Supplementary Information for

One step synthesis of benzoxiazepine derivatives via PPh₃ catalyzed

aza-MBH domino reaction between salicyl N-tosylimines and allenoates

Hongxia Zhao, ^a Xiangtai Meng^{a,b} and You Huang^{*a}

^a State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University,

Tianjin 30071, China

E-mail: hyou@nankai.edu.cn

^b Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384, PR China

Contents

1. Contents	SError! Bookmark not defined.
2. General Information	
3. General procedure for the synthesis of methyl-2,3- dienoic acid	ethyl ester 1
4. General procedure for the synthesis of N-Tosylaldimines	
5. General procedure for the synthesis of benzoxiazepine derivativ	es
6. Analytical Data for Compounds 3	
7. NMR spectra for all new compounds	
8. Crystal structure of 3g	

2. General Information

All the solvents were purified according to standard procedures. The ¹H NMR and Spectra were recorded at 400MHz, ¹³C NMR was recorded at 100MHz. ¹H and ¹³C NMR Chemical shifts were calibrated to tetramethylsilane as an external reference. Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet: t, triplet; q, quartet; m, multiplet; HRMS were recorded on an Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS. Melting points were measured on a RY-I apparatus and are reported uncorrected.

3. General procedure for the synthesis of 5-Phenyl-penta-2,3dienoic acid ethyl ester 1.¹

Allenoate 1 is a known compound and synthesized according to a similar method developed by Hansen.² To a solution of (ethoxycarbonylmethylene)-triphenylphosphorane (0.1 mol) in dichloromethane (400 mL) was added 1.1 equivalent of triethylamine (0.11 mmol). After stirred for about 15 minutes, 1.1 equivalent of propanoyl chloride (0.11 mmol) was added dropwise. Then the reaction mixture was allowed to be warmed up to room temperature and stirred overnight. The resulting mixture was carefully evaporated to remove most of the solvent, and the residue was extracted by petroleum ether (b.p. 30-60 ° C, 5 × 100 mL). The combined extracting was concentrated and the residue was subjected to column chromatography (eluant: 5% EtOAc in petroleum ether) to provide the allenoate **2** as yellow oil.

4. General procedure for the synthesis of N-Tosylaldimines

The aldehyde (4.8 mmol), p-toluenesufonamide (4.8 mmol), and Si(OEt)₄ (5.4 mmol)

were combined in a flask equipped with a still head and heated at 160 °C under nitrogen for 6 hours, during which time EtOH collected in the receiving flask. On cooling, the reaction mixture was suspended in Et₂O (50 ml), filtered, and the precipitate washed with Et₂O, the crude product was then recrystallized (EtOAc/hexanes).³

5. General procedure for the synthesis of benzoxiazepine derivatives

Imine ((0.30 mmol, 1.00 equiv) and PPh₃ (0.50 equiv) were dissolved in dry CH_2Cl_2 (3.0 mL), and then, methyl-penta-2,3-dienodate (3.00 equiv) was added to this solution, the reaction mixture was stirred at 40 °C. After complete conversion, as indicated by TLC, all volatiles were removed in vacuo and the residue was purified by column chromatography (Petroleum ether(60-90 °C)/ethyl acetate = 10:1).

6. Analytical Data for Compounds 3

3a methyl 2-(7-bromo-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 158-160 °C

¹H NMR (400 M, CDCl₃, TMS) $\delta7.34$ (d, 2H, J=8.4, Ph-H) 7.11(d, 1H, J=2.4, Ph-H) 7.06-7.02(m, 3H, Ph-H) 6.29(d, 1H, J=8.8, Ph-H) 4.82(d, 1H, J=4.8, CH) 4.70(s, 1H, CH) 4.16(dd, 1H, J=3.2, 10.8, CH) 3.75(s, 3H, CH₃) 3.27(dd, 1H, J=3.6, 16.8, CH₂) 2.45(dd, 1H, J=10.4, 17.2, CH₂) 2.37(ddd, 1H, J=2.4, 4.8, 12.4, CH₂) 2.31(s, 3H, CH₃) 2.09(d, 1H, J=12.4, CH₂). ¹³CNMR (100 M, CDCl₃, TMS) δ 171.0, 150.9, 143.4, 134.3, 132.2, 130.7, 129.0, 127.8, 125.0, 117.5, 111.9, 79.6, 64.0, 57.5, 52.0, 38.5, 29.4, 21.5. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₀H₂₁BrNO₅S 466.0318, found 466.0310.

