mL, 2.22 mmol) was added and the resulting mixture was refluxed for 12 h. The cooled reaction mixture was filtered over Celite and concentrated under reduced pressure, yielding the desired product as a dark brown solid. Yield: 232 mg (99%). ¹H NMR (500 MHz, CDCl₃): δ 6.81 (s, 6H, CH_{arom}), 2.36 (s, 3H, CH_{3 central}), 1.52 (s, 9H, CH₃), 1.26 (s, 54H, C(CH₃)₃). ¹³C NMR (125 MHz, CDCl₃): δ 141.5 (Cq arom), 138.0 (Cq arom), 114.7 (CHarom), 71.1 (CCH₃ central), 61.7 (CCH₃), 51.9 (C(CH₃)₃), 30.3 (C(CH₃)₃), 26.3 (CH₃), 16.6 (CH_{3 central}). Electrospray MS

(20 V, *m/z*): 763.5 [M + H]⁺. HRMS (+)-ESI-TOF-MS of [M + H]⁺, monoisotopic peak 763.6363, calcd 763.6366, $\varepsilon_r = 1.5$ ppm Satisfactory elemental analysis could not be obtained due to the light sensitive nature of the compound.

1.2. Synthesis of compound 6

A mixture of compound **5** (232 mg, 0.3 mmol), HBF₄ (0.138 mL, 1.0 mmol, 54% in Et2O) and triethylorthoformate (40 mL) was refluxed for 4 h under aerobic conditions and cooled to room temperature. Addition of Et₂O afforded a precipitate, which was collected by filtration and washed with methanol. Precipitation from CH₃CN/Et₂O gave compound **6** as a light beige solid. Slow evaporation of a concentrated solution of compound **6** in CH₃CN gave crystals suitable for X-ray crystallography. Yield: 322 mg (95 %). ¹H NMR (500 MHz, CD₃CN): δ 8.49 (s, 3H, NC*H*N) 8.21 (s, 6H, C*H*_{arom}), 1.99 (s, 9H, C*H*₃), 1.84 (s, 54H, C(C*H*₃)₃), 1.58 (s, 3H, C*H*₃ central). ¹³C NMR (125 MHz, CD₃CN): δ 148.9 (C_{q arom}), 139.4 (C_{q arom}), 133.3 (NCHN), 111.7 (CH_{arom}), 72.3 (CCH₃ central), 64.2 (CCH₃), 62.4 (C(CH₃)₃), 28.8 (C(CH₃)₃), 26.8 (CH₃), 16.8 (CH₃ central). Electrospray MS (20 V, *m*/*z*): 265.4 [M]³⁺. HRMS (+)-ESI-TOF-MS of [M + H]⁺, monoisotopic peak 265.2014, calcd 265.2018, $\varepsilon_r = 1.5$ ppm.

1.3. Synthesis of compound 3

Under inert atmosphere, a Wilmad® (LPV) NMR tube with a Teflon-lined cap was charged with **6** (20 mg, 0.019 mmol), NaO*t*Bu (1.8 mg, 0.019 mmol) and dried C₆D₆ (0.6 mL). To this suspension, NaHMDS (1M in THF, 0.074 mL, 0.074 mmol, 3.9 equiv.) was added and the reaction mixture was stirred at room temperature for 2h. Formation of carbene **2** was identified by NMR and HRMS techniques. ¹H NMR (300 MHz, C₆D₆): δ 7.65 (s, 6H, CH_{arom}), 1.79 (s, 3H, CH₃ central), 1.77 (s, 54H, C(CH₃)₃), 1.74 (s, 9H, CH₃). ¹³C NMR (125 MHz, C₆D₆): δ 225.8 (*C*_{carbene}) 142.8 (*C*_{q arom}), 136.4 (*C*_{q arom}), 107.4 (CH_{arom}), 72.6 (CCH₃ central), 61.8 (CCH₃), 57.3 (C(CH₃)₃), 30.8 (C(CH₃)₃), 27.3 (CH₃), 17.0 (CH₃ central). HRMS (+)-ESI-TOF-MS of [M + H]⁺, monoisotopic peak 793.5903, calcd 793.5897, ϵ_r = 0.8 ppm.

