Electronic Supplementary Information

Diastereoselective α -C-H Functionalization of Aliphatic *N*heterocycles: An Efficient Route to Ring Fused Oxazines

Sujit Mahato, Surajit Haldar, and Chandan K. Jana*

Department of Chemistry, Indian Institute of Technology Guwahati, 781039-Guwahati,

Assam, India

E-mail: ckjana@iitg.ernet.in

Experimental Section:

General: All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in oven-dried glassware under an argon atmosphere. THF and Diethylether (Et₂O) were freshly distilled from Sodium under argon. Dichloromethane (CH₂Cl₂) was freshly distilled from phosphorus(V)oxide (P₂O₅).Triethylamine (Et₃N) was distilled from CaH₂ and stored under argon. Commercial grade xylene, benzene and toluene were distilled before use. All other solvents and reagents were purified according to standard procedures or were used as received from Aldrich, Acros, Merck and Spectrochem. ¹H, ¹³C NMR spectroscopy: *Varian Mercury plus 400 MHz* (at 298 K). Chemical shifts, δ (in ppm), are reported relative to TMS (δ (¹H) 0.0 ppm, δ (¹³C) 0.0 ppm) which was used as the inner reference. Otherwise the solvents residual proton resonance and carbon resonance (CHCl₃, δ (¹H) 7.26 ppm, δ (¹³C) 77.0 ppm; CD₃OD, (¹H) 3.31 ppm, δ (¹³C) 49.0 ppm) were used for calibration. Column chromatography: Merck or Spectrochemsilica gel 60-120 under gravity. IR: spectra were recorded on Perkin Elmer Instrument at normal temperature making KBr pellet grinding the sample with KBr (IR Grade). MS (ESI-HRMS): Mass spectra were recorded on a Agilent Accurate-Mass Q-TOF LC/MS 6520, and peaks are given in *m/z* (% of basis peak).

X-ray crystallographic data were collected using a Bruker SMART APEX-II CCD diffractometer, equipped with a fine focus 1.75 kW sealed tube Mo–K α radiation (1 = 0.71073 Å) at 296(2) K, with increasing w (width of 0.3° per frame) at a scan speed of 3 s/frame. Structures were solved by direct methods using SHELXS-97 and refined with fullmatrix least squares on F^2 using SHELXL-97. Using Olex2¹, structure was solved with

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

the Superflip² structure solution program using Charge Flipping and refined with the olex2.refine³ refinement package using Gauss–Newton minimisation. All then non–hydrogen atoms were refined anisotropically.

Experimental procedure:

2-((pyrrolidin-1-yl)methyl)phenol (4): Pyrolidine (0.34 mL, 4.09 mmol) was added to a solution of salisaldehyde (0.43 mL, 4.09 mmol) in 2 mL of ethanol and the reaction mixture was stirred at room temperature for 2.5 h. Then NaBH₄ (0.15 g, 4.09 mmol) was added and the reaction mixture was stirred for another 16 h at that temperature. The reaction was then quenched with aquoueus 1M HCl (100 μ L) solution and the organic solvents were removed under vacuum. Then

the mixture was diluted with brine and extracted with ethylacetate (3 X 20 mL). The combined organic layers were dried (Na₂SO₄), concetrated in vaccua and the crude product was subjected to SiO₂-column chromatography (hexane:ethyl acetate, 6:1) to afford 4^4 as brown oil (0.32 g, 45 %). ¹H NMR (400 MHz, CDCl₃) δ = 9.66 (br. s, 1H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.74 (t, *J* = 7.6 Hz, 1H), 3.79 (s, 2H), 2.60 (s, 4H), 1.82 – 1.81 (m, 4H).

1-((pyrrolidin-1-yl)methyl)naphthalen-2-ol (5): Paraformaldehyde (0.16 g, 4.99 mmol) was heated at 70 0 C in benzene (4 mL) for 1 h with stirring. Then mixture was cooled to room temperature and pyrrolidine (0.41 mL, 4.99 Mmol), 2-napthol (0.60 g, 4.16 mmol) were added to the mixture. Then the mixture was refluxed for 18 h. Then the reaction mixture was cooled and the product crystalyzed as a brown solid on long standing (4 days) at room temperature. Then the solid was washed with a mixture of hexane & ethyl acetate (15:1, 3 X 15 mL) to get amino alchol 5^{5} as light brown solid (0.82 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 8.6 Hz, 1H), 7.76 – 7.74 (m, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.29 – 7.27 (m, 1H), 7.09 (d, *J* = 8.8 Hz, 1H), 4.29 (s, 2H), 2.74 (br. s, 4H), 1.93 – 1.88 (m, 4H) (-OH proton was not detected).

General procedure for the syntheses of Betti base (GP1):

2-naphthol or phenol was added to a solution of seceondary amine and aldehyde in benzene and the mixture was refluxed for 16 h. After the disappreance of the starting material

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

indicated from TLC, the solvent was removed under reduced pressure and the crude product was subjected to silica gel chromatography or crystalization to afford the amino naphthol/phenol derivatives.

1-(phenyl(pirrolidine-1-yl)methyl)naphthalen-2-ol (7): According to GP1: 2-napthol (1.00

H₃C

g, 6.94 mmol), benzaldehvde (0.85 mL, 8.33 mmol), pyrrolidine (0.85 mL, 10.41 mmol) in benzene 10 mL for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 7^6 as light yellow solid (1.26 g, 60%). ¹H NMR (400 MHz, CDCl₃) δ = 7.87 (d, J = 8.6 Hz, 1H), 7.70 - 7.68 (m, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.62 - 7.59 (m,

2H), 7.39 - 7.35 (m, 1H), 7.28 - 7.17 (m, 4H), 7.15 (d, J = 9.2 Hz, 1H), 5.13 (s, 1H), 3.29(br. s, 1H), 2.65 (br. s, 1H), 2.25 (br. s, 1H), 1.85 (br.s, 5H) (-OH proton was not detected).

1-((4-methoxyphenyl)(pyrrolidine-1-yl)methyl)naphthalen-2-ol (9a): According to GP1: 2-napthol (0.20 g, 1.39 mmol), p-methoxy benzaldehyde (0.20 MeO mL, 1.66 mmol), pyrrolidine (0.17 mL, 2.08 mmol) in benzene 2 mL for 20 h, and gave SiO₂ column chromatography (hexane .OH :ethyl acetate, 20:1) $9a^7$ as light orange solid (280 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ = 7.84 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.37 - 7.33 (m, 1H), 7.22 -

7.19 (m, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.78 (d, J = 8.8 Hz, 2H), 5.08 (s, 1H), 3.71 (s, 3H), 3.21 (br. s, 1H), 2.66 (br. s, 1H), 2.21 (br.s, 2H), 1.84 (s, 4H) (-OH proton was not detected).

1-((pyrrolidine-1-yl)(p-tolyl)methyl)naphthalen-2-ol (9b): According to GP1: 2-napthol (0.40 g, 2.77 mmol), 4-methyl benzaldehyde (0.39 mL, 3.32 mmol), pyrrolidine (0.27 mL, 3.32 mmol) in benzene 4 mL for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, OH 40:1) gave $9b^7$ as brownish solid (0.53 g, 60%). ¹H NMR (400

MHz, CDCl₃) δ = 13.92 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.69 –

7.67 (m, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8 Hz, 2H), 7.35 (dt, J = 7.2 Hz, J = 1.2Hz, 1H), 7.20 (dt, J = 6.8 Hz, J = 1.2 Hz, 1H), 7.14 (d, J = 9.2 Hz, 1H), 7.06 (d, J = 8.8 Hz, 2H) 5.09 (s, 1H), 3.26 – 1.84 (m, 8H), 2.25 (s, 3H).

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

1-((4-chlorophenyl)(pyrrolidine-1-yl)methyl)naphthalen-2-ol (9c): According to GP1: 2-

napthol (0.20 g, 1.39 mmol), p-chloro benzaldehyde (0.23 g, 1.66 mmol), pyrrolidine (0.17 mL, 2.08 mmol) in benzene 2 mL for 20 h, and gave SiO₂ column chromatography (hexane:ethyl acetate, 40:1) **9c**⁷ as colorless solid (0.44 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ = 13.74 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8

Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.14 (d, *J* = 8.8 Hz, 1H), 5.10 (s, 1H), 3.26 – 1.84 (m, 8H).

1-((3-nitrophenyl)(pyrrolidin-1-yl)methyl)napthalen-2-ol (9d): According to GP1: 2-

napthol (0.40 g, 2.8 mmol), *m*-nitro benzaldehyde (0.50 g , 3.32 mmol), pyrrolidine (0.27 mL, 3.32 mmol) in benzene 4 mL for 20 h, and crystallization gave **9d** as yellow solid (0.40 g, 42%). FTIR (KBr): $\tilde{v} =$ 3449, 3086, 2969, 2816, 1621, 1599, 1533, 1468, 1455, 1415, 147, 1313, 1237, 1104, 954, 908, 867, 830, 822, 814, 752, 737, 697 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 13.49 (s, 1H), 8.46 (s, 1H), 8.08 – 8.06 (m,

1H), 8.00 - 7.98 (m, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.71 (t, J = 8.7 Hz, 2H), 7.45 - 7.40 (m, 2H), 7.28 - 7.24 (m, 1H), 7.17 (d, J = 8.8 Hz, 1H), 5.25 (s, 1H), 3.40 - 1.64 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 155.6$, 148.3, 143.5, 134.6, 131.6, 130.2, 130.0, 129.2, 128.7, 126.9, 123.4, 123.0, 122.8, 120.6, 120.1, 115.6, 69.9, 53.6 (br.), 23.5. HRMS (ESI) exact mass calculated for C₂₁H₂₁N₂O₃ ([M + H]⁺): 349.1547, found: 349.1551

1-((pyridine-2-yl)(pyrrolidin-1-yl)methyl)naphthalen-2-ol (9e): According to GP1: 2-

953, 826, 778, 752 719, 629 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 13.73 (s, 1H), 8.48 (ddd, J = 4.8, 1.6, 0.8 Hz, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.69 – 7.59 (m, 3H), 7.43 (td, J = 7.8, 1.6 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.21 – 7.16 (m, 1H), 7.15 (d, J = 8.9 Hz, 1H), 7.00 – 6.97 (m, 1H), 5.41 (s, 1H), 2.86 – 2.72 (m, 2H), 2.47 – 2.34 (m, 2H), 1.84 – 1.69 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 160.8, 155.7, 148.5, 137.1, 132.2, 129.7, 128.6, 128.9, 126.3, 122.8, 122.7, 122.5, 121.8, 119.9, 115.6, 72.6, 53.1, 23.4. HRMS (ESI) exact mass calculated for C₂₀H₂₁N₂O ([M + H]⁺): 305.1648, found: 305.1659.

