Unexpected isocyanide-based cascade cycloaddition reaction with methyleneindolinone

Jian Li*, ^a Shikuan Su, ^a Mengyuan Huang, ^a Boyi Song, ^a Chunju Li, ^a and Xueshun Jia, ^{*, a, b}

^a Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China

^b Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, 200032, P.R. China

E-mail: lijian@shu.edu.cn and xsjia@mail.shu.edu.cn

Supporting Information

Table of Contents

1	General Information	S2
2	General Procedure	S2
2.1	General Procedure for the Formation of 3	S2
2.2	General Procedure for the Formation of 5	S2
3	Characterization Data	S 3
	Spectroscopic Data of All Compounds	S 3
4	'H NMR and ¹³ C NMR Spectra of All Compounds	S11
5	Crystal Structure of Compound 3a	S41
6	Crystal Structure of Compound 3f	S42
7	Crystal Structure of Compound 5b	S43

1 General Information:

The NMR spectra were recorded on Bruker AC – 500 spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) with CDCl₃ as the solvent and TMS as internal reference. ¹H NMR spectral data were reported as follows: chemical shift (δ , ppm), multiplicity, integration, and coupling constant (Hz). ¹³C NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m/z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on a X-4 digital melting point apparatus without correction. Chemical yields referred to pure isolated product. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification. Aromatic isocyanides **1** were prepared from the corresponding anilines according to the method disclosed by Ugi with a slight modification.^[1] Substrate arenacylideneoxindoles **2** or **4** were synthesized according to procedures reported previously.^[2-5]

2 General Procedure

2.1 General Procedure for the Formation of Product 3

2,6-dimethylphenyl isocyanide **1a** (1.2 mmol) and arenacylideneoxindoles **2** (1.0 mmol) were placed in 10 mL THF in a flask, then $BF_3 \cdot Et_2O$ (0.4 mmol) was added to this mixture. The reaction mixture was stirred under reflux for several hours and the progress was monitored using TLC detection. After completion of present reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel [silica: 200-300; eluant: petroleum ether/ethyl acetate] to afford the desired product **3**.

2.2 General Procedure for the Formation of 5

2,6-dimethylphenyl isocyanide **1a** (1.2 mmol) and arenacylideneoxindoles **4** (1.0 mmol) were placed in 10 mL THF in a flask, then then BF_3 ·Et₂O (0.4 mmol) was added to this mixture. The reaction mixture was stirred under reflux for several hours and the progress was monitored using TLC detection. After completion of present reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel [silica: 200-300; eluant: petroleum ether/ethyl acetate] to afford the desired product **5**.

References:

[1] a) I. Ugi, R. Meyr, Organic Syntheses 1973, Coll. Vol. 5, 1060-1062. b) R. Obrecht, R. Herrmann, I. Ugi, Synthesis 1985, 400-402.

[2] a) B. M. Trost, Y. Zhang, J. Am. Chem. Soc. 2007, 129, 14548-14549. b) R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 2006, 45, 3353-3356.

[3] a) C. Marti, E. M. Carreira, J. Am. Chem. Soc. 2005, 127, 11505-11515. b) J. M. Ellis, L. E. Overman, H. R. Tanner, J. Wang, J. Org. Chem. 2008, 73, 9151–9154.

[4] H. Lv, X.-Y. Chen, L.-H. Sun, S. Ye, J. Org. Chem. 2010, 75, 6973-6976.

[5] H. J. Lindwall, J. S. Maclennan, J. Am. Chem. Soc. 1932, 54, 4739-4744.

3 Characterization Data

Spectroscopic Data of All Compounds

(3a): yellow solid: m. p. 260-262 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm)= 9.01 (dt, 1H, J = 8.5, 0.5 Hz), 8.33 (d, 1H, J = 8.5 Hz), 8.07-8.05 (m, 2H), 7.97 (ddd, 1H, J = 8.5, 6.0, 1.5 Hz), 7.80 (ddd, 1H, J = 8.5, 6.0, 1.0 Hz), 7.57-7.54 (m, 3H), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.23 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.0, 166.6, 155.5, 152.0, 137.4, 137.0, 136.6, 133.3, 130.4, 130.3, 130.2, 129.8, 129.7, 129.6, 128.6, 128.2, 125.3, 121.1, 121.0, 18.3. HRMS:

Calcd for C₂₅H₁₉N₂O₂ [M+H]⁺ 379.1447, Found 379.1440.

