Supporting Information

Probing Secondary Coordination Sphere Influence on the Oxygenation of Zinc Alkyls: A Unique Formation of a Zinc Peroxide Species

Piotr Sobota,* Rafał Petrus
Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław (Poland)

Karolina Zelga, Łukasz Mąkolski, Dominik Kubicki, Janusz Lewiński* Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 (Poland) ${ }^{\text {c }}$ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, (Poland)

Fax: (+)48-22-234-7279; E-mail: lewin@ch.pw.edu.pl

Table of Contents

I. Synthetic procedure and characterization
II. X-ray structure determination
III. Diffusivity measurement
IV. ${ }^{1} \mathrm{H}$ NMR spectra for the oxygenation reactions
V. Workup procedure on the post-oxygenation reaction mixtures

I. Synthetic procedure and characterization

Synthesis of 1: A solution of o-phenylphenol ($1 \mathrm{~g}, 5.87 \mathrm{mmol}$) in toluene (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and afterwards a 1 M solution of $\mathrm{ZnEt}_{2}(5.87 \mathrm{~mL}, 5.87 \mathrm{mmol})$ in hexane was added dropwise. Following solvent removal afforded crystalline material which ${ }^{1} \mathrm{H}$ NMR spectroscopy revealed to incorporate aryloxide and ethylzinc moieties in a $1: 1$ ratio, $\mathrm{EtZn}(\mathrm{OAr})$ (1). Attempts to isolate single crystals of $\mathbf{1}$ from the toluene solution were unsuccessful. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{7} \mathrm{D}_{8}$, concentration $10 \% \mathrm{w} / \mathrm{w}$): $\delta 7.60-6.65(\mathrm{~m}, \mathrm{ArH}$, OAr), 2.09 (qn, toluene), $1.02\left(\mathrm{t}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right), 0.02\left(\mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right)$.

Synthesis of 2: A solution of o-phenylphenol ($2 \mathrm{~g}, 11.75 \mathrm{mmol}$) in toluene (20 mL) was cooled to $0^{\circ} \mathrm{C}$ and afterwards a 1 M solution of $\mathrm{ZnEt}_{2}(8.82 \mathrm{~mL}, 8.81 \mathrm{mmol})$ in hexane was added dropwise. The solution was warmed to room temperature, and the volume was reduced and followed by addition of hexane. Compound $\mathbf{2}$ was obtained as colourless crystals after crystallization from hexane/toluene at $25^{\circ} \mathrm{C}$; isolated yield ca. 2.35 g (86%). Elemental analysis (\%) calcd for $\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Zn}_{3}$: C 67.07, H 4.98; found: C 67.90, H 5.12. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.60-6.71(\mathrm{~m}, \mathrm{ArH}, \mathrm{OAr}), 0.96\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right), 0.70(\mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}$), $-0.18\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right),-0.67\left(\mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13}{ }^{13}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 157.1,157$, 156.4, 139.8, 139.1, 131.6, 131.3, 130.1, 129.8, 129.6, 129.4, 129.1, $127.5,121,120.8,120.6(\mathrm{ArH}, \mathrm{OAr}), 12.1\left(\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right), 12$ $\left(\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right),-1.2\left(\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right),-1.7\left(\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right)$.

Synthesis of 3: The solution containing $2(1 \mathrm{~g}, 1.08 \mathrm{mmol})$ and two equivalents of ophenylphenol in toluene (20 mL) was exposed to an excess of dry oxygen for 2 minutes at $0^{\circ} \mathrm{C}$ and stirred for 12 h , during which the colorless solution slowly turned to a dark blue solution. Then the excess O_{2} was removed and the system was purged with nitrogen using a vacuumnitrogen line. The volume was reduced to 5 mL , and the gray precipitate was filtered off,
washed with hexane ($10 \times 5 \mathrm{~mL}$) and dried under vacuum. Compound $\mathbf{3}$ was obtained as colorless crystals after crystallization from dichloromethane at $25^{\circ} \mathrm{C}$; isolated yield ca. 0.69 g (72% based on zinc). Elemental analysis (\%) calcd for for $\mathrm{C}_{96} \mathrm{H}_{78} \mathrm{O}_{16} \mathrm{Zn}_{8} \cdot 2\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right)$: C 61.30, H 4.20; found: C 62.92, H 4.53. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.30-6.82(\mathrm{~m}, \mathrm{ArH}$, OAr), $4.73(\mathrm{~s}, \mathrm{OH}) .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 153.2-153.1,137.9,130.6,129.4,129.3$, 129.2, 121, 116.3 (ArH, OAr).