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

1-(phenyl(piperidine-1-yl)methyl)naphthalen-2-ol (9f): According to GP1: 2-napthol (0.20

g, 1.40 mmol), benzaldehyde (0.14 mL, 1.40 mmol), piperidine (0.14 mL, 1.40 mmol) in benzene 2 mL for 16 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **9f⁶** as white solid (0.31 g, 69%). ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.6 Hz, 1H), 7.69 – 7.67 (m, 1H), 7.65 (d, *J* = 8.9 Hz, 1H), 7.56 – 7.54 (m, 2H),

7.37 - 7.33 (m, 1H), 7.27 - 7.17 (m, 4H), 7.14 (d, J = 8.9 Hz, 1H), 5.08 (s, 1H), 3.32 - 1.58 (m, 10H) (-OH proton was not detected).

1-((3-nitrophenyl)(piperidine-1-yl)methyl)naphthalen-2-ol (9g): According to GP1: 2-

napthol (0.30 g, 2.08 mmol), m-nitro benzaldehyde (0.38 g, 2.50 mmol), piperidine (0.246 mL, 2.50 mmol) in benzene 3 mL for 16 h, and crystallization gave **9g** as yellow solid (0.75 g, 99%). FTIR (KBr): $\tilde{v} = 3422$, 3091, 2954, 2850, 2807, 1620, 1597, 1533, 1474, 1449, 1343, 1271, 1237, 1155, 1084, 1069, 830, 816, 749, 734, 690 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 13.60$ (s, 1H), 8.40 (s, 1H), 8.07

- 8.04 (m, 1H), 7.98 - 7.89 (m, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.74 - 7.68 (m, 2H), 7.46 - 7.38 (m, 2H), 7.28 - 7.22 (m, 1H), 7.17 (d, J = 8.9 Hz, 1H), 5.19 (s, 1H), 3.52 - 1.11 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 155.6$, 148.4, 142.1, 135.0, 132.1, 130.1, 129.1, 128.7, 126.9, 123.9, 123.03, 123.0, 122.8, 120.5, 120.2, 115.2, 71.2, 54.6, 52.6, 26.0, 24.0 (restricted inversion of amine leading to 1 carbon more in count). HRMS (ESI) exact mass calculated for C₂₂H₂₃N₂O₃ ([M + H]⁺): 363.1703, found: 363.1685.

1-((morpholino(phenyl)methyl)naphthalen-2-ol (9h): According to GP1: 2-napthol (0.20

g, 1.39 mmol), benzaldehyde (0.17 mL, 1.66 mmol), morpholine (0.14 mL, 1.66 mmol) in benzene 2 mL for 14 h, and crystallization gave **9h⁸** as colorless crystal (0.41 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ = 13.12 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.56 – 7.55 (m, 2H), 7.39 – 7.34 (m, 1H), 7.27 – 7.24 (m, 2H), 7.22 – 7.17 (m,

2H), 7.15 (d, *J* = 8.8 Hz, 1H), 5.10 (s, 1H), 3.79 – 3.65 (m, 4H), 3.08 (br. s, 1H), 2.41 – 2.25 (m, 3H).

Diastereoselective *α*-C-H Functionalization of Aliphatic *N*-heterocycles: An Efficient Route to Ring Fused Oxazines

1-(morpholino(3-nitrophynyl)methyl)naphthalen-2-ol (9i): According to GP1: 2-napthol

(0.50 g, 3.47 mmol), *m*-nitro benzaldehyde (0.63 mg, 4.16 mmol), morpholine (0.36 mL, 4.16 mmol) in benzene 6 mL for 16 h, and SiO₂ column chromatography (hexane:ethyl acetate, 6:1) gave **9i** as yellow foam (1.08 g, 85%). FTIR (KBr): $\tilde{v} = 3425$, 3070, 2959, 2850, 1621, 1599, 1530, 1466, 1449, 1349, 1272, 1234, 1118, 947, 873, 829, 815, 747, 734, 688 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 12.85$ (s, 1H),

8.46 (s, 1H), 8.02 – 8.00 (m, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.67 – 7.65 (m, 2H), 7.341 –7.35 (m, 2H), 7.23 –7.19 (m, 1H), 7.16 (d, J = 8.9 Hz, 1H), 5.24 (s, 1H), 3.87 – 2.39 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 154.8$, 148.5, 141.0, 135.0, 132.0, 130.5, 130.2, 129.2, 128.9, 127.1, 124.0, 123.3, 123.0, 120.5, 120.0, 114.1, 71.0, 66.7, 52.0 (br.). HRMS (ESI) exact mass calculated for C₂₁H₂₁N₂O₄ ([M + H]⁺): 365.1496, found: 365.1485.

1-((4-methylpiperazin-1-yl)(3-nitrophenyl)methyl)naphthalen-2-ol (9j): According to

GP1: 2-napthol (1.00 g, 6.94 mmol), m-nitro benzaldehyde (1.25 g, 8.32 mmol), N-methyl piperizine (0.92 mL, 8.32 mmol) in benzene 8 mL for 16 h, and SiO₂ column chromatography (dichloromethane:methanol, 50:1) gave **9j** as yellow solid (2.58 g, 98%). FTIR (KBr): $\tilde{v} = 3453$, 2939, 2850, 2809, 1623, 1600, 1529, 1465, 1413, 1347, 1291, 1235, 1155, 1137, 1102, 1087, 949, 812,

735, 690, 666 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 13.03 (s, 1H), 8.44 (s, 1H), 8.08 – 8.00 (m, 1H), 7.98 – 7.90 (m, 1H), 7.81 (d, *J* = 8.6 Hz, 1H), 7.69 –7.66 (m, 2H), 7.42 – 7.37 (m, 2H), 7.25 – 7.21 (m, 1H), 7.17 (d, *J* = 8.9 Hz, 1H), 5.24 (s, 1H), 3.32 – 2.32 (m, 8H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 155.1, 148.4, 141.6, 135.0, 132.0, 130.3, 130.1, 129.1, 128.8, 127.0, 123.9, 123.2, 122.9, 120.5, 120.0, 114.6, 70.6, 54.9, 53.4, 51.4, 45.7 (restricted inversion of amine leading to 1 carbon more in count). HRMS (ESI) exact mass calculated for C₂₂H₂₄N₃O₃ ([M + H]⁺): 378.1812, found: 378.1813.

1-((azepan-1-yl)(phenyl)methyl)naphthalen-2-ol (9k): According to GP1: 2-napthol (0.20

g, 1.39 mmol), benzaldehyde (0.17 mL, 1.66 mmol), hexamethyleneimine (0.19 mL, 1.66 mmol) in benzene 2 ml for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave $9k^{6}$ as colorless solid (0.16 g, 35%). ¹H NMR (400 MHz, CDCl₃) $\delta =$

7.78 (d, J = 8.6 Hz, 1H), 7.58 – 7.51 (m, 4H), 7.28 – 7.25 (m, 1H), 7.15 – 7.10 (m, 3H), 7.07 -7.03 (m, 2H), 5.19 (s, 1H), 2.67 -2.42 (m, 4H), 1.72 -1.40 (m, 8H) (-OH proton was not detected).

1-((azocan-1-yl)(phenyl)methyl)naphthalen-2-ol (9l): According to GP1: 2-napthol (0.20

1.39 mmol), benzaldehvde (0.17 mL, 1.66 mmol). g, heptamethyleneimine (0.21 mL, 1.66 mmol) in benzene 2 mL for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 91 as yellow oil (85 mg, 18%). TLC: $R_f = 0.5$ (hexane:ethyl acetate, 20:1). FTIR (KBr): $\tilde{v} = 3453$, 2923, 2851, 1621, 1600, 1519, 1453, 1415, 1267, 1237, 1157, 1111, 958, 815, 743, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 14.09$, (s, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.64 – 7.61 (m, 4H), 7.36 (t, J = 8.4 Hz, 1H), 7.22 – 7.19 (m, 2H), 7.17 – 7.13 (m, 3H), 5.26 (s, 1H), 2.73 (br. s, 4H), 1.65 – 1.59 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ = 155.3, 140.9, 132.2, 129.5, 129.1, 129.1, 128.8, 128.7, 127.9, 126.5, 122.4, 121.0, 120.1, 117.3, 69.8, 53.0, 27.0, 26.8, 25.4. HRMS (ESI) exact mass calculated for $C_{24}H_{28}NO([M + H]^+)$: 346.2165, found: 346.2162.

1-((diethylamino)(phenyl)methyl)naphthalen-2-ol (9m): According to GP1: 2-napthol

(0.35 g, 2.43 mmol), benzaldehyde (0.29 mL, 2.91 mmol), diethyl amine (0.30 mL, 2.91 mmol) in benzene 3 mL for 32 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave $9m^8$ as yellowish solid (0.49 g, 66%). ¹H NMR (400 MHz, CDCl₃) δ = 14.31 (s, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.68 – 7.62

(m, 2H), 7.38 - 7.34 (m, 1H), 7.28 - 7.20 (m, 2H), 7.20 - 7.15 (m, 2H), 7.13 (d, J = 8.9 Hz, 1H), 5.44 (s, 1H), 2.78 – 2.70 (m, 4H), 1.04 (br. s, 6H).

1-((dibenzylamino)(phenyl)methyl)naphthalen-2-ol (9n): According to GP1: 2-napthol

(0.20 g, 1.39 mmol), benzaldehyde (0.169 mL, 1.66 mmol), dibenzylamine (0.32 mL, 1.66 mmol) in benzene 2 mL for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **9n** as yellow solid (0.25 g, 50%). FTIR (KBr): $\tilde{v} = 3444$, 3060, 3027, 2924, 2851, 1621, 1600, 1584, 1519, 1494, 1467, 452, 1414, 1363,

1266, 1235, 1103, 1082, 1060, 1028, 945, 839, 817, 745, 698 cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$) $\delta = 13.94$ (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 8.4 Hz, 1H), 7.53 (s, 2H), 7.40 (t, J = 8.4 Hz, 1H), 7.28 – 7.22 (m, 7H), 7.14 – 7.09 (m, 9H), 5.53 (s, 1H), 3.77 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.8, 139.9, 132.0, 130.0, 129.4, 129.2, 129.1, 128.9, 128.6, 128.1, 127.6, 126.7, 122.7, 121.2, 120.0, 116.1, 67.2, 53.6. (overlap at aromatic region leading less number of carbon in count) HRMS (ESI) exact mass calculated for C₃₁H₂₈NO ([M + H]⁺): 430.2165, found: 430.2171.