(3b): yellow solid: m. p. 222-224 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) =8.62 (dd, 1H, J = 8.5, 2.5 Hz), 8.33 (dd, 1H, J = 9.5, 5.0 Hz), 8.05-8.03 (m, 2H), 7.75-7.71 (ddd, 1H, J = 9.5, 8.0, 3.0 Hz), 7.56-7.53 (m, 3H), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.22 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.8, 166.3, 162.6 (d, ¹J_{C-F} = 252.5 Hz), 154.8, 149.3, 137.0, 136.3, 132.9 (d, ³J_{C-F} = 10.0 Hz), 130.3 (d, ⁴J_{C-F} = 3.8 Hz), 129.8, 129.4, 128.7, 128.3,

124.0 (d, ${}^{2}J_{C-F} = 26.3$ Hz), 121.8, 121.7, 121.6, 108.9, 108.7, 18.3. HRMS: Calcd for C₂₅H₁₈FN₂O₂ [M+H]⁺ 397.1352, Found 397.1345.

(3c): yellow solid: m. p. 237-239 °C. ¹H NMR (500 MH_z, CDCl₃): δ (ppm) = 8.99 (d, 1H, J = 2.0 Hz), 8.25 (d, 1H, J = 9.5 Hz), 8.06-8.04 (m, 2H), 7.88 (dd, 1H, J = 9.0, 2.5 Hz), 7.56-7.55 (m, 3H), 7.31 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.23 (s, 3H) 2.22 (s, 3H). ¹³C NMR (125 MH_z, CDCl₃): δ (ppm) = 166.6, 166.2, 155.6, 150.3, 136.9, 136.5, 136.3, 136.2, 134.3, 131.7, 130.5, 130.3, 129.8, 129.4, 128.7, 128.3, 124.0, 121.7, 121.4, 18.3. HRMS: Calcd for

C₂₅H₁₈ClN₂O₂ [M+H]⁺413.1057, Found 413.1063.

(3d): yellow solid: m. p. 273-275 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.17 (d, 1H, J = 2.0 Hz), 8.17 (d, 1H, J = 9.5 Hz), 8.06-8.01 (m, 3H), 7.55 (t, 3H, J = 3.0 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.6 Hz), 2.22 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.6, 166.2, 155.8, 150.5, 136.9, 136.8, 136.4, 136.2, 131.7, 130.5, 130.4, 129.8, 129.4, 128.7, 128.3, 127.4, 124.6, 121.8, 121.6, 18.3. HRMS: Calcd for C₂₅H₁₈BrN₂O₂ [M+H]⁺ 457.0552, Found

457.0552.

(3e): yellow solid: m. p. 225-227 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.77 (s, 1H), 8.21 (d, 1H, J = 8.5 Hz), 8.04-8.02 (m, 2H), 7.80 (dd, 1H, J = 8.5, 2.0 Hz), 7.55-7.53 (m, 3H), 7.29 (t, 1H, J= 7.5 Hz), 7.20 (d, 2H, J = 8.0 Hz), 2.65 (s, 3H), 2.22 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.3, 166.7, 154.5, 150.9, 140.6, 137.0, 136.7, 136.5, 135.8, 130.3, 130.1, 130.0, 129.7, 129.6, 128.6, 128.2, 123.8, 121.2, 121.0, 22.2, 18.3. HRMS: Calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1603,

Found 393.1594.

(3f): yellow solid: m. p. 206-208 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.26-8.24 (m, 1H), 8.20 (dd, 1H, J = 9.5, 2.0 Hz), 8.03-8.02 (m, 2H), 7.60 (dd, 1H, J = 9.5, 3.0 Hz), 7.52 (dd, 3H, J = 7.0, 2.5 Hz), 7.31-7.27 (m, 1H), 7.21-7.19 (m, 2H), 4.03 (s, 3H), 2.23 (s, 3H), 2.22 (s, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.6, 166.7, 160.6, 152.7, 148.9, 137.0, 136.7, 135.1, 131.7, 130.2, 129.9, 129.7, 128.6, 128.2, 127.1, 122.6, 121.0, 101.6, 56.1, 18.3.

