Amine Formylation via Carbon Dioxide Recycling Catalyzed by

a Simple and Efficient Heterogeneous Palladium Catalyst

Xinjiang Cui, Yan Zhang, Youquan Deng and Feng Shi*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Centre for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

1. Experimental

All solvents and chemicals were obtained commercially and were used as received.

NMR spectra were measured using a Bruker ARX 400 or ARX 100 spectrometer at 400 MHz (¹H) and 100 MHz (¹³C). All spectra were recorded in CDCl₃ and chemical shifts (δ) are reported in ppm relative to tetramethylsilane referenced to the residual solvent peaks. Mass spectra were in general recorded on an HP 6890/5973 GC-MS.

X-ray diffraction (XRD)

XRD patterns of samples were obtained on a STADI P automated transmission diffractometer instrument equipped with an incident beam curved germanium monochromator selecting Cu K α 1 radiation (40 KV and 40 mA) was used as the X-ray source. The precipitated particles were dried in air and pressed on a glass slide for analysis.

Transmission Electron Microscopy (TEM)

For the prepared catalysts, the particle dispersion was diluted by ethanol, and then 10 μ L of dispersion was cast on the TEM grids with a micro-pipet. TEM images were obtained on a Tecnai G2 F30 S-Twin operating at 300 kV.

X-ray Photoelectron Spectroscopy (XPS)

The XPS measurements were performed with a VG ESCALAB 210 instrument provided with a dual Mg/Mg anode X-ray source, a hemispherical capacitor analyser and a 5 keV Ar^+ ion-gun. All spectra were recorded using non-monochromatic Mg K α (1253.6 eV) radiation.

BET and ICP-AES analysis

Nitrogen adsorption-desorption isotherms were measured at 77 K using Micromeritics 2010 instrument. The pore-size distribution was calculated by Barrett, Joyner and Halenda (BJH) method from desorption isotherm. The Pd content of the catalyst was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES), using an Iris advantage Thermo Jarrel

Ash device.

TPR measurement:

50 mg of catalyst was placed in a quartz tube, and it was heated up to 350 $^{\circ}$ C under 20 mL/min O₂ flow (10 $^{\circ}$ C/min) and maintained 100 min. The sample was cooled to room temperature and purged with highly pure Ar for 1 h. Then it was reduced with 5% H₂ (balanced with N₂) with the increasing of the temperature to 350 $^{\circ}$ C (10 $^{\circ}$ C /min). The amount of hydrogen uptake was monitored on-line by a TCD detector and recorded as a function of temperature.

Typical procedure for Al₂O₃-nanorods (NR) preparation

Typically, 10 mmol AlCl₃ was dissolved in 30 mL distilled water and 10 mmol BMImCl was added afterwards. Following with the addition of 50 mL $(NH_4)_2CO_3$ solution, the mixture were stirred for 30 min to form a milk-white solution. Then, the resulting precursor solution was transferred into a Teflon-lined stainless autoclave. After being hydrothermal treated at 120 °C for 12 h, the reaction mixture was cooled to room temperature, centrifuged, and washed with 40 mL distilled water and ethanol. The white solid sample was dried at 60 °C under vaccum for 3 h and calcined at 600 °C for 2 h to obtain the final Al₂O₃ nano-rods sample (Al₂O₃-NR).

Typical procedure for catalyst preparation

Reductive Deposition (RD) method: Suitable amount of H₂PdCl₄ (8 mg) were added into 50 mL distilled water and 400 mg Al₂O₃ nano-rods was added to the solution under stirring. A freshly prepared solution of NaBH₄ (0.1 M, 20 mL) was then added under stirring to form a dark solution. After the mixture was further stirred for 3 h at 30 °C, it was centrifuged and washed by water, dried at 120 °C for 4 h and calcined at 350 °C for 4 h in air. A grey solid sample was obtained and denoted as Pd/Al₂O₃-NR-RD. Pd/ α -Al₂O₃-RD and Pd/ γ -Al₂O₃-RD were prepared with the same procedure.

Deposition Precipitation (DP) method: Suitable amount of H₂PdCl₄ (8 mg) were added into 50 mL distilled water and 400 mg Al₂O₃ nano-rods was added to the solution under stirring. A freshly prepared solution of NaCO₃ (0.05 M, 20 mL) was then added to form a dark solution. After the reaction mixture was stirred for another 3 h at 30 °C, it was centrifuged and washed by water, dried at 120 °C for 4 h and calcined at 350 °C for 4 h in air. A grey solid sample was obtained and denoted as Pd/Al₂O₃-NR-DP.

Impregnation (IP) method: Suitable amount of H_2PdCl_4 (8 mg) were added into 5 mL distilled water and 400 mg Al_2O_3 nano-rods was added to the solution under stirring. After the reaction mixture was stirred for another 3 h at 30 °C, it was dried at 60 °C for 2 h under vacuum and calcined at 350 °C for 4 h in air. A grey solid sample was obtained and denoted as Pd/Al_2O_3-NR-IP.

Typical procedure for formylation of amines by CO₂ hydrogenation

1.0 mmol amines, 50 mg catalyst and 3 mL octane were added into a 100 mL autoclave equipped with magnetic stirrer. The autoclave was sealed and exchanged with CO_2 for 2 times and reacted at 130 °C under 1 MPa CO_2 and 2 MPa H_2 for 24 h. Then it was cooled to room temperature. ~10 mL ethanol was added to dissolve the reaction mixture and the product was detected by HP 6890/5973 GC-MS. The GC-yield was determined by GC-FID using biphenyl as internal standard and the isolated yields were obtained by flash column chromatography.