1-((N-benzyl-N-methylamino)(phenyl)methyl)naphthalen-2-ol (90): According to GP1:

2-napthol (0.20 g, 1.39 mmol), benzaldehyde (0.17 mL, 1.66 mmol), N-methyl benzyl amine (0.32 mL, 1.66 mmol) in benzene 2 mL for 18 h, and SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **90⁹** as white solid (0.34 g, 71%). ¹H NMR (400 MHz, CDCl₃) δ = 14.31 (s, 1H), 7.91 (d, *J* = 8.6 Hz, 1H), 7.71 – 7.66 (m, 5H), 7.41 – 7.37

(m, 1H), 7.33 – 7.16 (m, 9H), 5.22 (s, 1H), 3.55 (br. s, 2H), 1.04 (br. s, 3H).

General procedure for the syntheses of Oxazenes (GP2):

To a solution of Betti base in xylene was added silver oxide and the reaction mixture was refluxed for 24 h. Then the reaction mixture was cooled to room temperature, filtered through a pad of celite and celite cake was washed with ethylacetate. The combined solvents were removed under vacuum and the crude product was subjected to silica gel column chromatography to afford the analytically pure oxazine.

7a,8,9,10-Tetrahydro-11H-7-oxa-10a-aza-cyclopenta[b]phenanthrene (6): According to

GP2: Betti base **5** (0.25 g, 1.1 mmol), Ag₂O (306 mg, 1.32 mmol) stirred at room temperature for 24 hour in *m*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 10:1) gave **6** as yellow solid (0.16 g, 64 %). FTIR (KBr): $\tilde{v} = 2979, 2959, 2926, 2838, 1622, 1598, 1513, 1469, 1434, 1397, 1229, 1131, 884, 821, 744 cm⁻¹. ¹H NMR (400$

MHz, CDCl₃) $\delta = 7.81$ (d, J = 8.0 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.54 – 7.50 (m, 1H), 7.42 – 7.38 (m, 1H), 7.08 (d, J = 8.9 Hz, 1H), 5.25 – 5.08 (m, 1H), 4.64 (d, J = 17.1 Hz, 1H), 4.30 (d, J = 17.0 Hz, 1H), 3.17 (td, J = 8.4, 3.2 Hz, 1H), 3.01 (q, J = 8.4 Hz, 1H), 2.28 – 2.19 (m, 2H), 2.16 – 2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 151.5$, 131.7, 129.0, 128.7, 128.0, 126.5, 123.4, 121.2, 119.0, 110.5, 90.2, 50.0, 44.0, 32.1, 21.3. HRMS (ESI) exact mass calculated for C₁₅H₁₆NO ([M + H]⁺): 226.1226; Found: 226.1221

Diastereoselective α -C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

rac-(7aS,11R)-11-Phenyl-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza-cyclopenta

[b]phenanthrene (8): According to GP2: Betti base 7 (0.10 g, 0.33 mmol), Ag₂O (91 mg, 0.39 mmol) reflux for 18 hour in *m*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 8^6 as brown solid (75 mg, 75%). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.7 - 100$ 7.74 (m, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.30 – 7.22 (m, 6H), 7.07 (d, J =

rac-(7aS,11R)-11-(4-Methoxy-phenyl)-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza-

8.9 Hz, 1H), 5.45 (s, 1H), 5.09 (d, J = 3.3 Hz, 1H), 3.36 - 3.31 (m, 1H), 2.92 (q, J = 8.3 Hz,

1H), 2.11 – 1.95 (m, 5H).

cvclopenta [b]phenanthrene (10a): According to GP2: Betti base 9a (0.28 g, 0.84 mmol), Ag₂O (0.23 g, 1.01 mmol) reflux for 18 h in *p*-xylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40 : 1) gave 10a as light yellow solid (0.15 g, 55%). FTIR (KBr): $\tilde{v} = -2956, 2923, 2831, 1653,$

1623, 1597, 1511, 1464, 1260,1244, 1234, 1178, 1029, 814, 748 cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$) $\delta = 7.77-7.73$ (m, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.41 - 7.38 (m, 1H), 7.31-7.22 (m, 2H), 7.16 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.9 Hz, 1H), 6.79 (d, J = 8.8 Hz, 2H), 5.40 (s, 1H), 5.09 (d, J = 3.4 Hz, 1H), 3.75 (s, 3H), 3.33 – 3.28 (m, 1H), 2.89 (q, J = 8.4 Hz, 1H), 2.10 – 1.97 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.8, 151.8, 135.8, 132.6, 132.3, 129.9, 129.0, 128.6, 126.6, 123.1, 122.8, 118.9, 113.8, 110.7, 86.5, 55.8, 55.3, 50.4, 32.1, 21.1. HRMS (ESI) exact mass calculated for $C_{22}H_{22}NO_2$ ([M + H]⁺): 332.1645; Found: 332.1660

rac-(7aS,11R)-11-p-Tolyl-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza-cyclopenta

[b]phenanthrene (10b): According to GP2: Betti base 9b (0.20 g, 0.64 mmol), Ag₂O (0.18 g, 0.76 mmol) reflux for 18 h in pxylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 10b as light yellow solid (0.13 g, 65%). FTIR (KBr): $\tilde{v} = -2959, 2923, 2836, 1620, 1597, 1510, 1467,$

1233, 990, 816, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.75 - 7.69$ (m, 2H), 7.27 - 7.25(m, 2H), 7.14 - 7.12 (m, 2H) 7.07 - 7.05 (m, 4H), 5.41 (s, 1H), 5.09 (d, J = 3.2 Hz, 1H), 3.33-3.29 (m, 1H), 2.92 - 2.86 (m, 1H), 2.29 (s, 3H), 2.09 - 1.98 (m, 4H). ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 151.8, 140.6, 136.8, 132.6, 129.2, 129.1, 129.0, 128.7, 128.6, 126.5, 123.0, 122.8, 126.5, 127.0, 128.6,$

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

118.9, 110.6, 86.4, 56.1, 50.4, 32.1, 21.2, 21.1. HRMS (ESI) exact mass calculated for $C_{22}H_{22}NO([M + H]^+)$: 316.1696; Found: 316.1680

rac-(7aS,11R)-11-(4-Chloro-phenyl)-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza cyclopenta

[b]phenanthrene (10c): According to GP2: Betti base 9c (0.10 g, 0.24 mmol), Ag₂O (82 mg, 0.35 mmol) reflux for 18 hour in *p*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 10c as light yellow solid (70 mg, 70%). FTIR (KBr): $\tilde{v} = 2961, 2924, 2845, 1654, 1618, 1601, 1261, 1092, 1023, 804$

cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 – 7.75 (m, 1H), 7.73 (d, *J* = 9.0 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.9 Hz, 1H), 5.41 (s, 1H), 5.02 (d, *J* = 3.2 Hz, 1H), 3.36 – 3.30 (m, 1H), 2.90 (q, *J* = 8.3 Hz, 1H), 2.17 – 1.96 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.9, 142.0, 133.1, 132.5, 130.3, 129.3, 129.0, 128.8, 128.6, 126.8, 123.2, 122.6, 119.0, 109.9, 86.4, 55.7, 50.5, 32.2, 21.1. HRMS (ESI) exact mass calculated for C₂₁H₁₉ClNO ([M + H]⁺): 336.1150; Found: 336.1150.

rac-(7aS,11R)-11-(3-Nitro-phenyl)-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza-cyclopenta

[b]phenanthrene (10d): According to GP2: Betti base **9d** (0.20 g, 0.57 mmol), Ag₂O (0.16 g, 0.69 mmol) reflux for 18 h in *p*-xylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **10d** as brown solid (0.16 g, 82%). FTIR (KBr): $\tilde{v} = 2694$, 2839, 1621, 1596, 1529, 119, 1526, 1464, 1346, 1231, 1069, 890, 816, 808, 678 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.26$ (s, 1H), 8.10 (d, J =

7.6 Hz, 1H), 7.84 – 7.74 (m, 2H), 7.45 (d, J = 7.5 Hz, 1H), 7.42 – 7.36 (m, 1H), 7.33 – 7.26 (m, 3H), 7.13 – 7.05 (m, 1H), 5.51 (s, 1H), 4.97 (s, 1H), 3.44 – 3.32 (m, 1H), 3.00 – 2.88 (m, 1H), 2.18 – 1.98 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.1$, 148.7, 145.7, 134.8, 132.3, 129.8, 129.3, 129.1, 128.9, 127.0, 124.0, 123.4, 122.5, 122.2, 119.2, 108.9, 86.3, 55.6, 50.6, 32.2, 21.1. HRMS (ESI) exact mass calculated for C₂₁H₁₉N₂O₃ ([M + H]⁺): 347.1390; Found: 347.1395.

rac-(7aS,11S)-11-Pyridin-2-yl-7a,8,9,10-tetrahydro-11H-7-oxa-10a-aza-cyclopenta

[b]phenanthrene (10e): According to GP2: Betti base **9e** (0.21 g, 0.66 mmol), Ag₂O (0.18 g, 0.79 mmol) reflux for 18 h in *m*-xylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 10:1) gave **10e** as brown solid (0.13 g, 65%). FTIR (KBr): $\tilde{\nu} = 2994$, 2961, 2918, 2828,

1622, 1598, 1585, 1464, 1434, 1397, 1269, 1240, 1211, 1134, 991, 898, 835, 820, 767, 749 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.72 - 8.70$ (m, 1H), 7.75 - 7.71 (m, 2H), 7.50 (td, J = 7.7, 1.6 Hz, 1H), 7.38 - 7.33 (m, 1H), 7.29 - 7.24 (m, 2H), 7.17 - 7.14 (m, 1H), 7.10 (d, J = 8.9 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 5.59 (s, 1H), 5.18 (d, J = 3.2 Hz, 1H), 3.48 - 3.43 (m, 1H), 2.96 (q, J = 8.5 Hz, 1H), 2.27 - 1.98 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.1$, 151.9, 150.2, 136.8, 132.4, 129.3, 129.1, 128.7, 126.7, 123.2, 122.8, 122.5, 122.4, 118.9, 109.6, 86.4, 58.9, 50.9, 32.1, 20.8. HRMS (ESI) exact mass calculated for C₂₀H₁₉N₂O ([M + H]⁺): 303.1492 Found: 303.1494

rac-(7aS,12R)-12-Phenyl-8,9,10,11-tetrahydro-7aH,12H-7-oxa-11a-aza-benzo

[a]anthracene (10f): According to GP2: Betti base **9f** (0.10 g, 0.31 mmol), Ag₂O (87 mg, 0.38 mmol) reflux for 18 h in *m*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 50:1) gave **10f**⁶ as colourlesss solid (0.13 g, 65%). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.77 - 7.75$ (m, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.36 – 7.33 (m, 1H),

7.29 – 7.20 (m, 7H), 7.12 (d, J = 8.9 Hz, 1H), 5.15 (s, 1H), 4.89 (m, 1H), 2.91 – 2.80 (m, 2H), 1.99 – 1.91 (m, 1H), 1.81 – 1.70 (m, 3H), 1.62 – 1.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.4, 143.1, 132.4, 129.5, 129.0, 128.6, 128.2, 127.2, 126.5, 123.1, 122.9, 118.8, 111.3, 81.5, 62.9, 48.5, 29.6, 25.5, 18.4$ (overlap at aromatic region leading to 1 carbon less in count).