HRMS: Calcd for C₂₆H₂₁N₂O₃ [M+H]⁺ 409.1552, Found 409.1537.

(3g): yellow solid: m. p. 210-211 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.63 (s, 1H), 8.14 (dd, 2H, J = 7.5, 2.0 Hz), 7.64 (s, 1H), 7.54-7.53 (m, 3H), 7.29 (t, 1H, J = 7.5 Hz), 7.20 (d, 2H, J = 7.5 Hz), 2.88 (s, 3H), 2.60 (s, 3H), 2.22 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.5, 167.0, 152.8, 150.0, 140.4, 138.1, 137.2, 137.1, 136.5, 135.6, 130.6, 130.0, 129.8, 129.6, 128.6, 128.1, 121.6, 121.3, 120.6, 22.2, 18.4, 18.3. HRMS: Calcd for C₂₇H₂₃N₂O₂ [M+H]⁺ 407.1760,

Found 407.1738.

(3h): yellow solid: m. p. 306-308 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.86 (d, 1H, J = 9.0 Hz), 8.53 (s, 1H), 8.04-8.03 (m, 2H), 7.87 (dd, 1H, J = 9.0, 1.5 Hz), 7.55-7.54 (m, 3H), 7.30 (t, 1H, J = 7.5 Hz), 7.20 (d, 2H, J = 7.5 Hz), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.7, 166.3, 156.6, 152.3, 137.8, 137.0, 136.2, 133.4, 132.6, 130.6, 130.4, 129.9, 129.4, 128.7, 128.5, 128.3, 126.5,121.1, 119.6, 18.3. HRMS: Calcd for C₂₅H₁₈BrN₂O₂

[M+H]⁺ 457.0552, Found 457.0535.

(3i): yellow solid: m. p. 218-220 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.00 (dd, 1H, J = 8.0, 1.0 Hz), 8.28 (dd, 1H, J = 7.5, 1.0 Hz), 8.24-8.22 (m, 2H), 7.62 (t, 1H, J = 8.0 Hz), 7.57-7.56 (m, 3H), 7.31 (t, 1H, J = 7.5 Hz), 7.22 (d, 2H, J = 7.5 Hz), 2.23 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.5, 166.2, 155.7, 148.6, 138.2, 136.9, 136.7, 136.2, 130.9, 130.7, 130.1, 129.8, 129.5, 128.7, 128.3, 126.1, 125.0, 122.3, 121.8, 18.3. HRMS: Calcd for C₂₅H₁₈BrN₂O₂ [M+H]⁺ 457.0552,

Found 457.0546.

(5a): yellow solid: m. p. 211-212 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm)= 9.00 (dd, 1H, J = 8.5, 1.0 Hz), 8.30 (d, 1H, J = 8.5 Hz), 8.11-8.07 (m, 2H), 7.97 (ddd, 1H, J = 8.5, 6.0, 1.5 Hz), 7.80 (ddd, 1H, J = 8.5, 6.0, 1.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.25-7.20 (m, 4H), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.0, 166.7, 164.3 (d, ¹ $J_{C-F} = 248.8$ Hz), 154.3, 152.0, 137.5, 137.0, 133.4, 132.7 (d, ⁴ $J_{C-F} = 3.8$ Hz), 132.5(d, ³ $J_{C-F} = 8.7$ Hz), 130.2, 129.9, 129.8,

129.5, 128.7, 125.3, 120.9 (d, ${}^{2}J_{C-F} = 22.5$ Hz), 115.4, 115.2, 18.3. HRMS: Calcd for $C_{25}H_{18}FN_{2}O_{2}$ [M+H]⁺ 397.1352, Found 397.1362.

(**5b**): yellow solid: m. p. 228-230°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (d, 1H, J = 8.0 Hz), 8.36 (dd, 1H, J = 8.5, 0.5 Hz), 8.01-7.98 (m, 1H), 7.86 (t, 1H, J = 7.5 Hz), 7.68-7.65 (m, 1H), 7.54-7.51 (m, 1H), 7.49-7.45 (m, 2H), 7.28 (d, 1H, J = 7.0 Hz), 7.19 (d, 2H, J = 7.5 Hz), 2.22 (s, 3H), 2.21 (s, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.0, 165.9, 152.9, 151.9, 137.0, 136.2, 136.1, 133.7, 133.2, 130.9, 130.8, 130.4, 130.3, 129.7, 129.6, 129.5, 128.6, 127.2, 125.4, 122.8, 121.5,