Catalysts	Surface Area (m ² /g)	Pore Volume (cm ³ /g)	Pore Size (Å)
Pd/α - Al_2O_3 - RD	154.2	0.72	134.9
Pd/γ - Al_2O_3 - RD	281.6	0.48	57.2
Pd/Al ₂ O ₃ -NR- RD	177.8	0.93	213.4
Pd/Al ₂ O ₃ -NR-DP	247.8	1.07	145.4
Pd/Al ₂ O ₃ -NR-IP	208.3	0.78	137.7

Table S1. BET results of the studied catalysts

Table S2. Palladium loading, H₂ chemisorption and peak temperature results for the studied catalysts

Catalysts	Pd (wt%)	H ₂ consumption	Peak temperature
Pd/a-Al ₂ O ₃ -RD	0.47	9.5 μ molg _{cat} ⁻¹	45 °C
Pd/γ - Al_2O - RD	0.55	15 μ molg _{cat} ⁻¹	70 °C
Pd/Al ₂ O ₃ -NR-RD	0.53	13 μ molg _{cat} ⁻¹	47 °C
Pd/Al ₂ O ₃ -NR-DP	0.59	$15 \mu molg_{cat}^{-1}$)	65 °C
Pd/Al ₂ O ₃ -NR-IP	0.85	45 μ molg _{cat} ⁻¹	112 °C

		IH [Cat] CO ₂ /H ₂	\rightarrow N H	
ntry	Catalysts	Solvents	CO ₂ :H ₂ / MPa	Yield $(\%)^b$
1		Octane	1:2	0
2	Al ₂ O ₃ -NR	Octane	1:2	0
3	Pd/Al ₂ O ₃ -NR-RD	Octane	1:2	89
4	Pd/Al ₂ O ₃ -NR-IP	Octane	1:2	2
5	Pd/Al ₂ O ₃ -NR-DP	Octane	1:2	4
6	Pt/Al ₂ O ₃ -NR-RD	Octane	1:2	54
7	Rh/Al ₂ O ₃ -NR-RD	Octane	1:2	29
8	Ru/Al_2O_3 -NR-RD	Octane	1:2	10
9	Pd/α - Al_2O_3 - RD	Octane	1:2	36
10	Pd/γ - Al_2O_3 - RD	Octane	1:2	53
11	Pd/Al ₂ O ₃ -NR-RD	Octane	1:1	52
12	Pd/Al ₂ O ₃ -NR-RD	Octane	1:3	96
13	Pd/Al ₂ O ₃ -NR-RD	Octane	2:2	90
14	Pd/Al ₂ O ₃ -NR-RD	Octane	2:1	45
15	Pd/Al ₂ O ₃ -NR-RD	Octane	3:1	52
16	Pd/Al ₂ O ₃ -NR-RD	Toluene	1:2	38
17	Pd/Al ₂ O ₃ -NR-RD	Xylene	1:2	43
18	Pd/Al ₂ O ₃ -NR-RD	Dioxane	1:2	30
19	Pd/Al ₂ O ₃ -NR-RD	THF	1:2	46
20^c	Pd/Al_2O_3 -NR-RD	Octane	1:2	46
21^d	Pd/Al ₂ O ₃ -NR-RD	Octane	1:2	93
22^e	Pd/Al_2O_3 -NR-RD	Octane	1:2	96
23^{f}	Pd/Al ₂ O ₃ -NR-RD	Octane	1:2	83

Table S3. Reaction conditions optimization with 1-methylpiperazine formylation by CO_2/H_2 as model reaction^{*a*}

^{*a*}1 mmol (100 mg) 1-methylpiperazine, 50 mg catalyst, 3 mL solvent, 130 °C, 16 h; ^{*b*}Determined by GC-FID using biphenyl as standard material; ^{*c*}120 °C; ^{*d*}140 °C; ^{*e*}Reaction time: 24 h; ^{*f*}Yield at the 3rd run.

Fig. S1. XRD diffraction patterns for a) Pd/α -Al₂O₃ -RD, b) Pd/ γ -Al₂O₃ -RD, c) Pd/Al₂O₃-NR-RD, d) Pd/Al₂O₃-NR-DP and e) Pd/Al₂O₃-NR-IP.

Fig. S2. TPR profile for a) Pd/ α -Al₂O₃-RD, b) Pd/ γ -Al₂O₃ -RD, c) Pd/Al₂O₃-NR-RD, d) Pd/Al₂O₃-NR-DP and e) Pd/Al₂O₃-NR-IP.

Fig. S3. XPS profile for a) Pd/α -Al₂O₃ -RD, b) Pd/γ -Al₂O₃ -RD, c) Pd/Al_2O_3 -NR-RD, d) Pd/Al_2O_3 -NR-DP and e) Pd/Al_2O_3 -NR-IP.

Fig. S4. BET profile for a) Pd/ α -Al₂O₃ -RD, b) Pd/ γ -Al₂O₃ -RD, c) Pd/Al₂O₃-NR-RD, d) Pd/Al₂O₃-NR-DP and e) Pd/Al₂O₃-NR-IP.

Fig. S5. SEM and TEM pictures for Pd/γ -Al₂O₃-RD.

Fig. S6. SEM and TEM pictures for Pd/α -Al₂O₃-RD.

Fig. S7. SEM and TEM pictures for Pd/ Pd/Al₂O₃-NR-DP.

Fig. S8. SEM and TEM pictures for Pd/Al₂O₃-NR-IP.

210 200 190 100 170 100 150 140 130 120 110 100 90 90 70 00 00 40 50 20 10 0 -10 f1 (gen)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