rac-(7aS,12R)-12-(3-Nitro-phenyl)-8,9,10,11-tetrahydro-7aH,12H-7-oxa-11a-aza-benzo

[a]anthracene (10g): According to GP2: Betti base 9g (0.30 g, 0.82 mmol), Ag₂O (0.23 g, 0.99 mmol) reflux for 18 hour in *m*-xylene 4 mL. SiO₂ column chromatography (hexane:ethyl acetate, 50:1) gave 10g as yellow solid (0.23 g, 84%). FTIR (KBr): $\tilde{v} = 2959$, 2925, 1619, 1596, 1521, 1529, 1465, 1434, 1403, 1346, 1235, 1205, 11193, 1117, 1102, 1070, 999, 971, 931, 816, 808, 719, 665 cm⁻¹. ¹H NMR

(400 MHz, CDCl₃) $\delta = 8.25$ (s, 1H), 8.11 – 8.06 (m, 1H), 7.82 – 7.79 (m, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.72 – 7.40 (m, 1H), 7.39 – 7.35 (m, 1H), 7.33 – 7.28 (m, 2H), 7.26 – 7.23 (m, 1H), 7.14 (d, J = 9.0 Hz, 1H), 5.20 (s, 1H), 4.76 (t, J = 2.4 Hz, 1H), 2.95 – 2.81 (m, 2H), 2.02 – 1.92 (m, 1H), 1.85 – 1.69 (m, 3H), 1.65 – 1.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.5$, 148.6, 145.2, 135.5, 132.5, 129.7, 129.1, 129.0, 128.9, 126.9, 124.4, 123.4, 122.4, 122.2, 118.9, 109.7, 81.4, 62.1, 48.5, 29.5, 25.4, 18.2. HRMS (ESI) exact mass calculated for C₂₂H₂₁N₂O₃ ([M + H]⁺): 361.1547; Found: 361.1549.

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

rac-(7aS,12R)-12-Phenyl-7a,8,10,11-tetrahydro-12H-7,9-dioxa-11a-aza-

benzo[a]anthracene (10h): According to GP2: Betti base **9h** (0.25 g, 0.79 mmol), Ag₂O (0.22 g, 0.95 mmol) reflux for 18 h in *m*-xylene 4 mL. Neutral alumina column chromatography (hexane:ethyl acetate, 40:1) gave **10h** as white solid (0.11 g, 45%) along with recovered starting material (66 mg, 26%). FTIR (KBr): $\tilde{\nu} = 3070, 2918, 2863$,

1621, 1597, 1465, 1232, 1134, 1126, 1024, 972, 878, 861, 748, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.85 – 7.71 (m, 2H), 7.40 – 7.18 (m, 9H), 5.19 (s, 1H), 4.69 (s, 1H), 4.04 (d, *J* = 12.1 Hz, 1H), 3.95 (dd, *J* = 11.1, 3.1 Hz, 1H), 3.85 (td, *J* = 11.3, 2.5 Hz, 1H), 3.60 (dd, *J* = 12.1, 1.3 Hz, 1H), 3.17 (td, *J* = 11.4, 3.5 Hz, 1H), 2.74 (d, *J* = 11.3 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ = 151.9, 142.1, 132.3, 129.9, 129.8, 129.7, 128.8, 128.8, 127.6, 126.8, 123.5, 122.8, 119.0, 110.5, 79.8, 68.0, 66.0, 62.1, 46.6. HRMS (ESI) exact mass calculated for C₂₁H₂₀NO₂ ([M + H]⁺): 318.1489; Found: 318.1492

rac-(7aS,12R)-12-(3-Nitro-phenyl)-7a,8,10,11-tetrahydro-12H-7,9-dioxa-11a-aza-benzo

[a]anthracene (10i): According to GP2: Betti base 9i (0.20 g, 0.55 mmol), Ag₂O (0.15 g, 0.66 mmol) reflux for 24 h in *m*-xylene 2 mL. Neutral alumina column chromatography (hexane:ethyl acetate, 10:1) gave 10i as yellow solid (0.11 g, 55%). FTIR (KBr): $\tilde{v} = 2975, 2904, 2850, 1624, 1599, 1530, 1519, 1470, 1438, 1348, 1324, 1276, 1259, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1238, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1259, 1258, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1258, 1216, 1166, 1133, 1094, 1057, 977, 943, 879, 858, 814, 750, 1259,$

738, 715, 686, 671 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.26$ (s, 1H) , 8.11 (d, J = 7.6 Hz, 1H), 7.82 – 7.793 (m, 2H), 7.42 – 7.37 (m, 2H), 7.33 – 7.21 (m, 4H), 5.25 (s, 1H), 4.57 (s, 1H), 4.06 (d, J = 12.8 Hz, 1H), 3.98 (d, J = 10.0 Hz, 1H), 3.88 (t, J = 11.6 Hz, 1H), 3.61 (d, J = 12.4 Hz, 1H), 3.21 (dt, J = 3.2, J = 11.2 Hz, 1H), 2.80 (d, J = 11.2 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) $\delta = 152.0$, 148.7, 144.3, 135.5, 132.2, 130.1, 129.3, 129.1, 127.1, 124.4, 123.7, 122.8, 122.1, 119.1, 109,1, 79.4, 68.5, 66.7, 61.6, 47.6. (overlap at 129 leading to 1 carbon less in count). HRMS (ESI) exact mass calculated for C₂₁H₁₉N₂O₄ ([M + H]⁺): 363.1339; Found: 363.1339.

rac-(7aS,12R)-9-Methyl-12-(3-nitro-phenyl)-8,9,10,11-tetrahydro-7aH,12H-7-oxa-9,11a-

diaza-benzo [a]anthracene (10j): According to GP2: Betti base 9j (66 mg, 0.17 mmol), Ag₂O (55 mg, 0.19 mmol) heated under 100

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

⁰C for 24 h in *m*-xylene 2 mL. SiO₂ column chromatography (methanol: dichloromethane, 1:100) gave **10j** as yellow solid (38 mg, 58%). FTIR (KBr): $\tilde{v} = 2929$, 1623, 1529, 1237, 1212, 1159, 1078, 814 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.25$ (s, 1H), 8.13 – 8.08 (m, 1H), 7.82 – 7.78 (m, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.45 – 7.36 (m, 2H), 7.33 – 7.29 (m, 2H), 7.26 – 7.20 (m, 2H), 5.28 (s, 1H), 4.70 (m, 1H), 3.25 – 3.19 (m, 1H), 3.14 – 3.12 (m, 1H), 2.95 – 2.89 (m, 2H), 2.48 – 2.42 (m, 1H), 2.36 (s, 3H), 2.20 (dd, *J* = 12.0, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.3$, 148.6, 144.8, 135.4, 132.1, 129.7, 129.2, 129.1, 128.9, 126.9, 124.3, 123.5, 122.6, 122.2, 119.4, 109.3, 79.9, 61.2, 57.5, 54.6, 47.9, 46.1. HRMS (ESI) exact mass calculated for C₂₂H₂₂N₃O₃ ([M + H]⁺): 376.1656; Found: 376.1672.

rac-(7aS,13R)-13-Phenyl-7a,8,9,10,11,12-hexahydro-13H-7-oxa-12a-aza-cyclohepta

[b]phenanthrene (10k): According to GP2: Betti base 9k (0.50 g, 1.51 mmol), Ag₂O (0.42 g, 1.81 mmol) reflux for 24 h in *m*-xylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave 10K⁶ as colorless solid (0.39 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ = 7.67 – 7.62 (m, 1H), 7.59 (d, *J* = 9.0 Hz, 1H), 7.25 – 7.05 (m, 8H),

7.00 (d, J = 8.9 Hz, 1H), 5.18 (s, 1H), 4.76 (t, J = 7.1 Hz, 1H), 3.20 – 3.04 (m, 1H), 2.62 – 2.49 (m, 1H), 2.12 – 2.05 (m, 1H), 1.81 – 1.50 (m, 5H), 1.42 – 1.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.9$, 143.1, 132.5, 129.2, 128.9, 128.4, 127.9, 127.0, 126.4, 122.8, 122.6, 118.9, 112.6, 85.2, 64.6, 49.7, 33.9, 30.5, 30.2, 21.8 (overlap at aromatic region leading to 1 carbon less in count). HRMS (ESI) exact mass calculated for C₂₃H₂₄NO ([M + H]⁺): 330.1852; Found: 330.1853.

rac-Oxazene 101: According to GP2: Betti base 91 (74 mg, 0.21 mmol), Ag₂O (69 mg, 0.26

mmol) reflux for 24 h in *m*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **10l** as light yellow solid (53 mg, 72%). FTIR (KBr): $\tilde{v} = 2963$, 2923, 1621, 1596, 1468, 1446, 1404, 1261, 1095, 1920, 1020, 800 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.74 - 7.65$ (m, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.26

-7.12 (m, 8H), 7.01 (d, J = 8.9 Hz, 1H), 5.20 (s, 1H), 4.62 -4.58 (m, 1H), 3.20 -3.13 (m, 1H), 2.54 -2.43 (m, 1H), 1.97 -1.72 (m, 5H), 1.55 -1.32 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 153.7$, 143.1, 133.0, 129.6, 129.0, 128.6, 128.2, 127.2, 126.6, 123.1, 122.9, 119.2, 112.6, 86.0, 63.7, 47.0, 30.2, 29.9, 26.4, 25.5, 23.9 (overlap at aromatic region leading to 1 carbon less in count). HRMS (ESI) exact mass calculated for C₂₄H₂₆NO ([M + H]⁺): 344.2009; Found: 344.2009.