3b methyl 2-(7-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 174-177°C

¹H NMR (400 M, CDCl₃): $\delta7.34$ (d, 2H, J=8.4, Ph-H) 7.04(d, 2H, J=8.0, Ph-H) 6.97(d, 1H, J=2.4, Ph-H) 6.90(dd, 1H, J=2.4, 8.4, Ph-H) 6.35(d, 1H, J=8.4, Ph-H) 4.82(d, 1H, J=4.8, CH) 4.70(s, 1H, CH) 4.15(dd, 1H, J=3.6, 10.8, CH) 3.75(s, 3H, CH₃) 3.26(dd, 1H, J=3.6, 16.8, CH₂) 2.45(dd, 1H, J=10.8, 16.8, CH₂) 2.36(ddd, 1H, J=2.8, 5.2, 12.8, CH₂) 2.30(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): $\delta171.0$, 150.3, 143.4, 134.3, 129.3, 128.9, 127.9, 127.7, 124.6, 124.4, 117.0, 79.6, 64.0, 57.5, 52.0, 38.5, 29.4, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₀H₂₁CINO₅S 422.0823, found 422.0823.

3c methyl 2-(9-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 172-174 °C

¹H NMR (400 M, CDCl₃): $\delta7.16$ (d, 2H, J=8.0, Ph-H) 7.02(dd, 1H, J=1.6, 8.0, Ph-H) 6.96(dd, 1H, J=1.6, 7.6, Ph-H) 6.91(d, 2H, J=8.0, Ph-H) 6.65(t, 1H, J=8.0, 15.6, Ph-H) 4.85(d, 1H, J=5.2, CH) 4.77(s, 1H, CH) 4.07(dd, 1H, J=3.6, 10.4, CH) 3.68(s, 3H, CH₃) 3.09(dd, 1H, J=3.6, 20.0, CH₂) 2.42-2.33(m, 2H, CH₂&CH₂) 2.24(s, 3H, CH₃) 2.04(d, 1H, J=12.8, CH₂). ¹³C NMR (100 M, CDCl₃): $\delta170.7$, 147.9, 143.4, 134.1, 130.3, 128.9, 127.5, 126.3, 125.3, 120.6, 120.4, 80.1, 64.0, 57.7, 52.1, 38.6, 29.6, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₀H₂₁CINO₅S 422.0823, found 421.0822.

3d methyl 2-(4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 120-130 °C

¹H NMR (400 M, CDCl₃): δ 7.22 (d, 2H, J=8.0, Ph-H) 7.13(dd, 1H, J=1.6, 7.2, Ph-H) 7.03(td, 1H, J=1.6, 7.6, Ph-H) 6.94(d, 2H, J=8.4, Ph-H) 6.77(td, 1H, J=1.2, 7.6, Ph-H) 6.43(d, 1H, J=8.0, Ph-H) 4.92(d, 1H, J=4.8, CH) 4.67(s, 1H, CH) 4.02(dd, 1H, J=3.2, 10.4, CH) 3.74(s, 1H, CH₃) 3.21(dd, 1H, J=3.6, 16.8, CH₂) 2.43(dd, 1H, J=10.8, 16.8, CH₂) 2.37(ddd, 1H, J=2.8, 5.2, 12.4, CH₂) 2.30(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): δ 171.0, 152.0, 143.0, 130.2, 130.0, 129.8, 128.9, 127.8, 127.3, 123.7, 119.9, 115.7, 79.4, 63.8, 58.2, 52.0, 38.4, 29.7, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₀H₂₂NO₅S 388.1213, found 388.1215.

3e methyl 2-(7-methyl-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 188-190 °C

¹H NMR (400 M, CDCl₃): $\delta7.27-7.25$ (m, 2H, Ph-H) 6.95(d, 2H, J=8.4, Ph-H) 6.85(d, 1H, J=1.6, Ph-H) 6.78(dd, 2H, J=2.0, 8.0, Ph-H) 6.32(d, 1H, J=8.0, Ph-H) 4.84(d, 1H, J=4.8, CH) 4.65(s, 1H, CH) 4.07(dd, 1H, J=3.6, 10.8, CH) 3.74(s, 3H, CH₃) 3.23(dd, 1H, J=3.6, 16.8, CH₂) 2.43(dd, 1H, J=10.8, 16.4, CH₂) 2.34(ddd, 1H, J=2.8, 5.2, 12.4, CH₂) 2.27(s, 3H, CH₃) 2.23(s, 3H, CH₃) 2.11(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): $\delta171.0, 149.6, 142.9, 134.5, 130.0, 128.9, 128.7, 128.6, 127.8, 123.0, 115.4, 79.4, 63.9, 58.2, 52.0, 38.5, 29.8, 21.4, 20.2. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₁H₂₄NO₅S 402.1370, found 402.1375.$