1.4. Synthesis of compound 7

A Schlenk tube containing a suspension of compound **6** (200 mg, 0.19 mmol) in THF (10 mL) was placed in an ice bath kept at 0 °C. KHMDS was then added dropwise (0.5 M in toluene, 1.48 mL, 0.74 mmol, 3.9 equiv.) and the slurry was stirred at 0 °C for 30 min. The resulting cloudy dark brown solution was filtered through cannula into another Schlenck charged with a solution of $[Rh(COD)Cl]_2$ (154 mg, 0.313 mmol) in THF (10

mL). The reaction mixture was stirred at ambient temperature for 12h. THF was then removed under reduced pressure. The crude soid was purified by column chromatrography. Elution with CH₂Cl₂ separated a yellow band containing [Rh(COD)Cl]₂. Further elution with CH₂Cl₂/Acetone (9:1) separated a light yellow band that contained compound 7. Compound 7 was obtained as a pale yellow solid by precipitation from CH₂Cl₂/hexane. Yield: 94 mg (32 %). ¹H NMR (300 MHz, CDCl₃): δ 7.61 (s, 3H, *CH*_{arom}), 7.58 (s, 3H, *CH*_{arom}), 4.98 (br., 6H, COD), 3.00 (br., 3H, COD), 2.71 (br., 3H, COD), 2.44 (br., 12H, COD), 2.37 (s, 27 H, C(CH₃)₃), 2.36 (s, 27 H, C(CH₃)₃), 1.97 (s, 9H, CH₃), 1.83 (s, 3H, CH₃ central), 1.78 (br., 12H, COD). ¹³C NMR (125 MHz, CD₂Cl₂): δ 195.8 (d, ¹*J* _{Rh-C} = 49.0 Hz, Rh-*C*_{carbene}), 195.6 (d, ¹*J* _{Rh-C} = 49.0 Hz, Rh-*C*_{carbene}), 142.8 (*C*_{q arom}), 136.5 (*C*_{q arom}), 108.6 (*C*H_{arom}), 93.3 (d, ¹*J*_{Rh-C} = 15.8 Hz, Rh-*C*H_{COD}), 72.6 (*C*CH₃)₃), 29.6 (*C*H₂-COD), 29.0 (*C*H₂-COD). 27.3 (*C*H₃), 16.7 (*C*H₃ central). Electrospray MS (20 V, *m/z*): 516.6 [M – 3 Cl + 3 CH₃CN]³⁺.

2. Electrochemical measurements

The measurements were carried out using a GPES equipped PGSTAT-30 potentiostat from Autolab at room temperature. A three-electrode configuration was used, where two Pt microelectrodes were connected to the working electrode and counter electrode and a Ag wire was used as the pseudo-reference electrode. The redox potential of ferrocene (445 mV) was used to calibrate the potential scale. Measurements performed on 10 mM analyte in CH_2Cl_2 with 0.1 mM [NBu₄]PF₆, at a 100 mV s⁻¹ scan rate.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

3. Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

3.2. ¹H and ¹³C NMR spectra of 6

fl (ppm)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

3.3. ¹H and ¹³C NMR spectra of 3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

3.4. ¹H and ¹³C NMR spectra of 7

3.5. High Resolution Mass Spectra of 3

4. X-Ray Crystallography

X-Ray Diffraction studies for complex 6. Crystals suitable for X-ray study of **6** were obtained by slow evaporation of a concentrated solution of the compound in CH₃CN. Diffraction data was collected on a Agilent SuperNova diffractometer equipped with an Atlas CCD detector using Mo-K α radiation ($\lambda = 0.71073$ Å). Single crystals were mounted on a MicroMount® polymer tip (MiteGen) in a random orientation. Absorption corrections based on the multiscan method were applied.⁵ The structures were solved by direct methods in SHELXS-97 and refined by the full-matrix method based on F² with the program SHELXL-97 using the OLEX software package.^{6,7}

Key details of the crystal and structure refinement data are summarized in Supplementary Table S1. Further crystallographic details may be found in the respective CIF which was deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK. The reference number for **1** was assigned as 950746.