18.2. HRMS: Calcd for $C_{25}H_{18}CIN_2O_2$ [M+H]⁺ 413.1057, Found 413.1079.

(5c): yellow solid: m. p. 188-190 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.00 (d, 1H, J = 8.0 Hz), 8.32 (d, 1H, J = 8.5 Hz), 8.07 (s, 1H), 8.00-7.97 (m, 1H), 7.94 (d, 1H, J = 7.5 Hz), 7.84-7.81 (m, 1H), 7.52-7.49 (m, 1H), 7.46 (t, 1H, J = 7.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.9, 166.5, 153.8, 152.0, 138.3, 137.5, 137.0, 134.4, 133.5, 130.4, 130.3, 130.2, 130.1, 129.9, 129.5, 129.4, 128.8, 128.7,

125.4, 121.2, 121.0, 18.3. HRMS: Calcd for C₂₅H₁₈ClN₂O₂ [M+H]⁺ 413.1057, Found 413.1064.

(5d): yellow solid: m. p. 225-227 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.99 (d, 1H, J = 8.0 Hz), 8.30 (d, 1H, J = 8.5 Hz), 8.02 (d, 2H, J = 8.5 Hz), 7.98 (t, 1H, J = 7.5 Hz), 7.81 (t, 1H, J = 8.5 Hz), 7.51 (d, 2H, J = 8.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.0, 166.6, 154.1, 152.0, 137.5, 137.0, 136.7, 135.1, 133.5, 131.8, 130.3, 130.1, 129.8, 129.5, 128.7, 128.5, 125.4, 121.1, 120.9, 18.3. HRMS:

Calcd for C₂₅H₁₈ClN₂O₂ [M+H]⁺ 413.1057, Found 413.1042.

(5e): yellow solid: m. p. 242-244 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.00 (d, 1H, J = 8.5 Hz), 8.31 (d, 1H, J = 9.0 Hz), 7.99-7.96 (m, 3H), 7.81 (t, 1H, J = 8.0 Hz), 7.67 (d, 2H, J = 8.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.9, 166.6, 154.2, 152.0, 137.5, 137.0, 135.5, 133.5, 132.0, 131.5, 130.3, 130.1, 129.8, 129.5, 128.7, 125.4, 125.1, 121.1, 120.9, 18.3. HRMS: Calcd for C₂₅H₁₈BrN₂O₂

[M+H]⁺ 457.0552, Found 457.0555.

(**5f**): yellow solid: m. p. 149-151 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (d, 1H, J = 8.5 Hz), 8.33 (d, 1H, J = 8.5 Hz), 7.98 (t, 1H, J = 7.5 Hz), 7.84 (t, 1H, J = 7.5 Hz), 7.49-7.47 (m, 1H), 7.42 (d, 1H, J = 7.5 Hz), 7.36-7.34 (m, 2H), 7.27 (t, 1H, J = 7.5 Hz), 7.18 (d, 2H, J = 7.5 Hz), 2.30 (s, 3H), 2.20 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.1, 166.2, 156.0, 152.0, 136.9, 136.6, 136.5, 133.2, 130.5, 130.4, 130.0, 129.8, 129.7, 129.6, 128.6, 125.8, 125.3, 122.1, 121.2, 20.0, 18.3.

HRMS: Calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1603, Found 393.1593.

(5g): yellow solid: m. p. 229-230 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (d, 1H, J = 8.0 Hz), 8.33 (d, 1H, J = 8.5 Hz), 7.97 (ddd, 1H, J = 8.5, 7.0, 1.5 Hz), 7.87 (s, 1H), 7.83 (d, 1H, J = 7.5 Hz), 7.80 (ddd, 1H, J = 8.5, 7.0, 1.0 Hz), 7.45-7.42 (m, 1H), 7.36 (d, 1H, J = 7.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.49 (s, 3H), 2.23 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.1, 166.6, 155.7,152.0, 138.0, 137.4, 137.0, 136.5, 133.3, 131.0, 130.7, 130.3,

129.8, 129.7, 129.6, 128.7, 128.1, 127.7, 125.3, 121.1, 121.0, 21.6, 18.3. HRMS: Calcd for $C_{26}H_{21}N_2O_2$ $[M+H]^+$ 393.1603, Found 393.1609.