We note that in the oxygenation reactions of other ethylzinc derivatives being under investigation in our laboratory we observed no hydroxides formation although we used the same batches of solvents. This observation does not only conclusively rules out hydrolysis as the most likely event leading to hydroxide species but also substantiates the assumed role of the suitably positioned aromatic functionalities close to the metal center on the course of oxygenation reactions. Nevertheless, as it is stated in the main text, the mechanism by which the aggregate $\mathbf{3}$ is formed is not known on this stage of our investigations.

II. X-ray structure determination

Crystal data for 2, $\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Zn}_{3}: M_{r}=931$, crystal dimensions $0.1 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$, triclinic, space group $P \overline{1}($ no. 2), $a=10.018(2) \AA, b=14.641(4) \AA, c=15.057(5) \AA, \alpha=$ $78.61(2)^{\circ}, \beta=77.69(2)^{\circ}, \gamma=83.52(3)^{\circ}, V=2109.4(10) \AA^{3}, Z=2, F_{000}=960, D_{\mathrm{c}}=1.466$ $\mathrm{Mg} \mathrm{m}^{-3}, T=100(2) \mathrm{K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.74 \mathrm{~mm}^{-1}$, KUMA KM4 CCD κ-geometry diffractometer, $\theta_{\max }=30.0^{\circ}, 10950$ unique reflections. The structure was solved by direct methods using SHELXS97 ${ }^{[1]}$ and refined by the full-matrix least-squares method on all F^{2} data using SHELXL97 ${ }^{[2]}$. All non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were positioned geometrically and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ $=0.95-0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}, \mathrm{C}_{\text {methylene }}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methy }}\right)$. Refinement converged at $R 1=0.0608, w R 2=0.0727$ for all data and 552 parameters $(R 1=0.0345, w R 2=$ 0.0687 for 7540 reflections with $\mathrm{I}_{o}>2 \sigma\left(\mathrm{I}_{o}\right)$. The goodness-of-fit on F^{2} was equal 0.871 . A weighting scheme $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0363 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$ was used in the final stage of refinement. The residual electron density $=+0.66 /-0.36 \mathrm{e}^{-3}$. One of the ethyl groups is disordered in two positions, with site-occupancy factors, from refinement of $0.826(11)$ and 0.174(11). Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-955216. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Crystal data for $3, \mathrm{C}_{96} \mathrm{H}_{78} \mathrm{O}_{16} \mathrm{Zn}_{8} \cdot 2\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right) \cdot 2.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{Mr}=2556.32$, crystal dimensions $0.54 \times 0.36 \times 0.15 \mathrm{~mm}$, triclinic, space group $P \overline{1}($ no. 2) $, a=17.903(3) \AA, b=22.986(4) \AA, c$ $=39.788(5) \AA, \alpha=91.26(2)^{\circ}, \beta=91.15(3)^{\circ}, \gamma=94.10(3)^{\circ}, V=16324(4) \AA^{3}, Z=6, F_{000}=$ $7821.5, D_{\mathrm{c}}=1.560 \mathrm{Mg} \mathrm{m}^{-3}, T=100(2) \mathrm{K}, \mu(\mathrm{Mo}-K \alpha)=1.92 \mathrm{~mm}^{-1}$, KUMA KM4 CCD $\kappa-$ geometry diffractometer, $\theta_{\max }=30.0^{\circ}, 91751$ unique reflections. The structure was solved by direct methods using SHELXS $97{ }^{[\text {Blad! Nie zdefiniowano zakladki.] }}$ and refined by the full-matrix least-squares method on all F^{2} data using SHELXL97 ${ }^{[2]}$. All non-hydrogen atoms, excluding seven dichloromethane molecules were refined with anisotropic displacement parameters. The hydrogen atoms of bridging hydroxyl groups were found in difference Fourier maps and refined using DFIX instructions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. The remaining H atoms were positioned geometrically and treated as riding atoms, with $\mathrm{O}-\mathrm{H}=0.84 \AA, \mathrm{C}-\mathrm{H}=0.95-0.99$ \AA, and with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$ or $1.2 U_{\mathrm{eq}}(\mathrm{C})$. Refinement converged at $R 1=0.1402, w R 2=$ 0.1858 for all data and 4255 parameters $(R 1=0.0635, w R 2=0.1592$ for 45332 reflections with $I_{o}>2 \sigma\left(I_{o}\right)$. The goodness-of-fit on F^{2} was equal 1.031. A weighting scheme $w=$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0886 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$ was used in the final stage of refinement. The residual electron density $=+2.65 /-1.49 \mathrm{e}^{-3}$. The refinement of the disordered ortophenylphenolate were made anisotropically using PART restrictions with occupation factors in the ratio $0.64(3) / 0.36(3), \quad 0.670(4) / 0.330(4), 0.580(4) / 0.420(4)$ and $0.563(5) / 0.437(5)$, respectively. Moreover, the $U^{i \mathrm{ij}}$ components of disordered ligands were restrained using EADP instructions. The site occupation factors of the partially occupied dichloromethane molecules were equal to $0.877(5), 0.618(6), 0.211(5), 0.483(5), 0.418(7)$, $0.462(7), 0.277(7), 0.330(4)$ and $0.580(4)$. One of the solvent molecules is disordered in three positions, with site-occupancy factors, from refinement of $0.265(7) / 0.368(8) / 0.367(6)$, their sum can be restrained to unity by the use of a SUMP restraint. Additionally, the SAME commands were used to improve the geometry of six dichloromethane molecules. For more
details related to the refinement and a list of restraints used see_refine_special_details and _iucr_refine_instructions_details in CIF. Crystallographic data (including structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-955217. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Figure 1S. Molecular structure of $\mathbf{3} \cdot 2 \mathrm{ArOH}$ with thermal ellipsoids set at 50% probability; Hatoms and minor disorder omitted. Selected bond lengths (\AA): $\mathrm{Zn} 1-\mathrm{O} 11.901(3), \mathrm{Zn} 1-\mathrm{O} 2$ 1.946(3), Zn1-O3 1.948(3), Zn1-O4 1.932(3), Zn2-O2 1.895(3), Zn2-O5 2.130(3), Zn2-O7 1.962(3), Zn2-O8 1.973(3), Zn3-O3 1.875(3), Zn3-O5 2.146(3), Zn3-O9 1.976(3), Zn3-O10 1.974(3), Zn4-O4 1.885(4), Zn4-O5 2.126(3), Zn4-O11 1.973(3), Zn4-O12 1.959(3), Zn5O6 2.109(3), Zn5-O10 1.970(3), Zn5-O11 1.975(3), Zn5-O13 1.879(3), Zn6-O6 2.141(3), Zn6-O7 1.977(3), Zn6-O12 1.968(3), Zn6-O14 1.864(3), Zn7-O6 2.101(3), Zn7-O8 1.981(3), Zn7-O9 1.963(3), Zn7-O15 1.880(3), Zn8-O13 1.942(3), Zn8-O14 1.958(3), Zn8O15 1.951(3), Zn8-O16 1.899(3), O5-O6 1.527(4).