	6
Empirical formula	$C_{53}H_{72}B_3F_{12}N_6$
Formula weight	1053.60
Temperature/K	200.00(14)
Crystal system	hexagonal
Space group	P6 ₃ cm
a/Å	15.7431(5)
b/Å	15.7431(5)
c/Å	12.5624(5)
α/°	90.00
β/°	90.00
$\gamma/^{\circ}$	120.00
Volume/Å ³	2696.41(16)
Z	2
$\rho_{calc} mg/mm^3$	1.298
m/mm ⁻¹	0.886
F(000)	1110.0
Crystal size/mm ³	0.14 imes 0.11 imes 0.1
2Θ range for data collection	6.48 to 144.94°
Index ranges	$-18 \le h \le 14, -15 \le k \le 18, -15 \le l \le 15$
Reflections collected	16021
Independent reflections	1899[R(int) = 0.0284]
Data/restraints/parameters	1899/1/128
Goodness-of-fit on F^2	1.026
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0696, wR_2 = 0.1947$
Final R indexes [all data]	$R_1 = 0.0754, wR_2 = 0.2093$
Largest diff. peak/hole / e Å ⁻³	0.68/-0.27
Flack parameter	0.0(5)

Supplementary Table S1. Summary of crystal data, data collection, and structure refinement details.

5. Computational details

The DFT calculations presented in this work were carried out as reported in the literature for ditopic NHC complexes.⁸ The calculated atomic coordinates are collected in Supplementary Tables S2, S3 and S4.

Supplementary Table S2

mono-Ni(CO)₃ complex

Nil	3.4831	5.8310 0.2515	
C2	4.4075	4.8785 -0.9645	
C3	2.2466	6.7383 -0.6906	
C4	4.5337	6.9711 1.1630	
C5	2.6939	4.5808 1.5717	
06	4.9749	4.2993 -1.7688	
07	1.5209	7.3269 -1.3482	
08	5.1939	7.6972 1.7463	
N9	1.4385	4.5772 2.1013	
N10	3.3049	3.4934 2.1211	
C11	1.2436	3.4964 2.9470	
C12	0.4177	5.5656 1.8418	
C13	2.4511	2.7965 2.9606	
C14	4.6753	3.0999 1.8889	
C15	0.1545	3.0802 3.6974	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

H16	0.8892	6.4439	1.4121
H17	-0.0657	5.8453	2.7794
H18	-0.3340	5.1814	1.1483
C19	2.6204	1.6528	3.7259
H20	5.1837	3.9130	1.3788
H21	5.1709	2.9109	2.8432
H22	4.7232	2.1991	1.2724
H23	-0.7772	3.6312	3.6868
C24	0.3181	1.9270	4.4583
H25	3.5631	1.1207	3.7372
C26	1.5261	1.2277	4.4723
C27	-0.7251	1.2922	5.3572
C28	1.4792	0.0155	5.3819
C29	0.0173	0.0449	6.0026
C30	-1.2675	2.3317	6.3472
C31	-1.8621	0.6838	4.5592
C32	2.6342	0.0710	6.3908
C33	1.5301	-1.2806	4.5963
C34	0.0379	0.1095	7.5249
C35	-0.7276	-1.2513	5.4655
H36	-2.0105	1.8984	7.0184
H37	-1.7577	3.1422	5.8032
H38	-0.4690	2.7783	6.9421
C39	-1.8595	-0.7101	4.6140
C40	-2.8361	1.3820	3.8502
H41	2.6144	0.9908	6.9778
H42	2.6169	-0.7835	7.0691