3f methyl 2-(7-(tert-butyl)-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate ¹H NMR (400 M, CDCl₃): δ7.19 (d, 2H, J=8.4, Ph-H) 7.16(d, 1H, J=2.4, Ph-H) 7.61(dd, 1H, J=2.8, 8.8, Ph-H) 6.92(d, 2H, J=8.0, Ph-H) 6.35(d, 1H, J=8.4, Ph-H) 4.93(d, 1H, J=4.8, CH) 4.64(s, 1H, CH) 3.99(dd, 1H, J=3.6, 10.8, CH) 3.74(s, 3H, CH₃) 3.22(dd, 1H, J=4.0, 16.8, CH₂) 2.43(dd, 1H, J=10.8, 16.4, CH₂) 2.35(ddd, 1H, J=2.8, 5.2, 12.4, CH₂) 2.27(s, 3H, CH₃) 2.12(d, 1H, J=12.4, CH₂) 1.33(s, 9H, CH₃). ¹³C NMR (100 M, CDCl₃): δ171.0, 149.6, 142.8, 142.6, 134.3, 128.8, 127.7, 126.7, 124.9, 123.1, 115.1, 79.4, 63.7, 58.7, 52.0, 38.4, 34.1, 31.6, 29.9, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₄H₃₀NO₅S 444.1839, found 444.1842.

3g ethyl 2-(7-bromo-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 122-124 °C

¹H NMR (400 M, CDCl₃): $\delta7.35$ (d, 2H, J=8.0, Ph-H) 7.12(d, 1H, J=2.0, Ph-H) 7.06-7.04(m, 3H, Ph-H) 6.30(d, 1H, J=8.4, Ph-H) 4.82(d, 1H, J=4.8, CH) 4.71(s, 1H, CH) 4.24-4.14(m, 3H, CH₂ &CH) 3.26(dd, 1H, J=3.6, 16.8, CH₂) 2.47-2.36(m, 2H, CH₂&CH₂) 2.31(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂) 1.32(t, 3H, J=7.2, 14.0, CH₃). ¹³C NMR (100 M, CDCl₃): $\delta170.6$, 150.9, 143.3, 134.3, 132.2, 130.7, 128.9, 127.7, 125.0, 117.5, 111.9, 79.6, 64.1, 61.0, 57.5, 38.7, 29.4, 21.4, 14.2. HRMS(ESI/[M+Na]⁺) Cacld. for: C₂₁H₂₂BrNO₅SNa 502.0294, found 502.0285.

3h ethyl 2-(7-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp. 137-139 °C

¹H NMR (400 M, CDCl₃): $\delta7.34$ (d, 2H, J=8.0, Ph-H) 7.03(d, 2H, J=8.0, Ph-H) 6.98(d, 1H, J=2.4, Ph-H) 6.90(dd, 1H, J=2.4, 8.8, Ph-H) 6.35(d, 1H, J=8.8, Ph-h) 4.82(d, 1H, J=5.2, CH) 4.70(s, 1H, CH) 4.23-4.13(m, 3H, CH₂ &CH) 3.25(dd, 1H, J=3.2, 16.8, CH₂) 2.46-2.34(m, 2H, CH₂&CH₂) 2.30(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂) 1.31(t, 3H, J=7.2, 14.4, CH₃). ¹³C NMR (100 M, CDCl₃): $\delta170.6$, 150.4, 143.3, 134.3, 129.2, 128.9, 127.9, 127.7, 124.6, 124.5, 117.0, 79.6, 64.1, 61.0, 57.5, 38.7, 29.4, 21.4, 14.2. HRMS(ESI/[M+Na]⁺) Cacld. for: C₂₁H₂₂CINO₅SNa 458.0799, found 458.0797.

3i ethyl 2-(9-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 154-156 °C

¹H NMR (400 M, CDCl₃): δ 7.23 (d, 2H, J=7.6, Ph-H) 7.09(d, 1H, J=8.0, Ph-H) 7.03(d, 1H, J=7.2, Ph-H) 6.98(d, 2H, J=7.6, Ph-H) 6.71(t, 1H, J=7.6, 15.2, Ph-H) 4.92(d, 1H, J=4.8, CH) 4.83(s, 1H, CH) 4.20 (q, 2H, J=6.8, 14.0, CH₂) 4.14(dd, 1H, J=4.0, 11.2, CH) 3.14(dd, 1H, J=3.6, 16.4, CH₂) 2.46-2.40(m, 2H, CH₂&CH₂) 2.31(s, 3H, CH₃) 2.11(d, 1H, J=12.8, CH₂) 1.31(t, 3H, J=7.2, 14.4 CH₃). ¹³C NMR (100 M, CDCl₃): δ 170.3, 147.9, 143.4, 134.1, 130.3, 128.9, 127.5, 126.4, 125.3, 120.6, 120.4, 80.1, 64.1, 61.0, 57.7, 38.8, 29.6, 21.4, 14.2. HRMS(ESI/[M+Na]⁺) Cacld. for: C₂₁H₂₂ClNO₅SNa 458.0799, found 458.798.