Diastereoselective α -C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

rac-(1R,3S)-2-Ethyl-3-methyl-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine

(10m): According to GP2: Betti base **9m** (0.15 g, 0.49 mmol), Ag₂O (0.14 g, 0.59 mmol) stirred in room temperature in *m*-xylene 2 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **10m** as brown solid (0.11 g, 73%). FTIR (KBr): $\tilde{v} = 2964, 2925, 2848, 1651, 1623, 1599, 1513, 1499, 1466, 1449, 1411, 1261, 1236, 1171, 1093,$

1051, 1030, 849, 808, 755, 735, 696 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.79 – 7.74 (m, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.38 – 7.27 (m, 8H), 7.09 (d, *J* = 8.9 Hz, 1H), 5.40 (s, 1H), 4.95 (q, *J* = 6.0 Hz, 1H), 3.15 – 3.06 (m, 1H), 2.52 – 2.43 (m, 1H), 1.43 (d, *J* = 6.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 153.5, 143.4, 133.1, 129.6, 129.1, 128.7, 128.2, 127.2, 126.6, 123.7, 122.9, 118.8, 111.8, 82.6, 59.2, 39.3, 18.8, 15.1 (overlap at aromatic region leading to 1 carbon less in count). HRMS (ESI) exact mass calculated for C₂₁H₂₂NO ([M + H]⁺): 304.1696; Found: 304.1693.

rac-(1R,3S)-2-Benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (10n):

According to GP2: Betti base **9n** (1.10 g, 2.56 mmol), Ag₂O (0.71 mg, 3.07 mmol) reflux 20 h in *m*-xylene 10 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave **10n¹⁰** as light yellow solid (1.04 g, 95%). FTIR (KBr): $\tilde{\nu} = 3022, 2917, 2898, 2881, 2837, 1623, 1597, 1515, 1493, 1466, 1448, 1433, 1396, 1337,$

1037, 1233, 1124, 1102, 1066, 1027, 990, 974, 941, 923, 814, 750, 736, 695, cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 – 7.81 (m, 1H), 7.70 – 7.68 (m, 1H), 7.43 – 7.20 (m, 19H), 5.99 (s, 1H), 5.39 (s, 1H), 3.90 (d, *J* = 13.9 Hz, 1H), 3.38 (d, *J* = 13.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.8, 143.2, 139.5, 138.2, 133.4, 129.5, 129.4, 129.3, 128.7, 128.5, 128.4, 128.3, 128.1, 127.4, 126.8, 126.6, 123.6, 123.2, 119.0, 112.2, 85.7, 58.1, 49.8 (overlap at aromatic region leading to 2 carbon less in count). HRMS (ESI) exact mass calculated for C₃₁H₂₆NO ([M + H]⁺): 428.2009; Found: 428.2010.

2-Benzyl-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (10o) and *rac*-(1R,3S)-2-Methyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (10p): According to

GP2: Betti base **90** (0.26 g, 0.73 mmol), Ag₂O (0.20 g, 0.87 mmol) reflux 16 h in m-xylene 3 mL. SiO₂ column chromatography (hexane:ethyl acetate, 40:1) gave diasterioisomeric mixture of **100** & **10p** as colorless solid (0.19 g, 76%). The isomeric ratio (**100** : **10p**, 1: 2.6) was determined from 1H-NMR of the crude product. Diasteriosiomers were further purified for analytical purpose.

100: FTIR (KBr): $\tilde{v} = 3025, 2997, 2983, 2918, 2852, 16222, 1599, 1511, 1492, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1468, 1451, 1452, 1$

1435, 1402, 1253, 1242, 1226, 1210, 1179, 1141, 1062, 978, 954, 920, 903, 815, 755, 746 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.80 – 7.74 (m, 2H), 7.47– 7.44 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 – 7.19 (m, 7H), 7.18 – 7.11 (m, 3H), 5.26 (s, 1H), 4.88 (d, *J* = 10.2 Hz, 1H), 4.71 (dd, *J* = 10.2, 1.7 Hz, 1H), 4.12 (d, *J* = 13.3 Hz, 1H), 3.94 (d, *J* = 13.3 Hz, 1H), 3.94 (d, *J* = 13.3 Hz, 1H), 4.95 (d, *J* = 13.3 Hz, 1H), 3.94 (d, *J* = 13.3 Hz, 1H), 4.95 (d, *J* = 13.3 Hz, 1H), 3.94 (d, *J* = 13.3 Hz), 5.26 (d, *J* = 13.3 Hz), 5.95 (d, J = 13.3 Hz)

1H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.1, 143.0, 138.7, 133.0, 129.5, 129.4, 129.3, 129.2, 128.7, 128.6, 128.3, 127.7, 127.4, 126.7, 123.4, 122.8, 118.8, 111.8, 77.9, 57.9, 57.0. HRMS (ESI) exact mass calculated for C₂₅H₂₂NO ([M + H]⁺): 352.1696; Found: 352.1698.

10p: FTIR (KBr): $\tilde{v} = 3060, 3027, 2885, 2798, 1625, 1597, 1512, 1396, 1333, 1232, 1128, ,$

989, 942, 923, 810, 751, 705, 670 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.81 - 7.78$ (m, 2H), 7.54 - 7.52(m, 2H), 7.45 - 7.20 (m, 12H), 5.77 (s, 1H), 5.40 (s, 1H), 2.36 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) $\delta = 152.4$, 143.2, 138.1, 133.2, 129.6, 129.3, 128.7, 128.3, 128.2, 128.0, 127.5, 126.7, 126.6, 123.5, 123.1, 119.0, 112.1, 85.4, 63.2,

35.0 (overlap at aromatic region leading to 1 carbon less in count). HRMS (ESI) exact mass calculated for $C_{25}H_{22}NO([M + H]^+)$: 352.1696; Found: 352.1694.

3-Phenylmorpholine (16): Phenylmagnesiumbromide (1 M in THF, 1.89 mL, 1.89 mmol) was added dropwise to a powdered oxazine 10h (0.20 g, 0.63 mmol) at 0 °C under argon atmosphere. Then the mixture was stirred at room temperature for 18 h. Then the reaction was quenched by adding saturated aquoues solution of NH₄Cl. The mixture was extracted (3 X 20 mL) with EtOAc. The combined organic layer were dried (Na₂SO₄) and concentrated in vaccuo. The crude product was solidified over long (3 days) standing and solid was washed with ice cold hexane: ethyl acetate 3:1 (5 X 2 mL) to afford the desired amino naphthol (0.21 g, 85%) as white solid. HRMS (ESI) exact mass calculated for C₂₇H₂₆NO₂ ([M + H]⁺): 396.1958; Found: 396.1968. Amino naphthol (48 mg, 0.12 mmol) was added to a aqueous solution of NaOH (6 M, 0.12

mL) in THF (0.26 mL) and methanol (0.26 mL). Then the temperature was allowed to increase to 80 0 C and the mixture was stirred for 10 h at that temperature. After the disappearance of the starting material indicated from TLC, the reaction mixture was cooled to room temperature, extracted with diethyl ether (3 X 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated in vacuum and the crude product was subjected to neutral alumina column chromatography (DCM:MeOH, 500:1) to afford **16** (12 mg, 61%) as colorless oil. FTIR (KBr): $\tilde{v} = 3283$, 2973, 2850, 1603, 1493, 1455, 1442, 1340, 1316, 1300, 1107, 1075, 908, 880, 885, 756, 700, 647, 525 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.40 - 7.28$ (m, 5H), 3.94 – 3.81 (m, 3H), 3.66 (td, J = 11.3, 2.7 Hz, 1H), 3.40 (dd, J = 11.0, 10.2 Hz, 1H), 3.13 (td, J = 11.6, 3.3 Hz, 1H), 3.02 – 2.97 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 140.7$, 128.7, 127.9, 127.3, 73.8, 67.4, 60.7, 46.8. HRMS (ESI) exact mass calculated for C₁₀H₁₄NO ([M + H]⁺): 164.1070; Found: 164.1075.

Procedure for one pot synthesis of oxazines 10d: 2-naphthol (0.20 g, 1.38 mmol) was added to a solution of pyrrolidine (0.11 mL, 1.38 mmol) and 3-nitrobenzadehyde (0.21 g, 1.38 mmol) in xylene and the mixture was stirred under 100 0 C for 24 h. Then the reaction mixture was cooled to room temperature. Silver oxide (0.48 g, 2.07 mmol) was added, the mixture was heated to reflux and stirred for another 24 h at that temperature. Then the reaction mixture was cooled, filtered through a pad of celite and the celite cake was washed with ethylacetate (3 X 10 mL). The combined solvents were removed under vacuum and the crude product was subjected to SiO₂ column chromatography (hexane:EtOAc, 15:1) to afford the oxazine **10d** as yellow solid (0.27 g, 57%). The analytical data is the same as described before.

One pot synthesis of oxazines 10g: One pot functionalization of piperidine followed the same procedure as described for **10d.** 2-napthol (0.20 g, 1.38 mmol), piperidine (0.14 mL, 1.38 mmol), 3-nitrobenzaldehyde (0.21 g, 1.38 mmol), Ag₂O (0.48 g, 2.07 mmol) in 2 mL xylene and SiO₂ column chromatography (hexane: EtOAc, 15:1) gave **10g** as solid (0.24 g, 48%). The analytical data is the same as described before.

Crystal Structures:

Crystal data and structure	e refinement for 8°
Empirical formula	C ₂₁ H ₁₉ N O
Formula weight	301.37
Crystal habit, colour	needle / yellowish
Crystal size, mm ³	
Temperature, T	296(2) К
Wavelength, λ (Å)	0.71073
Crystal system	monoclinic
Space group	'P2(1)/c'
Unit cell dimensions	<i>a</i> = 9.7033(6)Å
	<i>b</i> = 6.1115(4)Å
	<i>c</i> = 26.7428(16)Å
- 2	$\alpha = 90.00^{\circ}, \gamma = 90.00^{\circ}, \beta = 97.569(3))^{\circ}$
Volume <i>, V</i> (ų)	1572.08(17)
Z	4
Calculated density, Mg·m ⁻³	1.273
Absorption coefficient, $\mu(mm^{-1})$	0.078
F(000)	640
hetarange for data collection	1.54° to 28.34°
Limiting indices	$-12 \le h \le 12, -8 \le k \le 7, -35 \le l \le 35$
Reflection collected / unique	23369 / 2056 [<i>R</i> (int) = 0.1541]
Completeness to $ heta$	99.6% (<i>θ</i> = 28.34°)
Max. and min. transmission	
Refinement method	'SHELXL–97 (Sheldrick, 1997)'
Data / restraints / parameters	2056 / 0 / 208
Goodness–of–fit on F^2	1.067
Final R indices [/>2sigma(/)]	R1 = 0.0524, wR2 = 0.1054
R indices (all data)	R1 = 0.0950, wR2 = 0.1129
Largest diff. peak and hole	0.186and –0.217e·Å ³
MeO N H	
Crystal data and structure refinement for 1	0a (CCDC 952462)
Empirical formula	$L_{22} H_{21} N U_2$
Crystal babit, colour	331.40
Crystal habit, colour	counter / coloness