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

- H43 3.5900 0.0446 5.8628
- C44 0.3187 -1.9712 4.6370
- C45 2.6318 -1.7843 3.9096
- H46 -0.9711 0.1272 7.9380
- H47 0.5511 1.0031 7.8816
- H48 0.5495 -0.7524 7.9544
- C49 -1.2843 -2.1932 6.5419
- C50 -2.8298 -1.4642 3.9597
- C51 -3.7958 0.6300 3.1903
- H52 -2.8563 2.4644 3.8173
- C53 0.1578 -3.1936 3.9902
- C54 2.4675 -2.9964 3.2571
- H55 3.5812 -1.2636 3.8878
- H56 -2.0312 -1.6979 7.1645
- H57 -0.4930 -2.5880 7.1813
- H58 -1.7734 -3.0474 6.0688
- C59 -3.7920 -0.7691 3.2436
- H60 -2.8440 -2.5460 4.0091
- N61 -4.8913 0.9689 2.4108
- C62 1.2510 -3.6885 3.2961
- Н63 -0.7745 -3.7434 4.0286
- N64 3.3190 -3.7847 2.4980
- N65 -4.8855 -1.1720 2.4921
- C66 -5.5774 -0.1218 1.9684
- C67 -5.2747 2.3229 2.0914
- N68 1.4574 -4.8436 2.5573
- C69 2.7211 -4.9259 2.0551

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

- C70 4.6894 -3.4465 2.1983
- C71 -5.2613 -2.5485 2.2769
- H72 -4.4791 2.8329 1.5419
- H73 -5.5003 2.8881 2.9995
- H74 -6.1650 2.2729 1.4693
- C75 0.4536 -5.8559 2.3337
- H76 5.0990 -4.2490 1.5899
- H77 4.7452 -2.5075 1.6414
- H78 5.2768 -3.3531 3.1155
- H79 -6.1516 -2.5510 1.6528
- H80 -5.4840 -3.0439 3.2255
- H81 -4.4625 -3.0944 1.7683
- H82 0.9043 -6.6344 1.7230
- H83 0.1191 -6.2881 3.2804
- H84 -0.4088 -5.4384 1.8076

Supplementary Table S3

bis-Ni(CO)₃ complex

- Ni1 3.4909 5.8319 0.2485
- C2 4.4409 4.8849 -0.9527

- C3 2.2536 6.7188 -0.7127
- C4 4.5182 6.9905 1.1635
- C5 2.7016 4.5808 1.5660
- O6 5.0244 4.3092 -1.7476
- 07 1.5277 7.2944 -1.3812
- 08 5.1636 7.7282 1.7486
- N9 1.4411 4.5681 2.0840
- N10 3.3173 3.5013 2.1266
- C11 1.2482 3.4898 2.9326
- C12 0.4144 5.5468 1.8103
- C13 2.4620 2.8007 2.9608
- C14 4.6939 3.1204 1.9094
- C15 0.1564 3.0685 3.6762
- H16 0.8832 6.4282 1.3841
- H17 -0.0821 5.8243 2.7416
- H18 -0.3255 5.1543 1.1089
- C19 2.6339 1.6624 3.7334
- H20 5.1995 3.9376 1.4029
- H21 5.1815 2.9383 2.8690
- H22 4.7571 2.2193 1.2947
- H23 -0.7790 3.6129 3.6561
- C24 0.3228 1.9207 4.4446
- H25 3.5824 1.1411 3.7578
- C26 1.5361 1.2313 4.4716
- C27 -0.7205 1.2867 5.3436
- C28 1.4898 0.0220 5.3853
- C29 0.0270 0.0505 6.0043

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

- C30 -1.2733 2.3318 6.3222
- C31 -1.8529 0.6636 4.5504
- C32 2.6439 0.0771 6.3950
- C33 1.5426 -1.2758 4.6025
- C34 0.0459 0.1333 7.5257
- C35 -0.7119 -1.2550 5.4816
- H36 -2.0163 1.9001 6.9945
- H37 -1.7668 3.1335 5.7685
- H38 -0.4801 2.7895 6.9156
- C39 -1.8493 -0.7291 4.6277
- C40 -2.8278 1.3491 3.8303
- H41 2.6225 0.9968 6.9818
- H42 2.6265 -0.7771 7.0736
- H43 3.6006 0.0519 5.8684
- C44 0.3346 -1.9731 4.6523
- C45 2.6421 -1.7735 3.9099
- H46 -0.9636 0.1517 7.9373
- H47 0.5541 1.0339 7.8717
- H48 0.5609 -0.7205 7.9670
- C49 -1.2549 -2.1936 6.5676
- C50 -2.8208 -1.4949 3.9886
- C51 -3.7877 0.5856 3.1841
- H52 -2.8492 2.4307 3.7797
- C53 0.1755 -3.1965 4.0092
- C54 2.4780 -2.9885 3.2624
- H55 3.5854 -1.2436 3.8754
- H56 -2.0012 -1.6986 7.1907