III. Diffusivity measurement

Application of Diffusion Ordered Spectroscopy (DOSY), which has happened to become a very routine NMR technique lately, provided us with a reliable evidence of approximate size of the species existing in the solution. As already discussed in antecedent works ${ }^{[3,4]}$ molecular weight can be straightforwardly obtained by combining Stokes-Einstein equation $(\mathrm{D}=(\mathrm{kT})$ / $\left.\left(6 \pi \eta r_{H}\right)\right)$ and the relationship between molecular weight M and molar radius, which reads $\mathrm{M}=$ $\left(4 \pi r_{M}{ }^{3} \rho N_{A}\right) / 3$, where r_{H} and r_{M} are hydrodynamic and molar radii respectively, η is viscosity and ρ is density of the liquid. It has also been shown that these quantities are much alike for small molecules, which is the case in our system. DOSY measurement was performed in dry and degassed [D8]toluene or [D8]THF as we exploited the fact that the physical properties of the diluted solution, namely density and viscosity, deviate only slightly from properties of the pure solvent. ${ }^{[3]}$ Pulsed field gradient double stimulated echo convection-compensated (PFGSTE) sequence with total of 15 diffusion encoding gradients (ranging from 3 to 45 G / cm, sine shaped, equal steps in gradient squared) was used and the total width of the gradient pulse was optimised to achieve attenuation of about 90% of the initial intensity of the signals. Overall, the key acquisition parameters were as follows: total length of gradient encoding pulses gradient -2 ms , diffusion delay -50 ms , gradient recovery delay - 1 ms , relaxation delay - 2 s. Steady-state scans in number of 16 were performed prior to acquisition of the data. The sample was allowed to equilibrate in the set temperature (298 K or 273 K), controlled by VT module. Spinner was turned off. Raw data was processed with powerful DOSY Toolbox which is extensively described in its author's paper ${ }^{[5]}$