7	
Crystal size, mm ³	
Temperature, T	296(2) К
Wavelength, λ (Å)	0.71073
Crystal system	triclinic
Space group	'p-1'
Unit cell dimensions	a = 6.5142(6)Å
	h = 8.4766(7)Å
	c = 32.727(3)Å
	$\alpha = 90.069(6)^{\circ}$ $\mu = 72.066(6)^{\circ}$ $B = 90.725(6)^{\circ}$
$\lambda(a) = \lambda(k^3)$	$\alpha = 83.308(0)$, $\gamma = 72.000(0)$, $0 = 83.723(0)$
	1/19.3(3)
	4
Calculated density, Mg·m ⁻¹	1.280
Absorption coefficient, $\mu(mm^{-1})$	0.082
F(000)	704
heta range for data collection	0.62° to 19.90°
Limiting indices	$-6 \le h \le 6, -7 \le k \le 8, -31 \le l \le 30$
Reflection collected / unique	14886 / 2306 [<i>R</i> (int) = 0.1751]
Completeness to θ	$98.5\% (\theta = 19.9^{\circ})$
Max, and min, transmission	
Refinement method	'SHELXL_97 (Sheldrick 1997)'
Data / restraints / parameters	2206 / 0 / 452
Coodness of fit on r^2	1 140
Goodness-of-fit off P	
Final R Indices [/>2sigma(/)]	R1 = 0.0728, WR2 = 0.2107
R indices (all data)	R1 = 0.0901, WR2 = 0.2190
Largest diff. peak and hole	0.243 and -0.262e A-
Crystal data and structure refinement for 2	L Oe (CCDC 952463)
Empirical formula	C ₂₀ H ₁₈ N ₂ O
Formula weight	302.36
Crystal habit, colour	needle / colorless
Crystal size. mm ³	
Temperature T	296(2) K
Wavelength $\lambda(\dot{\Delta})$	0 71073
Crystal system	monoclinic
Crystal system	
Space group	
Unit cell dimensions	a = 10.5276(5)A
	D = 8.3530(4)A
	<i>c</i> = 18.0400(8)A
	$\alpha = 90.00^{\circ}, \gamma = 90.00^{\circ}, \beta = 101.988(3)^{\circ}$
Volume, V(Ač)	1551.79(13)
Z	4
Calculated density, Mg·m ⁻³	1.294
Absorption coefficient, μ (mm ⁻¹)	0.081
F(000)	640
heta range for data collection	1.98° to 28.23°
Limiting indices	$-13 \le h \le 13, -8 \le k \le 11, -16 \le l \le 22$
-	15026 / 1602 [R(int) = 0.0269]

Completeness to $ heta$	90.0% (<i>θ</i> = 28.23°)
Max. and min. transmission	
Refinement method	'SHELXL–97 (Sheldrick, 1997)'
Data / restraints / parameters	1693 / 0 / 208
Goodness–of–fit on F^2	0.975
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0529, wR2 = 0.1046
R indices (all data)	R1 = 0.1305, wR2 = 0.1285
Largest diff. peak and hole	0. 133and $-0.174e \cdot Å^{-3}$
Crystal data and structure refinement for 2	LOf ⁶
Empirical formula	C ₂₂ H ₂₁ N O
Formula weight	315.40
Crystal habit. colour	needle / colorless
Crystal size, mm ³	
Temperature. T	296(2) K
Wavelength $\lambda(Å)$	0 71073
Crystal system	monoclinic
Space group	'P21/n'
Unit cell dimensions	a = 10.2330(6)Å
	h = 10.1943(6)Å
	c = 16.2308(9)Å
	$\alpha = 90.00^{\circ} v = 90.00^{\circ} \beta = 97.754(5)^{\circ}$
Volume $V(Å^3)$	1677 69(17)
7	4
Calculated density Mg·m ⁻³	1,249
Absorption coefficient $u(mm^{-1})$	0.076
F(000)	672
Arange for data collection	2 99° to 25 00°
	$-12 \le h \le 12$ $-12 \le k \le 11$ $-10 \le l \le 12$
Reflection collected / unique	$12 \ge 11 \ge 12$, $-12 \ge 1 \ge 11$, $-13 \ge 1 \ge 10$ 5971 / 1961 [R(int) - 0.0266]
Completeness to A	33717 1301 [n(111) - 0.0300]
$\begin{array}{c} \text{Completeness to } \sigma \\ \text{Max} \text{ and } \min \text{ transmission} \end{array}$	99.0% (<i>θ</i> = 25.00)
Nidx. dilu min. transmission	SHELVI 07 (Shaldrick 1007)
	STELAL-97 (SHEIUTICK, 1997)
Data / restraints / parameters	1 000
Goodness-ot-fit on F	
Final R indices [/>2sigma(/)]	K1 = 0.0525, WK2 = 0.1267
R indices (all data)	R1 = 0.0814, WR2 = 0.1503
Largest diff. peak and hole	0.144and –0.186e·A-

	Formula weight	317.37
	Crystal habit, colour	needle / colorless
	Crystal size, mm ³	
	Temperature, T	293(2) К
	Wavelength, $\lambda(A)$	0.71073
	Crystal system	monoclinic
	Space group	'P 21/n'
	Unit cell dimensions	a = 16.6693(12)Å
		h = 6.1313(3)Å
		b = 0.1313(3)A
		c = 17.7004(17)A
	× 1 × 483	$\alpha = 90.00$, $\gamma = 90.00$, $\beta = 115.984(11)$
	Volume, V(A [*])	1632.3(2)
	2	4
	Calculated density, Mg·m ⁻³	1.291
	Absorption coefficient, $\mu(mm^{-1})$	0.083
	F(000)	672
	heta range for data collection	3.45° to 25.00°
	Limiting indices	$-18 \le h \le 19, -6 \le k \le 7, -21 \le l \le 10$
	Reflection collected / unique	5126 / 1946 [<i>R</i> (int) = 0.0485]
	Completeness to θ	$97\% (\theta = 25.00^{\circ})$
	Max, and min. transmission	
	Refinement method	'SHFLXI_97 (Sheldrick 1997)'
	Data / rostraints / naramotors	1046 / 0 / 217
	Data / Testiants / parameters	1940/0/21/
	Goodness-of-fit on F	
	Final R Indices [/>2Sigma(/)]	R1 = 0.0550, WR2 = 0.1233
	R Indices (all data)	R1 = 0.0817, WR2 = 0.1407
	Largest diff. peak and hole	0. 216and –0.211e·A
(Crystal data and structure refinement for 1	0k ⁶
$\left \right $	Empirical formula	
	Empirica Iomula Formula weight	220 /2
	Crystal babit, colour	223.42
	Crystal Habit, Colour	
	Crystal size, mm	205(2) //
	l'emperature, l	296(2) K
	Wavelength, $\lambda(A)$	0./10/3
	Crystal system	monoclinic
	Space group	'P2(1)/n'
	Unit cell dimensions	<i>a</i> = 13.6779(8)Å
		<i>b</i> = 15.7357(9)Å
		<i>c</i> = 17.4244(11)Å
		$\alpha = 90.00^{\circ}, \gamma = 90.00^{\circ}, \beta = 106.959(4)$
	Volume <i>, V</i> (Å ³)	3587.2(4)
	Ζ	8
	Calculated density, Mg·m ⁻³	1.220
	Absorption coefficient, $\mu(mm^{-1})$	0.074
	F(000)	1408
	θ range for data collection	1.68° to 21.74°
- 1	<u> </u>	-

Limiting indices	$-14 \le h \le 14, -16 \le k \le 16, -18 \le l \le 18$
Reflection collected / unique	27568 / 2665 [<i>R</i> (int) = 0.1065]
Completeness to $ heta$	98.4% (<i>θ</i> = 21.74°)
Max. and min. transmission	
Refinement method	'SHELXL–97 (Sheldrick, 1997)'
Data / restraints / parameters	2665 / 0 / 451
Goodness–of–fit on F^2	1.022
Final <i>R</i> indices [/>2sigma(/)]	R1 = 0.0598, $wR2 = 0.1531$
<i>B</i> indices (all data)	R1 = 0.1037 wR2 = 0.1890
Largest diff, neak and hole	0.738 and -0.670 e·Å ³
Crystal data and structure refinement for 1	.01 (CCDC 952458)
Empirical formula	C ₂₄ H ₂₅ N O
Formula weight	343.45
Crystal habit, colour	needle / yellowish
Crystal size, mm ³	
Temperature, T	293(2) К
Wavelength, $\lambda(A)$	0.71073
Crystal system	orthorhombic
Space group	'Pbca'
Unit cell dimensions	<i>a</i> = 15.2770(6)Å
	<i>b</i> = 12.2434(5)Å
	<i>c</i> = 20.3925(10)Å
	$\alpha = 90.00^{\circ}, \nu = 90.00^{\circ}, \beta = 90.00^{\circ}$
Volume. V(Å ³)	3814.3(3)
	8
Calculated density. Mg·m- ³	1.196
Absorption coefficient $u(mm^{-1})$	0.072
F(000)	1472
Arange for data collection	3 1/° to 28 78°
	-10 < h < 20.70
Poflection collected / unique	$-13 \ge 11 \ge 20, -11 \ge K \ge 10, -23 \ge 1 \ge 13$
Reflection collected / unique	10/21 / 2031 [k(int) = 0.0206]
Completeness to 0	δδ.∠% (Ø = ∠δ./δ)
Iviax. and min. transmission	
	SHELXL-97 (SNEIGRICK, 1997)
Data / restraints / parameters	2091 / 0 / 235
Goodness-of-fit on F^-	0.908
Final <i>R</i> indices [/>2sigma(/)]	R1 = 0.0708, wR2 = 0.2398
R indices (all data)	R1 = 0.1561, wR2 = 0.3194
Largest diff. peak and hole	0. 143and –0.172e·Å

	11-
	ZAR
Crystal data and structure refinement for 1	Om (CCDC 952464)
Empirical formula	C ₂₁ H ₂₁ N O
Formula weight	303.39
Crystal habit, colour	needle / yellowish
Crystal size, mm ³	
Temperature, T	296(2) К
Wavelength, $\lambda(\text{\AA})$	0.71073
Crystal system	monoclinic
Space group	'P 1 21/c 1'
Unit cell dimensions	<i>a</i> = 8.4433(3)Å
	<i>b</i> = 11.6711(4)Å
	<i>c</i> = 17.1926(6)Å
	$\alpha = 90.00^{\circ}$. $\nu = 90.00^{\circ}$. $\beta = 94.061(2)^{\circ}$
Volume. V(Å ³)	1689.95(10)
7	4
Calculated density. Mg·m- ³	1 192
Absorption coefficient $\mu(\text{mm}^{-1})$	0.073
F(0,0,0)	6/18
Arange for data collection	2 11° to 25 00°
	-10 < h < 10 $-12 < k < 12$ $-20 < l < 20$
Poflection collected / unique	$-10 \le 11 \le 10, -13 \le x \le 13, 20 \le 13 \ge 20$ 10000 / 1352 [P/int] = 0.17/1]
Completeness to A	19099 / 1230 [n(m) - 0.1741]
Completeness to <i>v</i>	99.9% (0 - 25.00)
NidX. dilu iiiii. u diisiiiissioii Definament method	CUEVI 07 (Chaldrick 1007)
Refinement methou	SHELAL-97 (SHEIUHUK, 1997)
Data / restraints / parameters	1258 / 0 / 210
GOODNESS-OF-IIT ON F	0.89
Final K indices (/>2sigma(/))	RI = 0.0479, WR2 = 0.0044
R Indices (all data)	RI = 0.1210, WR2 = 0.0752
	U.125and –U.148e·A
	YL
	KY La I
	TLALY
	- J
	- 10
Crystal data and structure refinement for 1	0n ¹⁰
Empirical formula	C ₃₁ H ₂₅ N O
Formula weight	427.52
Crystal habit, colour	needle / colorless
Crystal size mm ³	