Found 393.1596.

(**5h**): yellow solid: m. p. 259-261°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.99 (d, 1H, J = 8.5 Hz), 8.31 (d, 1H, J = 8.5 Hz), 7.98-7.94 (m, 3H), 7.78 (t, 1H, J = 8.0 Hz), 7.36 (d, 2H, J = 7.5 Hz), 7.29 (t, 1H, J = 7.5 Hz), 7.20 (d, 2H, J = 7.5 Hz), 2.46 (s, 3H), 2.22 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.1, 166.7, 155.5, 152.1, 140.5, 137.4, 137.0, 133.9, 133.2, 130.3, 129.7, 129.6, 129.0, 128.6, 125.3, 121.0, 21.6, 18.3. HRMS: Calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1603,

(5i): yellow solid: m. p. 238-240°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (d, 1H, J = 8.5 Hz), 8.34 (d, 1H, J = 8.5 Hz), 8.16 (d, 2H, J = 8.0 Hz), 7.98 (t, 1H, J = 8.0 Hz), 7.82-7.77 (m, 3H), 7.68 (d, 2H, J = 7.5 Hz), 7.48 (t, 2H, J = 7.5 Hz), 7.39 (t, 1H, J = 7.5 Hz), 7.31 (t, 1H, J = 7.5 Hz), 7.22 (d, 2H, J = 7.5 Hz), 2.24 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.1, 166.8, 155.1, 152.1, 143.1, 140.8, 137.5, 137.0, 135.6, 133.4, 130.9, 130.3, 129.9, 129.8, 129.6, 129.0, 128.7, 127.8, 127.4, 127.1, 125.4, 121.1, 18.3.

HRMS: Calcd for $C_{31}H_{23}N_2O_2$ [M+H]⁺ 455.1760, Found 455.1731.

(5j): yellow solid: m. p. 215-217 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (dd, 1H, J = 8.5, 0.5 Hz), 8.33 (d, 1H, J = 8.5 Hz), 7.97 (ddd, 1H, J = 8.5, 7.0, 1.5 Hz), 7.80 (td, 1H, J = 7.5, 1.0 Hz), 7.65-7.63 (m, 2H), 7.46 (t, 1H, J = 8.0 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 7.09 (dt, 1H, J = 8.5, 1.5 Hz), 3.91 (s, 3H), 2.23 (s, 6H).¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.0, 166.5, 159.5, 155.2, 151.9, 137.8, 137.4, 137.0, 133.3, 130.3, 129.9,

129.7, 129.6, 129.2, 128.6, 125.3, 122.9, 121.1, 121.0, 116.2, 115.6, 55.5, 18.3. HRMS: Calcd for $C_{26}H_{21}N_3O_3 [M+H]^+ 409.1552$, Found 409.1552.

(5k): yellow solid: m. p. 168-170 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.97 (d, 1H, J = 8.0 Hz), 8.28 (d, 1H, J = 8.5 Hz), 8.06 (d, 2H, J = 8.5Hz), 7.94 (t, 1H, J = 7.5 Hz), 7.76 (t, 1H, J= 7.5 Hz), 7.29 (t, 1H, J= 7.5 Hz), 7.20 (d, 2H, J = 7.5 Hz), 7.06 (d, 2H, J = 8.5 Hz), 3.89 (s, 3H), 2.21(s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.2, 166.9, 161.5, 155.1, 152.1, 137.5, 137.0, 133.3, 132.1, 130.1, 129.7, 129.6, 129.5, 129.2, 128.7, 125.3, 120.8,

120.7, 113.7, 55.6, 18.3. HRMS: Calcd for $C_{26}H_{21}N_3O_3 [M+H]^+$ 409.1552, Found 409.1546.

(51): yellow solid: m. p. 198-199°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.03 (d, 1H, J = 7.5 Hz), 8.38 (dd, 2H, J = 7.0, 2.0 Hz), 8.34 (d, 1H, J = 8.5 Hz), 8.26-8.24 (m, 2H), 8.03 (ddd, 1H, J = 8.5, 7.0, 1.5 Hz), 7.87 (ddd, 1H, J = 8.5, 7.0, 1.0 Hz), 7.31 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 2.21 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.7,166.4, 152.7, 152.0, 148.9, 142.6, 137.6, 136.9, 133.8, 131.5, 130.8, 130.5, 129.9, 129.3, 128.8, 125.4,

123.3, 121.4, 121.1, 18.3. HRMS: Calcd for C₂₅H₁₈N₃O₄ [M+H]⁺ 424.1297, Found 424.1292.