Since 1 was generated in situ only, product of the reaction could not be isolated (as it would be necessary for a cryometry). Thus, DOSY measurement was the only way to identify its aggregation state. However, it proved unsuccessful in the room temperature due to the dynamics of the system causing the signals to broaden severely when using the PFGSTE
sequence. As a consequence, the measurement was performed in 273 K , a temperature at which the dynamics is considerably slowed down. Since molecular mass of $\mathbf{1}$ is $279,64 \mathrm{~g} / \mathrm{mol}$, it's aggregation state by DOSY is 2,5 which indicates that it most likely exists as a dimer, trimer or a mixture thereof, depending on a temperature, hence the dynamics observed on the spectra.

Table 1S. Diffusion coefficient of $\mathbf{1}$, its estimated hydrodynamic radius and molecular weight.

	$\mathrm{D} \cdot 10^{10} \mathrm{~m}^{2} / \mathrm{s}$	r / \AA	$\mathrm{MW} / \mathrm{Da}$
$\mathbf{1}$	3.76	6.88	711

Trinuclear nature of $\mathbf{2}$ was verified using DOSY which simultaneously exposed an issue potentially arising with the relatively widely used simplified approach. We applied a typical procedure involving the Stokes-Einstein equation, assuming sphericity of the molecule (which is, however, often not the case) and then calculated the corresponding molecular weights using another well-established method mentioned previously (Table 1). Clearly, there is a major discrepancy, regarding the molecular mass of 2 being $931 \mathrm{~g} / \mathrm{mol}$. This deflection of about 23% from the values calculated using diffusion coefficients corresponds to only 8% deviation in molecular radii which is, apparently, due to rather bulky biphenyl ligands. The relative position of the aromatic systems renders the existence of two isomeric forms possible with a very high interchange energy (as discussed in the paper). Reversely, calculating the radius for the relevant 931 Da gives the result of $7,48 \AA$, exactly on the average of the two under- and overestimated values.

Table 2S. Diffusion coefficient of $\mathbf{2 a}$ and $\mathbf{2 b}$ species, their estimated hydrodynamic radii and molecular weights.

	$\mathrm{D} \cdot 10^{10} \mathrm{~m}^{2} / \mathrm{s}$	r / \AA	$\mathrm{MW} / \mathrm{Da}$
isomer 2a	5.80	6.90	712
isomer 2b	4.95	8.15	1146

IV. ${ }^{1} H$ NMR spectra for the oxygenation reactions

We performed the oxygenation of $\mathrm{EtZn}(\mathrm{OAr})(\mathbf{1})$ in [D8]toluene monitored by ${ }^{1} \mathrm{H}$ NMR using two slightly different samples. In the case shown in the Figure 2 S a pure $\mathbf{1}$ was oxygenated while in the Figure 3 S we present the spectra for the oxygenation of $\mathbf{1}$ with traces of trinuclear product 2. According to the latter we were able to conclude that the reaction of $\mathbf{1}$ with molecular oxygen is faster than the similar reaction of 2. It is expressed by the fact that the signals corresponding to the alkyl groups of $\mathbf{1}$ disappear significantly faster than those originating from 2.

Figure $2 \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR spectra for the oxygenation of $\mathrm{EtZn}(\mathrm{OAr})(\mathbf{1})$ at $25^{\circ} \mathrm{C}([\mathrm{D} 8]$ toluene $)$: before introduction of O_{2} (initial); during the reaction with O_{2} : after 1 and 32 hours. The "x" symbol indicates residual signal of [D8]toluene (2.09 ppm , as reference).

Figure $3 \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR spectra for the oxygenation of $\mathrm{EtZn}(\mathrm{OAr})(\mathbf{1})$ with traces of $\mathbf{2}$ at $25^{\circ} \mathrm{C}$ ([D8]toluene): before introduction of O_{2} (initial); during the reaction with O_{2} : after 5, 15 and 30 minutes. The " x " symbol indicates residual signal of [D8]toluene (2.09 ppm , as reference).