Diastereoselective α-C-H Functionalization of Aliphatic N-heterocycles: An Efficient Route to Ring Fused Oxazines

Temperature, T	296(2) K
Wavelength, $\lambda(A)$	0.71073
Crystal system	monoclinic
Space group	'P2(1)/n'
Unit cell dimensions	<i>a</i> = 9.06410(10)Å
	<i>b</i> = 23.4826(4)Å
	<i>c</i> = 10.6362(2)Å
	$\alpha = 90.00^{\circ}, \gamma = 90.00^{\circ}, \beta = 97.5920(10)$
Volume, <i>V</i> (Å ³)	2244.06(6
Z	4
Calculated density, Mg·m ⁻³	1.265
Absorption coefficient, μ (mm ⁻¹)	0.076
F(000)	904
heta range for data collection	1.73° to 38.46°
Limiting indices	$-15 \le h \le 14, -40 \le k \le 41, -18 \le l \le 17$
Reflection collected / unique	52477 / 6098 [<i>R</i> (int) = 0.0447]
Completeness to $ heta$	94.1% (<i>θ</i> = 38.46°)
Max. and min. transmission	
Refinement method	'SHELXL–97 (Sheldrick, 1997)'
Data / restraints / parameters	1258 / 0 / 298
Goodness–of–fit on F^2	1.043
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0597, <i>wR</i> 2 = 0.1552
R indices (all data)	<i>R</i> 1 = 0.1251, <i>wR</i> 2 = 0.1830
Largest diff. peak and hole	0. 336and –0.189e·Å ^{.3}
·	-

References:

¹Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. Puschmann, H. J. Appl. Cryst. **2009**, 42, 339-341.

² Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.

³ olex2.refine (L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. Puschmann, in preparation, 2011).

⁴ N. Assimomytis, Y. Sariyannis, , G. Stavropoulos, P. G. Tsoungas, G. Varvounis *Synlett*, **2009**, *17*, 2777-2782

⁵ J. P. Huang, T. C. Stanley, A. Jha Tetrahedron Letters, 2009, 50, 51-54.

⁶ J. Lu, X. Xu, S. Wang, C. Wang, Y. Hu, H. Hu J. Chem. Soc., Perkin Trans. 1, 2002, 24, 2900-2903.

⁷ B. Karmakar, J. Banerji *Tetrahedron Letters*, **2011**, *52*, 4957-4960

⁹ Y. Dong, J. Sun, X. Wang, X. Xu, L. Cao, Y. Hu *Tetrahedron: Asymmetry*, **2004**, *15*, 1667-1672 .

¹⁰ Y. Zhang, Y. H. Li Acta Cryst. 2009, E65, o1796.

⁸ S. S. Ganesan, N. Rajendran, S. I. Sundarakumar, A. Ganesan, B. Pemiah *Synthesis* **2013**, *45*, 1564-1568.

The respective of chemistry	y 2013		
0 0 0 0 4 0 0 0 0 4 0 0 0) ろ 8 5 4 7 6 5 6 7 7 6 5 7 7 8 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	$\infty \land 0 \land 4 \dashv 0 \land 0 \land 4$	N 20 0 1
8 8 9 9 8 8 7 9 7 8 8 8 8 8 8 8 8 8 8 8		, , , , , , , , , , , , , , , , , , ,	ω υ44ω
	~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		0870 7
			~ ~ ~ ~
		11	

SH-1-022-B

1111 16

exp1 s2pul

	SAMPLE	SPECI	AL					
date	Dec 4 2012	temp	not used					
solven	t CDC13	gain	not used					
file	exc	spin	not used					
ACO	UISITION	hst 0.008						
SW	10010.0	Dw90	19,700					
at	1.996	alfa	20.000					
np	39952	FLAG	S					
fb	not used	11	- n					
bs		in	i i					
d1	1.000	do	ÿ					
nt	32	hs	nn					
ct	32	PROCESSING						
TRA	NSMITTER	16	0 10					
tn	H1	fn	65536					
sfra	399.853	DISPL	AY					
tof	362.8	Sn	-84 9					
towr	57	wn	6682 0					
DW	9.850	rf1	2609 8					
DE	COUPLER	rfn	2003.0					
dn	C13	CD CD	129 3					
dof	0	10	-121 4					
dm	nnn	10	T 101.4					
dmm		WC	250					
dowr	50	S.C.	250					
dmf	15900	Ve	140					
Contract of the second	13300	th	146					
		nn odo n	10					
		nim cac p						

MeO. OH

11.08

9a

C

SH-1-026

exp1 s2pul

SAMP	LE		SPE	CIAL				
date Dec	7 2012	temp	1	not	used			
solvent	CDC13	gair	Ē	not	used			
file	exp	spin	6	not	used			
ACQUISI	TION	hst 0.008						
SW	10010.0	pw90		1	9.700			
at	1.996	alfa	6	2	0.000			
np	39952		FL	AGS				
fb	not used	i1			n			
bs	4	in			n			
d1	1.000	dp			V			
nt	32	hs			nn			
ct	32	PROCESSING						
TRANSMI	TTER	1b			0.10			
tn	H1	fn			65536			
sfra	399.853		DIS	PLAY				
tof	362.8	SD	6.76		359.3			
towr	57	wn		6	787.1			
nw	9.850	rf1		2	608.3			
DECOUP	LER	rfp			0			
dn	C13	rp			123.1			
dof	0	10		1	125.4			
dm	nnn	0.000	P	LOT				
dmm	c	WC			250			
dowr	50	SC			0			
dmf	15900	VS			163			
	20000	th			14			
		nm	cdc	nh	14			

٠

SH-1-021

exp1 s2pul

E		SPECIAL			
1 2012	temp	not used			
CDC13	gain	not used			
exp	spin	not used			
ION	hst	0.008			
6389.8	pw90	19.700			
1.998	alfa	20.000			
25528		FLAGS			
ot used	i 1	n			
4	in	n			
1.000	dp	v			
32	hs	nn			
32	PROCESSING				
TER	16	0.10			
H1	fn	65536			
399.853		DISPLAY			
362.8	SD	-795.8			
57	WD	6389.8			
9.850	rf1	795.8			
ER	rfp				
C13	r n	76.8			
0	In	-55.8			
nnn	• •	PLOT			
C	WC	250			
50	SC	0			
15900	VS	74			
20000	th	20			
	nm	cdc nh			
	E 1 2012 CDC13 exp TION 6389.8 1.998 actuated 1.000 32 32 TER 1399.853 362.8 57 9.850 ER C13 0 nnn c 500 15900	E 1 2012 temp CDC13 gain exp spin TON hst 6389.8 pw90 1.998 alfa 25528 tot used il 4 in 1.000 dp 32 hs 32 TER lb S12 S25 S7 wp 9.850 rfl ER rfp 0 lp nnn C wc 50 wc 15900 vs th pm			

~	A								l							
	13	12		10	9		7	 6	<u> </u>	4		2	1	-0	-1	ppi
5.91						부부 11.7 6.43	բ ւթեր 68.556.84 617 50		무 6 01		5.77	15.05				

9d

nm no ph

160

140

120

180

			76	72	70	47	42	28	46	38	19	86	96	8 0	43
CKJ-1-181	B-13C		20 U		00	S	2	2	σ	-	•	m	0	5 0	
			-τ α		5 N	0	0	5	8	~	4	m	m		4
expl s2p	ul		15	14	13	13	13	12	12	12	12	12	12	12	11
SAM	PLE	S	PECIAL												
date Ma	v 31 2013	temp	no	t used										- 0	
solvent	CDC13	gain	no	t used											
file	exp	spin	no	t used			1								
ACOUIS	ITION	hst		0.008							9				
SW	25125.6	nw90		9.400		1		Ľ (1				
at	1,199	alfa		20.000							1				
np	60270		FLAGS												
fb	13800	11		n											
bs	4	in		n											
d1	1.000	dn		V				11							
nt	3000	hs		nn											
ct	372	PR	OCESST	NG				11						- 8	
TRANSM	TTTER	1h	002001	2 00				11	1						
tn	C13	fn		65536			1	11							
sfra	100.554		TSPI AY	00000				11							
tof	1536.3	sn	I DI LA	-503.5											
towr	61	wn	1	9736 6											
nw	4 700	rf1		9287 4				11			8				
DECOU	PIFR	rfn		7764 9				6			1				
dn	H1	rn		-63 7							1				
dof		ln		-324.9											
dm	VVV		PLOT	014.0				11							
dmm	999 W	WC		250			10	1							
down	12	80		2.50											
dmf	8500	Ve		26											
Com 1	0300	th		20											
				4											

Nº2 101 101 101 91

77.550 77.230 76.910 71.068

80

60

40

20

ppm

100

66.751

~54.96 ~53.36 ~51.38 ~45.73

70.65

9j

180

0411	075 100		34.9		16	543	15	11	833	85	11	448	40	1 1
UKJ-1	-275-130							•	10-1		•			•
exp1	s2pu1		155		140	132	129	129	128	127	126	122	121	1170
	SAMPLE		SPECIA			1.1	1		1					
date	Jul 17 2013	temp	n	ot used					11.		1.0			
solve	nt CDC13	gain	n	ot used										
file	/export/home/~	spin	n	ot used										
mercu	rv/CKJ-1-275-~	hst		0.008										
	130	0 eva		9.400										
AC	OUTSTITION	alfa		20.000										
SW	25125.6		FLAGS											
at	1,199	i 1		n										
nn	60270	in		n										
fb	13800	dp		ÿ										
bs	8	hs		nn	- 1									
d 1	1.000		PROCESS	ING										
nt	10000	16		2.00					442					
ct	3528	fn		65536					1 4 1					
TR	ANSMITTER		DISPLA	Y										
tn	C13	sp	on national states	-653.8										
sfra	100.554	wp		20629.1					<u>4</u>					
tof	1536.3	rf1		9277.5	1									
tpwr	61	rfp		7764.9				1						
pw	4.700	rp		-41.8	1.									
D	ECOUPLER	10		-368.2										
dn	H1		PLOT	100.000										
dof	0	WC		250										
dm	VVV	SC		0										
dmm	y w	VS		42										
dpwr	42	th		2										
dmf	8500	nm i	no nh	_										

он 91

53.046

855

78.777.777.776.776.772.69.

