Supporting Information

An effective retro-cycloaddition of $M_3N@C_{80}$ (M =

Sc, Lu, Ho) metallofulleropyrrolidines

Bo Wu,^a Taishan Wang,^a Zhuxia Zhang,^a Yongqiang Feng,^a Lihua Gan,^b Li Jiang,^a and Chunru

Wang*a

Contents

Figure S1. HPLC profiles of the cycloaddition of (a) C_{60} and (b) C_{70} HPLC conditions: 10×250 mm Buckyprep column, (a) 6 mL/min and (b) 12 mL/min flow rate with toluene, 330 nm detection.

Figure S2. Chromatograms of the isolated (a) C_{60} and (b) C_{70} fulleropyrrolidines. HPLC conditions: 10×250 mm Buckyprep column, (a) 6 mL/min and (b) 12 mL/min flow rate with toluene, 330 nm detection.

Table S1. The reaction results of the retro-cycloaddition of C_{60} and C_{70} fulleropyrrolidines.

Figure S3. HPLC profiles of the retro-cycloaddition of (a) C_{60} and (b) C_{70} fulleropyrrolidines. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

Figure S4. MALDI-TOF mass spectra of the (a) C_{60} and (b) C_{70} fulleropyrrolidine oxides.

Figure S5. HPLC profiles of the cycloaddition of $Sc_3N@I_h-C_{80}$ to get the fulleropyrrolidine nearly 50%. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

Figure S6. Partial natural bond orbital (NBO) charge distributions of (a) $Sc_3N@C_{80}$ fulleropyrrolidine, (b) C_{60} fulleropyrrolidine, and (c) C_{70} fulleropyrrolidine.

Figure S7. The conceivable reaction mechanism of the formation of fulleropyrrolidines "nitrogen oxide group".

Experimental Section:

1. The synthesis and purification of C₆₀, C₇₀ and Sc₃N@C₈₀ fulleropyrrolidines

 C_{60} and C_{70} were heated with *N*-ethylglycine and paraformaldehyde at 120 °C to give corresponding fulleropyrrolidines with yields of nearly 80% and 50% in *o*-dicholorobenzene (*o*-DCB) for 12 and 3 h, respectively. Figure S1 and Figure S2 show the HPLC data of purified C_{60} and C_{70} fulleropyrrolidines with Buckyprep columns. These fulleropyrrolidines was isolated by silica column chromatography eluted by toluene.

Figure S1. HPLC profiles of the cycloaddition of (a) C_{60} and (b) C_{70} . HPLC conditions: 10×250 mm Buckyprep column, (a) 6 mL/min and (b) 12 mL/min flow rate with toluene, 330 nm detection.

Figure S2. Chromatograms of the isolated (a) C_{60} and (b) C_{70} fulleropyrrolidines. HPLC conditions: 10×250 mm Buckyprep column, (a) 6 mL/min and (b) 12 mL/min flow rate with toluene, 330 nm detection.

2. The retro-cycloaddition of C₆₀ and C₇₀ fulleropyrrolidines

 C_{60} and C_{70} fulleropyrrolidines were heated at 40 °C in *o*-DCB for a variable time (0.2–12 h) in the presence of 3-chloroperoxybenzoic acid (MCPBA). The reaction results are listed in Table S1. After stirring for 30 min, the parent fullerenes were not recovered, but generated the oxides of C_{60} and C_{70} fulleropyrrolidines. Figure S3 shows the HPLC data of retro-cycloaddition products of (a) C_{60} and (b) C_{70} fulleropyrrolidines.

Table S1. The retro-cycloaddition of C_{60} and C_{70} fulleropyrrolidines in the presence of MCPBA at 40 °C for different reaction times.

Entry Compound	Time (h)	Recovered C_{60} or C_{70} (%)	Product oxide $(\%)^a$
C60 mono-adduct	0.2	0	30
C60 mono-adduct	0.5	0	100
C60 mono-adduct	1	0	100
C60 mono-adduct	6	0	100
C60 mono-adduct	12	0	100
C60 mono-adduct	24	0	100
C70 mono-adduct	0.5	0	100
C_{70} mono-adduct	1	0	100
C70 mono-adduct	6	0	100
C70 mono-adduct	12	0	100

^a Determined by peak areas of HPLC profiles.

Figure S3. HPLC profiles of the retro-cycloaddition products of (a) C_{60} and (b) C_{70} fulleropyrrolidines. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

Figure S4. MALDI-TOF mass spectra of the (a) C_{60} and (b) C_{70} fulleropyrrolidine oxides. (m/z = 807.02 is C_{60} fulleropyrrolidine oxide, and m/z = 791.01 is C_{60} fulleropyrrolidine. m/z = 927.04 is C_{70} fulleropyrrolidine oxide.)

3. The cycloaddition and retro-cycloaddition of Sc₃N@C₈₀ fulleropyrrolidine

 $Sc_3N@C_{80}$ was heated with *N*-ethylglycine and paraformaldehyde at 120 °C to give metallofulleropyrrolidine with a yield of nearly 50% in *o*-DCB for 1 h. Figure S5 shows the HPLC data of purified $Sc_3N@C_{80}$ fulleropyrrolidine with Buckyprep columns. The retro-reaction of $Sc_3N@C_{80}$ fulleropyrrolidine (1 mg) in *o*-DCB solution (8 ml) was executed in the presence of MCPBA (0.5 equiv) stirring at 40 °C for 20-60 min. The resulted products were analysed by HPLC (Buckyprep-column) and separated by silica column chromatography.

Figure S5. HPLC profiles of the cycloaddition of $Sc_3N@I_h-C_{80}$ to get the fulleropyrrolidine nearly 50%. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

a) b) c) -0.500 0.501 0.339 0.239 -0.230 0.048 0.087 0.086 -0.088 -0.087 -0.049 0.048 0.087 0.086 0.088 -0.087

4. Partial NBO charge distributions of the three fullerene derivatives

Figure S6. Partial NBO charge distributions of (a) $Sc_3N@C_{80}$ fulleropyrrolidine, (b) C_{60} fulleropyrrolidine, and (c) C_{70} fulleropyrrolidine.

5. A conceivable reaction mechanism of the formation of fulleropyrrolidines "nitrogen oxide group"

Figure S7. The conceivable reaction mechanism of the formation of [60]fulleropyrrolidines "nitrogen oxide group".