(**5m**): yellow solid: m. p. 165-166°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.86 (d, 1H, J = 8.5 Hz), 8.18 (d, 1H, J = 8.5 Hz), 7.91 (td, 1H, J = 7.0, 1.5 Hz), 7.74 (t, 1H, J = 7.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.21 (d, 2H, J = 7.5 Hz), 3.11 (s, 3H), 2.20 (s, 6H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.5, 167.3, 155.5, 151.9, 137.1, 136.0, 133.0, 129.7, 129.5, 129.4, 129.2, 128.7, 125.3, 122.0, 120.9, 22.4, 18.3.

HRMS: Calcd for $C_{20}H_{17}N_2O_2$ [M+H]⁺ 317.1290, Found 317.1281.

(6a): yellow solid: m. p. 264-266 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.99 (d, 1H, J = 8.0 Hz), 8.32 (d, 1H, J = 8.5 Hz), 8.05-8.03 (m, 2H), 7.98 (ddd, 1H, J = 8.5, 7.0, 1.5 Hz), 7.81 (ddd, 1H, J = 8.5, 7.0, 1.0 Hz), 7.55-7.54 (m, 3H), 7.42 (d, 1H, J = 8.0 Hz), 7.35 (t, 1H, J = 8.0 Hz), 7.28 (d, 1H, J = 7.5 Hz), 2.28 (s, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.5, 166.0, 155.6, 152.1, 139.9, 137.4, 136.6, 133.9, 133.4, 130.8, 130.4, 130.3, 129.9, 129.5, 128.5, 128.3, 127.8, 125.4, 121.1, 18.6.

HRMS: Calcd for C₂₄H₁₆ClN₂O₂ [M+H]⁺ 399.0900, Found 399.0883.

(**6b**): yellow solid: m. p. 183-185 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.99 (d, 1H, J = 8.0 Hz), 8.35 (d, 1H, J = 8.5 Hz), 8.0 (td, 1H, J = 7.0, 1.5 Hz), 7.88-7.84 (m, 1H), 7.66-7.64 (m, 1H), 7.54-7.51 (m, 1H), 7.47-7.45 (m, 2H), 7.39 (d, 1H, J = 8.0 Hz), 7.32 (t, 1H, J = 7.5 Hz), 7.26 (d, 1H, J = 7.5 Hz), 2.27 (s, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 166.4, 165.2, 153.0, 151.9, 139.8, 136.2, 136.1, 133.8, 133.7, 133.3, 130.9, 130.8, 130.7, 130.4, 130.3, 129.6, 129.4, 128.4, 127.8, 127.2,

125.4, 122.7, 121.5, 18.6. HRMS: Calcd for $C_{24}H_{15}Cl_2N_2O_2$ [M+H]⁺ 433.0511, Found 433.0503.

(6c): yellow solid: m. p. 238-240 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.01 (d, 1H, J = 8.5 Hz), 8.31 (d, 1H, J = 8.5 Hz), 8.00-7.95 (m, 3H), 7.83-7.80 (m, 1H), 7.67 (d, 2H, J = 8.5 Hz), 7.49 (t, 1H, J = 8.0 Hz), 7.31 (d, 2H, J = 8.0 Hz), 2.78 (heptet, 2H, J = 7.0 Hz), 1.19 (dd, 12H, J = 10.0, 7.0 Hz). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.9, 167.5, 154.2, 152.0, 147.5, 137.5, 135.6, 133.5, 132.0, 131.5, 130.6, 130.3, 130.0, 126.6, 125.6, 125.1, 124.2, 121.2, 120.9,

29.6, 24.2, 24.1. HRMS: Calcd for C₂₉H₂₆BrN₂O₂ [M+H]⁺ 513.1178, Found 513.1169.