29.892 27.070 26.834 25.499

160 140 120 100 80 60 40 20

ppm

f1 (ppm)

_KJ-1-284

exp1	std1	h				
	SAMPI	LE		SPE	CIAL	
date	Jul	18 2013	temp		not	used
solve	nt	CDC13	gain		not	used
file		exp	spin		not	: used
AC	QUISI	TION	hst			0.008
SW		10010.0	pw90		1	5.100
at		1.993	alfa		2	20.000
np		39900		FL.	AGS	
fb		not used	i]			n
bs		4	in			n
d1		1.000	dp			У
nt		32	hs			nn
ct		32		PROC	ESSI	NG
TR	ANSMI	TTER	fn		not	t used
tn		H1		DIS	PLAY	
sfra		399.853	sp			-241.9
tof		0	wp			6432.1
tpwr		59	rf1			2977.6
pw		7.000	rfp			0
	ECOUP	LER	rp		155	-109.1
dn		C13	lp		8 5	-202.2
dof		0		P	LOT	
dm		nnn	WC			250
dmm		C	SC			C
dpwr		44	VS			36
dmf		17100	th			5
			nm	cdc	ph	

					54	18	57	30	31	18	22	00	64	48	29	61	96	90	44
	CKJ-1-284-	130			80	σ	•	•	4	~	- •			9.	~	1.	2	•	-
1					Ś	5	N	0	5	5	5 0	0 0	0	~	9	N	-	0	9
	exp1 std1	3c			15	13	13	13	12	12	12	10	121	12	12	12	12	12	1
	SAMP	LE		SPECIAL					1	Į.		١.,			1		1	1	
	date Jul	18 2013	temp	not us	sed							i							
	solvent	CDC13	gain	not us	sed														
	file	exp	spin	not u	sed						1				1				
	ACQUISI	TION	hst	0.0	800						- 3								
	SW	25000.0	pw90	9.4	100						- 1			- 14					
	at	1.199	alfa	20.	000				1						1				
	np	59968		FLAGS									ii.						
	fb	13800	i 1		n										11				
	bs	10	in		n										ŤŤ.				
	d 1	0	dp		V														
	nt	10000	hs		nn														
	ct	470	10100	PROCESSING															
	TRANSMI	TTER	1b	1	. 0 0							1							
	tn	C13	fn	not u	sed						- 1			1					
	sfra	100.552		DISPLAY															
	tof	0	SD	-299	2.1														
	towr	61	wp	2500	0.0				t										
	nw	8,667	rf1	1075	7.0				Ŀ.										
	DECOUR	PLER	rfp	776	4.9														5
	dn	H1	rp	-5	3.9														
	dof	0	10	-31	4.7														
	dm	VVV		PLOT															
	dmm .	3 3 3 W	WC	0960707088	250														
	dowr	42	SC		0														
	dmf	8500	VS		51														
	No. 10	0000	th		3														
			nm	no ph	2														

77.541 77.222 76.904

67.266

53.675

ph

OH

Ph

9n

CKJ-1-111

exp1 s2pul

SAN	IPLE		SPECIAL
date De	ec 1 2012	temp	not used
solvent	CDC13	gain	not used
file	exp	spin	not used
ACQUIS	SITION	hst	0.008
SW	10010.0	pw90	19.700
at	1.996	alfa	20.000
np	39952		FLAGS
fb	not used	i 1	n
bs	4	in	п
d 1	1.000	dp	v
nt	32	hs	nn
ct	32		PROCESSING
TRANSM	AITTER	1b	0.10
tn	H1	fn	65536
sfra	399.853		DISPLAY
tof	362.8	SD	-116.7
tpwr	57	wp	6155.9
DW	9.850	rf1	2636.1
DECOL	JPLER	rfp	0
dn	C13	rn	137 6
dof	0	10	-158 0
dm	nnn	. P	PLOT
dmm	C	wc	250
dowr	50	SC	230
dmf	15900	VS	9.6
	10000	th	20
			20

O

1..... 13 12 14 11 10 9 8 7 6 5 3 2 4 1 ppm 4.22 나 다 나다 17.6532.75 5.00 6.255.88 アレーター 1.801.98 0.72 0.43 4 3.93 12.24 7.15

This journal is © The Royal Society of Chemistry 2013 80 51 51 1 1 1	$\begin{array}{c} 135.83 \\ \hline 132.62 \\ \hline 132.62 \\ \hline 132.35 \\ \hline 123.35 \\ \hline 129.01 \\ \hline 128.64 \\ \hline 128.64 \\ \hline 128.64 \\ \hline 118.96 \\ \hline 1113.85 \\ \hline 110.73 \\ \hline \end{array}$		55.80 55.33 50.37			
--	---	--	-------------------------	--	--	--

t);

4

3

-56.12

50.42

 $<^{21.19}_{21.08}$

(

CKJ-1-222-13C

exp1 s2pul

SAM	PLE		SPECIAL				
date Ma	v 9 2013	temp	not used				
solvent	CDC13	gain	not used				
file	exp	spin	not used				
ACOUIS	ITION	hst	0.008				
SW	25125.6	pw90	9.400				
at	1.199	alfa	20.000				
nn	60270		FLAGS				
fb	13800	i 1	n				
hs	8	in	n				
dl	1.000	dp	У				
nt	3000	hs	nn				
ct	456		PROCESSING				
TRANSM	ITTER	16	2.00				
tn	C13	fn	65536				
sfra	100.554		DISPLAY				
tof	1536.3	SD	-1522.5				
town	61	WD	25125.6				
nw	4.700	rf1	9287.4				
DECOL	IPI FR	rfp	7764.9				
da	HI	rp	-71.7				
dof		10	-258.5				
de	000	1000	PLOT				
dam	9 9 9	WC	250				
dam	12	SC	0				
dpwi	8500	VS	23				
ami	0300	th	4				
		DM	no nh				

10f

735245	
[52] [52] [52] [52] [52] [52] [52] [52]	

---62.10

48.48

—29.52 —25.43

18.23

81.43

10g

(

CKJ-1-215B

exp1 s2pul

180

200

SAME	PLE	SP	ECIAL
date Apr	18 2013	temp	not used
solvent	CDC13	gain	not used
file	exp	spin	not used
ACQUIST	ITION	hst	0.008
SW	25125.6	pw90	9.400
at	1.199	alfa	20.000
np	60270	F	LAGS
fb	13800	11	n
bs	4	in	n
d1	1.000	dp	V
nt	3000	hs	nn
ct	352	PRO	CESSING
TRANSM	ITTER	16	2.00
tn	C13	fn	65536
sfra	100.554	DT	SPLAY
tof	1536.3	SD	-406.1
towr	61	wn	21757.9
nw	4 700	rf1	9292 8
DECOU	PLER	rfn	7764 9
dn	H1	CD CD	-51 0
dof		10	-281 2
dm		(P	DI OT
dmm	999	MC	250
dowe	42	S.C.	250
donf	95.00	50	50
um	0000	+ -	50
			5

nm no ph

160

140

100

120

IOh

80

11111

40

20

60

•

1111

ppm

SH-1-083-B

exp1 s2pul

	SAMPI	E			SPE	CIAL	
date	Mar	20	2013	tem	D	not	used
solve	nt	(CDC13	qai	'n	not	used
file			exp	spi	n	not	used
AC	QUISI	TION	1	hst			0.008
SW		100	010.0	pw9	0	1	4.100
at			. 994	alf	a	2	0.000
np		5	89912		FL	AGS	
fb	r	ot	used	i 1			n
bs			4	in			n
d1		1		dp			V
nt			32	hs			nn
ct			32		PROC	ESSTN	IG
TR	ANSMIT	TER	2	16			0.10
tn			H1	fn			65536
sfrg		399	.853		DIS	PLAY	
tof		3	862.8	SD			501 3
tpwr			62	wn		5	971 7
pw		7	.050	rf1		2	605 8
DI	ECOUPL	ER		rfn		0.0	000.0
dn	sere <mark>s</mark> trater	-	C13	rn			03 0
dof			0	10		-	146 4
dm			nnn	. P		пт	140.4
dmm				WC		LUI	250
dowr			50	SC			230
dmf		1	5900	VS			27
		2		th			37
				nm	cdc	nh	3
					Cut	PIL	

-

a

CKJ-SH-1-0838 13C

exp1 s2pul

	SAMPI	LE			SP	ECIAL	
date	Apr	18	2013	tem	D	not	used
solver	nt	(CDC13	gai	n	not	used
file			exp	spi	n	not	used
AC	QUISI	TION	1	hst			0.008
SW	a data data data data da	251	25.6	Dw9	D		9.400
at			.199	alfa	a	2	20.000
np		E	60270		F	LAGS	
fb			3800	i 1			n
bs			4	in			n
d1				dp			v
nt			2000	hs			nn
ct			404	10.02071	PRO	CESSIN	IG
TR	ANSMI	TTER	2	16			2.00
tn			C13	fn			65536
sfra		100	. 554		DI	SPLAY	
tof		15	36.3	SD		-	123.9
tpwr			61	wp		21	295.5
pw		4	1.700	rf1			275.2
DI	COUPI	ER		rfo			764.9
dn			H1	rn.			-88 6
dof			0	10			-271 4
dm			VVV	. P		PLOT	
dmm			3 3 3 W	wc			250
dowr			42	50			200
dmf			8500	VS			26
100 million			0.000	th			20
				nm	no	nh	3
						P	

578 543 104	101 086 067 777	751 683	621 600	551 404	375 346	316	281
2 Z Z	- 5.5				-i -i 	- - -	÷

30.16 29.94 26.41 25.55 23.96

-63.70

-46.99

10

10m

~3.92 ~3.89 ~3.37

expl s2pul

SAMPLE			SPECIAL				
date	Арг	12 2013	tem	p not used			
solver	nt	CDC13	gai	n not used			
file		exp	spi	n not used			
ACQUISITION			hst	0.008			
SW		25125.6	pw9	9.400			
at		1.199		a 20.000			
пр		60270	FLAGS				
fb		13800	11	n			
bs		4	in	n			
d1		1.000	dp	v			
nt		5000	hs	nn			
ct		988	PROCESSING				
TRA	TRANSMITTER			2.00			
tn		C13	fn	65536			
sfrq		100.554		DISPLAY			
tof		1536.3	sp	-1517.9			
tpwr		61	wp	25125.6			
pw		4.700	rf1	9282.8			
DECOUPLER			rfp	p 7764.9			
dn		H1	rp	-77.9			
dof		0	1p	-271.4			
dm		VVV	PLOT				
dmm		W	WC	250			
dpwr		42	SC	0			
dmf		8500	VS	38			
			th	5			
			nm	no ph			

EC L

. 0

ppm

(