V. Workup procedure on the post-oxygenation reaction mixtures

A standard workup procedure for the post-reaction mixtures derived from the oxygenation of $\mathbf{1}$ and $\mathbf{2}$ was performed. After the oxygenation reaction the solvent was removed by vacuum transfer and the residue was treated with 10% hydrochloric acid $(10 \mathrm{~mL})$. The organic products were extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$ and the organic fraction was dried over anhydrous magnesium sulphate. The products were analysed by GCMS and ESI-MS ${ }^{-}$technique without further purification.

Table 3S. GCMS and ESI-MS analysis of organic products formed in the oxygenation of $\mathbf{1}$ and 2.

COMPOUND	M-H m/z (GCMS)	M ${ }^{-} \mathbf{m} / \mathbf{z}$ (ESI-MS)
ethanol	46.1	-
diethyl toluene	148.2	-
biphenyl	154.1	-
ArOH	170.1	169.1
bibenzyl	182.2	-
ArOH derivatives of variously substituted by R, R ' and R "		
$\mathrm{R}=\mathrm{OH}$	186.1	185.1
$\mathrm{R}=\mathrm{Et}$	198.2	197.1
$\mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OH}$ or $\mathrm{R}=\mathrm{OEt}$	-	213.1
$\mathrm{R}=\mathrm{PhCH}_{2}$	260.2	
bis(ArOH)	-	337.1
bis(ArOH) derivatives of variously substituted by R, R ' and R "		
$\mathrm{R}=\mathrm{OH}$	-	353.2
$\mathrm{R}=\mathrm{Et}$	366.2	365.2
$2 \times \mathrm{R}=\mathrm{OH}$	-	369.1
$\mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OH}$ or $\mathrm{R}=\mathrm{OEt}$	-	381.2
$\mathrm{R}=\mathrm{Et}, 2 \times \mathrm{R}{ }^{\prime}=\mathrm{OH}$ or $\mathrm{R}=\mathrm{OEt}, \mathrm{R}^{\prime}=\mathrm{OH}$	-	397.2
$2 \times \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OH}$ or $\mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OEt}$	-	409.2
$2 \times \mathrm{R}=\mathrm{Et}, 2 \times \mathrm{R}{ }^{\prime}=\mathrm{OH}$ or $\mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OEt}, \mathrm{R}^{\prime \prime}=$ OH or $2 \times \mathrm{R}=\mathrm{OEt}$	-	425.2
$\begin{aligned} & 2 \times \mathrm{R}=\mathrm{Et}, 3 \times \mathrm{R}=\mathrm{OH} \text { or } \mathrm{R}=\mathrm{Et}, \mathrm{R} \mathrm{R}^{\prime}=\mathrm{OEt}, 2 \times \\ & \mathrm{R} "=\mathrm{OH} ; \text { or } 2 \times \mathrm{R}=\mathrm{OEt}, \mathrm{R},=\mathrm{OH} \end{aligned}$	-	441.2
$\begin{aligned} & 3 \times \mathrm{R}=\mathrm{Et}, 2 \times \mathrm{R}^{\prime}=\mathrm{OH} \text { or } 2 \times \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OEt}, \\ & \mathrm{R}^{\prime \prime}=\mathrm{OH} ; \text { or } \mathrm{R}=\mathrm{Et}, 2 \times \mathrm{R}^{\prime}=\mathrm{OEt} \end{aligned}$	-	453.2
$\begin{aligned} & 3 \times \mathrm{R}=\mathrm{Et}, 3 \times \mathrm{R}^{\prime}=\mathrm{OH} \text { or } 2 \times \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{OEt}, \\ & 2 \times \mathrm{R} "=\mathrm{OH} ; \text { or } \mathrm{R}=\mathrm{Et}, 2 \times \mathrm{R}^{\prime}=\mathrm{OEt}, \mathrm{R}^{\prime}=\mathrm{OH} \text { or } \\ & 3 \times \mathrm{R}=\mathrm{OEt} \end{aligned}$	-	469.2

[1] G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467.
[2] G. M. Sheldrick, SHELXL-97, Program for Structure Refinement, Universität Göttingen, 1997.
[3] D. Li, G. Kagan, R. Hopson, P. G. Williard, J. Am. Chem. Soc. 2009, 131, 5627-5634.
[4] A. Macchioni, G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia, Chem. Soc. Rev. 2008, 37, 479-489.
[5] M. Nilsson, J. Magn. Res. 2009, 2, 296-302.