(**6d**): yellow solid: m. p. 258-260 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 9.19 (s, 1H), 8.20 (d, 1H, *J* = 9.0 Hz), 8.04 (t, 3H, *J* = 9.0 Hz), 7.55-7.49 (m, 4H), 7.33 (d, 2H, *J* = 8.0 Hz), 2.81-2.78 (m, 2H), 1.21 (dd, 12H, J = 12.0, 7.0 Hz). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.6, 167.1, 155.7, 150.5, 147.4, 136.8, 136.4, 136.3, 131.7, 130.6, 130.5, 130.4, 128.3, 127.5, 126.5, 124.6, 124.2, 121.8, 121.6, 29.6, 24.2, 24.1. HRMS: Calcd for C₂₉H₂₆BrN₂O₂

[M+H]⁺ 513.1178, Found 513.1179.

(6e): yellow solid: m. p. 241-242 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.98 (d, 1H, J = 8.5 Hz), 8.29 (d, 1H, J = 8.5 Hz), 8.01-7.93 (m, 3H), 7.78 (t, 1H, J = 7.0 Hz), 7.55-7.42 (m, 8H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.1, 166.6, 155.5, 151.9, 137.2, 136.7, 133.3, 131.4, 130.3, 130.2, 130.2, 129.9, 129.3, 128.5, 128.2, 126.9, 125.2, 121.0, 120.8. HRMS: Calcd for C₂₃H₁₅N₂O₂ [M+H]⁺ 351.1134, Found 351.1151.

(**6f**): yellow solid: m. p. 170-172 °C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.79 (d, 1H, J = 8.0 Hz), 8.12 (d, 1H, J = 8.5 Hz), 7.89-7.86 (m, 1H), 7.69 (t, 3H, J = 7.5 Hz), 7.55-7.42 (m, 5H), 3.06 (s, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 167.5, 167.3, 155.4, 151.7, 135.7, 132.9, 131.4, 129.4, 129.3, 129.2, 128.4, 126.7, 125.1, 121.6, 120.7, 22.3. HRMS: Calcd for C₁₈H₁₃N₂O₂ [M+H]⁺ 289.0977, Found

289.0962.

(**6g**): yellow solid: m. p. 151-152°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.95 (d, 1H, J = 8.5 Hz), 8.24 (d, 1H, J = 8.5 Hz), 7.92-7.87 (m, 3H), 7.75-7.72 (m, 1H), 7.57-7.53 (m, 3H), 1.73 (s, 9H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 169.5, 168.8, 155.1, 151.5, 137.1, 137.0, 132.7, 130.2, 130.1, 129.9, 129.5, 128.2, 125.1, 121.3, 120.8, 58.6, 29.3. HRMS: Calcd for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1447, Found

331.1424.

(**6h**): yellow solid: m. p. 163-164°C. ¹H NMR (500 MH_Z, CDCl₃): δ (ppm) = 8.91 (dt, 1H, J = 8.5, 0.5 Hz), 8.23 (d, 1H, J = 8.5 Hz), 7.96-7.86 (m, 3H), 7.74-7.71 (m, 1H), 7.57-7.53 (m, 3H), 4.20-4.14 (m, 1H), 2.29-2.20 (m, 2H), 1.90-1.69 (m, 5H), 1.42-1.25 (m, 3H). ¹³C NMR (125 MH_Z, CDCl₃): δ (ppm) = 168.2, 167.7, 155.1, 151.6, 137.3, 136.8, 132.8, 130.2, 130.1, 130.0, 129.5, 128.1, 125.0, 121.1, 120.9, 51.4, 30.0, 26.2, 25.2. HRMS: Calcd for C₂₃H₂₁N₂O₂ [M+H]⁺ 357.1603, Found

357.1574.