3j ethyl 2-(4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 121-123 °C

¹H NMR (400 M, CDCl₃): δ7.22 (d, 2H, J=7.6, Ph-H) 7.13(d, 1H, J=7.2, Ph-H) 7.03(t, 1H, J=7.6, 15.6, Ph-H) 6.94(d, 2H, J=7.6, Ph-H) 6.76(t, 1H, J=7.6, 14.8, Ph-H) 6.42(d, 1H, J=8.4, Ph-H) 4.92(d, 1H, J=4.8, CH) 4.67(s, 1H, CH) 4.19(q, 2H, J=6.8, 13.6, CH₂) 4.02(dd, 1H, J=3.2, 14.0, CH) 3.20(dd, 1H, J=3.2, 16.8, CH₂) 2.44-2.35(m, 2H, CH₂&CH₂) 2.28(s, 3H, CH₃) 2.12(d, 1H, J=12.4, CH₂) 1.30(t, 3H, J=7.2, 14.4 CH₃). ¹³C NMR (100 M, CDCl₃): δ 170.6, 152.0, 143.0, 134.2, 129.8, 128.9, 128.1, 127.8, 123.7, 119.8, 115.7, 79.4, 63.8, 60.9, 58.2, 38.6, 29.7, 21.4, 14.2. HRMS(ESI/[M+Na]⁺) Cacld. for: C₂₁H₂₃NO₅SNa 424.1189, found 424.1194.

3k ethyl 2-(7-methyl-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 102-104 °C

¹H NMR (400 M, CDCl₃): δ 7.26 (d, 2H, J=8.0, Ph-H) 6.95(d, 2H, J=8.4, Ph-H) 6.85(d, 1H, J=1.6, Ph-H) 6.78(dd, 1H, J=2.0, 6.8, Ph-H) 6.31(d, 1H, J=8.4, Ph-H) 4.84(d, 1H, J=4.8, CH) 4.65(s, 1H, CH) 4.20(td, 2H, J=2.0, 7.2, CH₂) 4.07(dd, 1H, J=3.2, 10.8, CH) 3.22(dd, 1H, J=3.6, 16.4, CH₂) 2.41(dd, 1H, J=11.2, 16.8, CH₂) 2.34(ddd, 1H, J=2.8, 5.2, 12.4, CH₂) 2.28(s, 3H, CH₃) 2.23(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂) 1.30(t, 3H, J=7.2, 14.4 CH₃). ¹³C NMR (100 M, CDCl₃): δ 170.6, 149.6, 142.9, 134.5, 130.0, 128.9, 128.7, 128.6, 127.8, 123.0, 115.4, 79.4, 64.0, 60.9, 58.2, 38.8, 29.8, 21.4, 20.2, 14.2. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₂H₂₆NO₅S 416.1526, found 416.1531.

3m benzyl 2-(7-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 222-224 °C

¹H NMR (400 M, CDCl₃): δ 7.40-7.35(m, 5H, Ph-H) 7.32 (d, 2H, J=8.0, Ph-H) 7.00(d, 2H, J=8.0, Ph-H) 6.97(d, 1H, J=2.8, Ph-H) 6.90(dd, 1H, J=2.4, 8.8, Ph-H) 6.34(d, 1H, J=8.4, Ph-H) 5.18(s, 2H, CH₂) 4.81(d, 1H, J=4.8, CH) 4.68(s, 1H, CH) 4.16(dd, 1H, J=3.2, 10.8, CH) 3.25(dd, 1H, J=3.6, 16.8, CH₂) 2.48(dd, 1H, J=10.8, 16.4, CH₂) 2.34(ddd, 1H, J=2.8, 5.2, 12.8, CH₂) 2.29(s, 3H, CH₃) 2.08(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): δ 170.4, 150.4, 143.3, 134.3, 129.3, 128.9, 128.7, 128.5, 128.4, 127.9, 127.7, 124.6, 124.4, 117.0, 79.6, 66.8, 64.0, 57.0, 38.7, 29.4, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₆H₂₅CINO₅S 498.1136, found 498.1125.