- H57 -0.4574 -2.5781 7.2055
- H58 -1.7416 -3.0545 6.1040
- C59 -3.7844 -0.8127 3.2621
- H60 -2.8368 -2.5756 4.0582
- N61 -4.8840 0.9110 2.4005
- C62 1.2687 -3.6843 3.3100
- Н63 -0.7550 -3.7482 4.0496
- N64 3.3374 -3.7681 2.5047
- N65 -4.8789 -1.2284 2.5200
- C66 -5.5712 -0.1872 1.9788
- C67 -5.2679 2.2594 2.0577
- N68 1.4662 -4.8421 2.5763
- C69 2.7268 -4.9028 2.0606
- C70 4.7086 -3.3978 2.2414
- C71 -5.2563 -2.6084 2.3295
- H72 -4.4731 2.7593 1.4981
- H73 -5.4924 2.8404 2.9559
- H74 -6.1589 2.1982 1.4377
- C75 0.4464 -5.8516 2.4081
- Ni76 3.4409 -6.3261 0.8820
- H77 5.2453 -4.2791 1.9047
- H78 4.7658 -2.6232 1.4731
- H79 5.1701 -3.0311 3.1598
- H80 -6.1482 -2.6208 1.7079
- H81 -5.4771 -3.0871 3.2870
- H82 -4.4595 -3.1635 1.8277
- H83 0.9063 -6.7330 1.9705

H84	0.0227 -6.1138 3.3795
H85	-0.3498 -5.4945 1.7507
C86	4.9068 -5.8306 -0.0386
C87	3.8196 -7.7414 1.9255
C88	2.1967 -6.7091 -0.3617
089	5.8203 -5.5827 -0.6782
O90	4.0668 -8.6347 2.5919
O91	1.4369 -6.9494 -1.1794

Supplementary Table S3

tris-Ni(CO)₃ complex

Ni1	-0.4840	7.0362 -1.6315
C2	-0.4168	5.4852 -0.4026
C3	-2.0486	7.1925 -2.5095
C4	-0.1829	8.5111 -0.6466
C5	0.7638	6.8041 -2.9092
N6	0.7099	4.9020 0.0974
N7	-1.4432	4.7427 0.1010
08	-2.9993	7.3425 -3.1248
09	0.0000	9.4456 -0.0172
O10	1.5263	6.6666 -3.7476

- C11 0.4112 3.7993 0.8796
- C12 2.0597 5.3646 -0.1304
- C13 -0.9812 3.6950 0.8807
- C14 -2.8476 4.9947 -0.1254
- C15 1.2076 2.9109 1.5857
- H16 2.0111 6.3427 -0.6004
- H17 2.5862 5.4511 0.8221
- H18 2.6021 4.6764 -0.7829
- C19 -1.6335 2.6958 1.5867
- H20 -2.9607 6.0094 -0.4936
- H21 -3.2591 4.2957 -0.8572
- H22 -3.3921 4.8963 0.8152
- C23 0.5556 1.9011 2.2865
- H24 2.2858 3.0084 1.5897
- C25 -0.8360 1.7957 2.2867
- H26 -2.7139 2.6279 1.5914
- C27 1.2140 0.8294 3.1332
- C28 -1.3253 0.6367 3.1332
- C29 0.0000 0.0000 3.7348
- C30 1.9732 -0.1739 2.2867
- C31 2.1560 1.4731 4.1595
- C32 -1.9242 -0.4694 2.2865
- C33 -2.3537 1.1306 4.1595
- C34 0.1112 -1.4661 3.1332
- C35 0.0000 0.0000 5.2587
- C36 1.3686 -1.4317 2.2865
- C37 3.1514 0.0668 1.5867