4 ¹H NMR and ¹³C NMR Spectra of All Compounds

Compound 3a

Compound **3b**

Compound **3c**

Compound 3d

Compound **3e**

Compound 3f

Compound 3g

Compound **3h**

Compound 3i

Compound 5a

Compound 5b

Compound 5c

Compound 5d

Compound 5e

Compound 5f

Compound 5g

Compound 5h

Compound 5i

Compound 5j

Compound 5k

Compound 51

Compound 5m

Compound 6a

Compound 6b

Compound 6c

Compound 6d

Compound 6e

Compound 6f

Compound 6g

Compound 6h

5 Crystal Structure of Compound 3a

Figure 1 Single Crystal X-Ray structure for 3a

Table 1	Crystal	data	and	structure	refinem	ent for	3a
	-1						

Empirical formula	C25 H18 N2 O2
Formula weight	378.41
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	$a = 13.5501(17) \text{ Å} alpha = 90^{\circ}.$
	b = 13.4406(17) Å beta = 98.124(2) °.
	$c = 10.7332(13) \text{ Å} \text{ gamma} = 90^{\circ}.$
Volume	1935.1(4) Å ³
Z, Calculated density	4, 1.299 Mg/m^3
Absorption coefficient	0.083 mm ⁻¹
F(000)	792
Crystal size	0.10 x 0.07 x 0.03 mm
Theta range for data collection	2.14 to 25.05°
Limiting indices	-16<=h<=13, -15<=k<=16, -10<=l<=12
Reflections collected / unique	9883 / 3420 [R(int) = 0.0412]
Completeness to theta $= 25.05$	99.9 %
Absorption correction	None
Max. and min. transmission	0.9975 and 0.9917
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3420 / 0 / 265
Goodness-of-fit on F^2	1.066
Final R indices [I>2sigma(I)]	R1 = 0.0606, $wR2 = 0.1349$
R indices (all data)	R1 = 0.0988, wR2 = 0.1655
Extinction coefficient	0.0058(11)

6 Crystal Structure of Compound 3f

Figure 2 Single Crystal X-Ray structure for 3f

Table 2 Crystal data and structure ref	nement fo	r 3f
--	-----------	-------------

Empirical formula	C26 H20 N2 O3			
Formula weight	408.44			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system, space group	Monoclinic, P2(1)/n			
Unit cell dimensions	$a = 8.5140(9) \text{ Å} alpha = 90^{\circ}.$			
	b = 13.6267(14) Å beta = 100.8290(10) °.			
	$c = 18.6805(19) \text{ Å} \text{ gamma} = 90^{\circ}.$			
Volume	2128.7(4) Å ³			
Z, Calculated density	4, 1.274 Mg/m ³			
Absorption coefficient	0.084 mm^{-1}			
F(000)	856			
Crystal size	0.24 x 0.20 x 0.12 mm			
Theta range for data collection	1.86 to 25.05°			
Limiting indices	-10<=h<=7, -15<=k<=16, -22<=l<=21			
Reflections collected / unique	10805 / 3761 [R(int) = 0.0180]			
Completeness to theta $= 25.05$	99.8 %			
Absorption correction	None			
Max. and min. transmission	0.9900 and 0.9801			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	3761 / 0 / 284			
Goodness-of-fit on F^2	1.033			
Final R indices [I>2sigma(I)]	R1 = 0.0399, $wR2 = 0.1002$			
R indices (all data)	R1 = 0.0546, $wR2 = 0.1102$			
Extinction coefficient	0.0045(7)			
Largest diff. peak and hole	0.162 and -0.142 e. Å $^{-3}$			

7 Crystal Structure of Compound 5b

Figure 3 Single Crystal X-Ray structure for 5b

Table 3	Crystal	data	and	structure	refinement	for	5b
---------	---------	------	-----	-----------	------------	-----	----

Empirical formula	C25 H17 Cl N2 O2
Formula weight	412.86
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	$a = 15.341(3) \text{ Å} alpha = 90^{\circ}.$
	b = 8.1615(13) Å beta = 105.999(2)°.
	$c = 17.193(3) \text{ Å} \text{ gamma} = 90^{\circ}.$
Volume	2069.3(6) Å ³
Z, Calculated density	4, 1.325 Mg/m^3
Absorption coefficient	0.209 mm^{-1}
F(000)	856
Crystal size	0.21 x 0.13 x 0.05 mm
Theta range for data collection	2.09 to 25.05°
Limiting indices	-18<=h<=14, -8<=k<=9, -20<=l<=20
Reflections collected / unique	10331/3663 [R(int) = 0.0223]
Completeness to theta = 25.05	99.7%
Absorption correction	None
Max. and min. transmission	0.9896 and 0.9575
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3663 / 0 / 273
Goodness-of-fit on F ²	1.083
Final R indices [I>2sigma(I)]	R1 = 0.0457, wR2 = 0.1012
R indices (all data)	R1 = 0.0584, WR2 = 0.1106

Largest diff. peak and hole0.154 and -0.225 e. Å $^{-3}$
