Supplementary Information

for

Erythrose revealed as furanose forms

Carlos Cabezas, Isabel Peña, Adam M. Daly, and José L. Alonso

Contents

Tables S1: Table of molecular properties predicted *ab initio* for the lowest-energy α and β -furanose conformers of D-erythrose.

Tables S2: Table of molecular properties predicted *ab initio* for the lowest-energy linear conformers of D-erythrose.

Tables S3: Transition frequencies of the rotamer A of erythrose.

Tables S4: Transition frequencies of the rotamer B of erythrose.

Table S5. Cartesian coordinates for the three low-energy conformers of D-erythrose. The geometries have been optimized *ab initio* at the MP2/6-311++G(d,p) level of theory.

Complete Reference 19.

Table	S1.	Calculat	ed spectro	scopic	parameters	and a	ab initio	energies	at the	MP2/6-
311++	-G(d,j	p) level (of theory	for the	lowest-ener	·gy α-	and B-f	uranoside	confor	mers of
erythro	ose.									

	α- ² E-cc	α- ² E-c	α - ³ T ₄ -cc	α - ⁰ T ₁ -cc
A ^[a] /MHz	2609.2	2626.9	3351.6	2590.7
B/MHz	2346.7	2263.1	1964.1	2354.0
C/MHz	1788.8	1814.4	1447.3	1677.8
μ_a/D	0.30	-2.16	2.52	-1.02
μ_b/D	-1.90	-0.52	0.78	-0.21
μ_c/D	-1.33	0.05	0.26	-0.70
$\Delta E^{[b]}/cm^{-1}$	0	167	453	640
	β- ¹ T	'2-CC	β- ⁴ E-c	β-E ₂ -cc
A ^[a] /M	Hz 310'	7.3	2958.7	3122.0
B/MI	Hz 186:	5.0	2102.8	1814.0
C/MI	Iz 1642	2.2	1470.9	1607.3
μ_a/I) 2	2.23	-0.61	-1.56
μ_b/I) -().14	-2.33	1.83
μ_c/I)	1.11	-0.15	-0.66
$\Delta E^{[b]}/c$	m ⁻¹ 81	5	885	1004

^[a] A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moment components. ^[b]MP2/6-311++G(d,p) electronic energies respect to the global minimun.

Table S2. Calculated spectroscopic parameters and relative energies for the lowestenergy conformers of linear forms of erythrose from ab initio computations.

	linear-1	linear-2	linear-3	linear-4	linear-5
A ^[a] /MHz	3594.7	3246.7	2601.3	2641.9	2795.0
B/MHz	1363.9	1423.1	1885.2	1575.2	1682.5
C/MHz	1101.3	1295.8	1329.7	1472.1	1438.7
μ_a/D	0.90	1.53	0.83	-1.43	1.34
μ_b/D	-0.27	1.43	-0.27	0.21	-0.71
μ_c/D	-0.50	-1.36	1.32	0.86	-2.59
$\Delta E^{[b]}/cm^{-1}$	1702	1875	2243	2441	2604

^[a] A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moment components. ^[b]MP2/6-311++G(d,p) electronic energies respect to the global minimun.

Table S3. Observed frequencies and residuals (in MHz) for the rotational transitions of rotamer A of erythrose.

J′	К′ ₋₁	K'_{+1}	J″	Κ΄′ ₋₁	$K^{\prime\prime}{}_{+1}$	$v_{obs.}$	$v_{obs.}$ - $v_{cal.}$
2	1	2	1	0	1	7906.6077	0.0100
2	0	2	1	1	1	7615.1374	0.0016
2	2	1	1	1	0	9533.9394	0.0041
2	1	1	1	0	1	9646.1763	0.0031
2	2	0	1	1	0	9937.6351	0.0000
2	2	1	1	1	1	10113.7863	-0.0074
3	0	3	2	1	2	11294.4348	-0.0074
3	1	3	2	0	2	11361.3085	-0.0014

Table S4. Observed frequencies and residuals (in MHz) for the rotational transitions of rotamer B of erythrose.

J′	K′.1	K'_{+1}	J″	K′′.1	$K^{\prime\prime}_{+1}$	$v_{obs.}$	$v_{obs.}$ - $v_{cal.}$
2	1	2	1	1	1	6705.7910	-0.0037
2	0	2	1	0	1	6914.1901	-0.0003
2	1	1	1	1	0	7184.9436	0.0002
2	1	1	1	0	1	8677.5875	-0.0017
3	1	3	2	1	2	10040.3326	0.0053
3	0	3	2	0	2	10296.7123	0.0211
3	1	2	2	1	1	10756.4858	-0.0025

Table S5. Cartesian coordinates for the three low-energy conformers of D-erythrose. The geometries have been optimized *ab initio* at the MP2/6-311++G(d,p) level of theory.

Conformer α-²E-cc

		Standard c	rientation:		
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z
1 2 3 4 5 6 7 8 9 10 11 12 13	6 6 8 8 8 8 1 1 1 1 1		$\begin{array}{c} 1.709955\\ 0.435195\\ -0.556357\\ -0.091864\\ 1.305921\\ 0.063954\\ -1.902454\\ -0.714463\\ -0.332510\\ 2.339762\\ -0.408363\\ -2.182103\\ -0.394651\end{array}$	-0.319883 -1.142532 -0.163461 1.173003 1.065054 -1.394802 -0.477474 1.406201 2.043297 -0.553414 -0.142900 0.162461 0.707992	-0.231547 -0.229508 -0.866271 -0.260415 -0.160277 1.124123 -0.583226 0.984456 -0.872834 0.629759 -1.951770 0.086192
13 14 15 16	1 1 1 1	0 0 0	0.534485 -0.837151 2.275301	-2.079147 -1.741166 -0.471723	-0.788414 1.084857 -1.156852

Conformer B-¹T₂-cc

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-0.126727	-1.316039	0.621966		
2	6	0	-0.790470	-0.555952	-0.552703		
3	6	0	-0.146087	0.836283	-0.435918		
4	6	0	1.225838	0.469711	0.095753		
5	8	0	0.939746	-0.465695	1.117654		
6	8	0	-2.200141	-0.518089	-0.497570		
7	8	0	-0.851749	1.624375	0.517520		
8	8	0	1.948310	-0.096523	-0.969534		
9	1	0	-0.834265	-1.470385	1.439643		
10	1	0	-0.126072	1.394117	-1.371153		
11	1	0	-0.591216	1.304310	1.391086		
12	1	0	2.767806	-0.443557	-0.600065		
13	1	0	1.763590	1.297024	0.568248		
14	1	0	0.289945	-2.277403	0.311508		
15	1	0	-0.515397	-1.010378	-1.505564		
16	1	0	-2.419044	0.249712	0.047152		

Complete Reference 19:

Gaussian 09 (Revision B.01), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.