- H38 2.6345 0.7243 4.7926
- H39 1.6324 2.1911 4.7925
- H40 2.9513 2.0164 3.6445
- C41 -3.1247 -0.4097 1.5857
- C42 -1.1371 -1.6219 2.2867
- H43 -2.7138 0.3182 4.7925
- H44 -1.9446 1.9194 4.7926
- H45 -3.2219 1.5477 3.6445
- C46 0.1977 -2.6037 4.1595
- H47 0.9144 -0.4388 5.6590
- H48 -0.8372 -0.5725 5.6590
- H49 -0.0771 1.0113 5.6590
- C50 1.9171 -2.5013 1.5857
- C51 3.6906 -0.9977 0.8807
- H52 3.6328 1.0364 1.5914
- C53 -3.4959 -1.5436 0.8796
- H54 -3.7482 0.4754 1.5897
- C55 -1.5179 -2.7626 1.5867
- H56 1.0813 -2.5093 4.7925
- H57 0.2707 -3.5641 3.6445
- H58 -0.6900 -2.6437 4.7926
- C59 3.0847 -2.2558 0.8796
- H60 1.4624 -3.4837 1.5897
- N61 4.8289 -1.1215 0.1010
- C62 -2.7094 -2.6973 0.8807
- N63 -4.6002 -1.8362 0.0974
- H64 -0.9189 -3.6643 1.5914

- N65 3.8903 -3.0658 0.0974
- C66 4.9587 -2.3816 -0.4026
- C67 5.7493 -0.0313 -0.1254
- N68 -3.3857 -3.6212 0.1010
- C69 -4.5419 -3.1036 -0.4026
- C70 -5.6757 -0.8985 -0.1304
- C71 3.6160 -4.4661 -0.1304
- Ni72 6.3355 -3.0989 -1.6315
- H73 6.6847 -0.4407 -0.4936
- H74 5.9364 0.4895 0.8152
- H75 5.3498 0.6746 -0.8572
- C76 -2.9017 -4.9634 -0.1254
- Ni77 -5.8515 -3.9372 -1.6315
- H78 -6.4985 -1.4297 -0.6004
- H79 -6.0139 -0.4859 0.8221
- H80 -5.3509 -0.0847 -0.7829
- H81 2.7488 -4.5917 -0.7829
- H82 3.4277 -4.9653 0.8221
- H83 4.4874 -4.9130 -0.6004
- C84 7.2532 -1.8221 -2.5095
- C85 7.4623 -4.0972 -0.6466
- C86 5.5106 -4.0636 -2.9092
- H87 -3.7240 -5.5687 -0.4936
- H88 -2.5442 -5.3858 0.8152
- H89 -2.0907 -4.9703 -0.8572
- C90 -6.2744 -2.7405 -2.9092
- C91 -5.2046 -5.3704 -2.5095

C92	-7.2794	-4.4139	-0.6466
O93	7.8584	-1.0738	-3.1248
O94	8.1801	-4.7228	-0.0172
095	5.0103	-4.6551	-3.7476
096	-6.5366	-2.0115	-3.7476
O97	-4.8591	-6.2687	-3.1248
O98	-8.1801	-4.7228	-0.0172

References

- 1. G. Giordano and R. H. Crabtree, Inorg. Synth., 1990, 28, 88.
- 2. J. A. V. Er, A. G. Tennyson, J. W. Kamplain, V. M. Lynch and C. W. Bielawski, Eur. J. Inorg. Chem., 2009, 1729.
- 3. A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, Tetrahedron 1999, 55, 14523-14534.
- 4. D. Kuck, A. Schuster, R. A. Krause, J. Tellenbröker, C. P. Exner, M. Penk, H. Bögge and A. Müller, Tetrahedron, 2001, 57, 3587.
- 5. R. C. Clark and J. S. Reid, Acta Crystallogr. Sect. A, 1995, 51, 887.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- 7. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- 8. D. G. Gusev and E. Peris, *Dalton Trans.*, 2013, 42, 7359.