3n benzyl 2-(9-chloro-4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate Mp 192-194 °C

¹H NMR (400 M, CDCl₃): δ7.40-7.35(m, 5H, Ph-H) 7.21 (d, 2H, J=8.4, Ph-H) 7.09(dd,

1H, J=1.6, 8.0, Ph-H) 7.03(dd, 1H, J=1.6, 7.6, Ph-H) 6.93(d, 2H, J=8.0, Ph-H) 6.72(t, 1H, J=7.6, 15.2, Ph-H) 5.19(s, 2H, CH₂) 4.91(d, 1H, J=4.8, CH) 4.82(s, 1H, CH) 4.16(dd, 1H, J=3.6, 10.4, CH) 3.20(dd, 1H, J=3.6, 16.4, CH₂) 2.49(dd, 1H, J=10.8, 16.4, CH₂) 2.39(ddd, 1H, J=2.8, 5.2, 12.8, CH₂) 2.29(s, 3H, CH₃) 2.10(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): δ 170.1, 147.9, 143.4, 135.5, 133.9, 130.3, 128.9, 128.7, 128.4, 128.3, 127.5, 126.4, 125.2, 120.6, 120.4, 80.1, 66.9, 64.0, 57.8, 38.7, 29.6, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₆H₂₅CINO₅S 498.1136, found 498.1124.

30 benzyl 2-(4-tosyl-2,3,4,5-tetrahydro-2,5-methanobenzo[f][1,4]oxazepin-3-yl)acetate

Mp 169-171 °C

¹H NMR (400 M, CDCl₃): δ 7.40-7.35(m, 5H, Ph-H) 7.20 (d, 2H, J=8.4, Ph-H) 7.13(dd, 1H, J=1.6, 7.2, Ph-H) 7.03(td, 1H, J=1.6, 8.0, Ph-H) 6.90(d, 2H, J=8.0, Ph-H) 6.77(td, 1H, J=0.8, 7.6, Ph-H) 6.42(d, 1H, J=8.0, Ph-H) 5.18(d, 1H, J=2.4, CH₂) 4.91(d, 1H, J=4.8, CH) 4.66(s, 1H, CH) 4.04(dd, 1H, J=3.6, 10.8, CH) 3.25(dd, 1H, J=3.6, 16.8, CH₂) 2.48(dd, 1H, J=10.8, 16.8, CH₂) 2.34(ddd, 1H, J=2.4, 4.8, 12.4, CH₂) 2.27(s, 3H, CH₃) 2.12(d, 1H, J=12.4, CH₂). ¹³C NMR (100 M, CDCl₃): δ 170.4, 152.0, 143.0, 135.5, 134.1, 129.8, 128.9, 128.7, 128.4, 128.1, 127.8, 123.7, 119.9, 115.7, 79.4, 66.8, 64.0, 58.2, 38.5, 29.7, 21.4. HRMS(ESI/[M+H]⁺) Cacld. for: C₂₆H₂₆NO₅S 464.1526, found 464.1519.

4 (E)-tert-butyl 3-(6-bromo-4-(4-methylphenylsulfonamido)chroman-2-yl)acrylate Mp 165-168 °C

¹H NMR (400 M, CDCl₃): δ7.83(d, 2H, J=8.2, Ph-H) 7.38(d, 2H, J=8.1, Ph-H) 7.23(dd, 1H, J=2.3, 8.8, Ph-H) 7.06(d, 1H, J=2.3, Ph-H) 6.87(dd, 1H, J=4.3, 15.6, CH=CH) 6.70(d, 1H, J=8.8, Ph-H) 6.05(dd, 1H, J=1.6, 15.6, CH=CH) 4.72-4.67(m, 3H,

NH&CH&CH) 2.48(s, 3H, CH₃) 2.28-2.23(m, 1H, CH₂) 1.83-1.72(m, 1H, CH₂) 1.49(s, 9H, ^tBu-H). ¹³C NMR (100 M, CDCl₃): δ 165.3, 153.3, 144.1, 142.9, 132.4, 130.5, 130.2, 127.2, 126.9, 123.9, 123.8, 118.9, 113.4, 81.0, 48.5, 35.2, 28.1, 21.6. HRMS(ESI/[M+NH₄]⁺) Cacld. for: C₂₃H₂₇BrN₂O₅S 525.1053, found 525.1029.

7. NMR spectra for all new compounds

8. Crystal structure of 3g

- 1. S. Andres, G. C. Fu, Angew. Chem. In. Ed. 2004, 43, 3580
- 2. R. W. Lang, H.-J. Hansen, Organic Syntheses. 1990, 62, 202.
- 3. B. E. Love, P. S. Raje, T. C. Williams II, Synlett 1994, 493.