SUPPORTING INFORMATION

2-(Aryl-Sulfonyl)Oxetanes as Designer 3-Dimensional Fragments for Fragment Screening: Synthesis and Strategies for Functionalisation

Kate F. Morgan, ${ }^{a}$ lan A. Hollingsworth ${ }^{b}$ and James A. Bull*a

a Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
Tel: +44 (02)0 7594 5811. E-mail: j.bull@imperial.ac.uk.
b AstraZeneca Mereside, Alderley Park, Cheshire, SK10 4TG, UK.
Table of contents S1
General Experimental Conditions S2
Optimisation of oxetane formation S3
Synthesis of 2-[(4-methylphenyl)sulfonyl] oxetane 1a S4
Synthesis of 2-[(phenyl)sulfonyl] oxetane 1b S6
Synthesis of 2-[(4-chlorophenyl)sulfonyl] oxetane 1c S8
Synthesis of 2-(oxetan-2-ylsulfonyl)pyridine 1d S10
Optimisation of deprotonation of 1a for reaction with electrophiles S12
Synthesis of 2,2-disubstituted oxetanes 5-9 from oxetane 1a S14
Preparation of oxetane 10 by directed ortho-metallation S16
Preparation of oxetanes 11-12 by Fe-catalysed cross-coupling of oxetane 1c with Grignard reagents S17
Preparation of oxetanes 13-16 by Suzuki cross-coupling of oxetane 1c S18
Calculated fragment-like and lead-like properties of oxetanes 1a-d, 5-9 and 10-16 S20
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for novel compounds S23-S52
References S53

General Experimental Conditions

All non-aqueous reactions were run under an inert atmosphere (argon or nitrogen) with flame-dried or oven-dried glassware using standard techniques. Anhydrous solvents were obtained by filtration through drying columns or obtained from commercial suppliers and used without further purification (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, DMF).
Flash column chromatography was performed using 230-400 mesh silica, 70-290 mesh basic alumina modified to activity IV or ISCO Flash Silica cartridges with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm), or aqueous potassium permanganate stain.
Infrared spectra (FTIR) were recorded in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.
Nuclear magnetic resonance spectra were recorded on a 400 MHz spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform, $\delta=7.27 \mathrm{ppm}$) or using chloroform with 1% tetramethylsilane as the internal standard. Data is reported as follows: chemical shift [integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad), coupling constant in Hz$].{ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million from tetramethylsilane with the solvent resonance as the internal standard (${ }^{13} \mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}$) or using chloroform with 1% tetramethylsilane as the internal standard.
Assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were made by the analysis of δ / J values and COSY, HSQC and HMBC experiments as appropriate.
Melting points are uncorrected.
Reagents: Commercial reagents were used as supplied or purified by standard techniques where necessary.

Compound Handling/Purification/Storage:

All synthetic intermediates were stored under argon at $-20^{\circ} \mathrm{C}$ for short periods. Oxetanes 1a-d were bench stable; oxetane 1a was stored at rt for 3 months without degradation.
Where required for purification, the activity of basic alumina was altered by the addition of water to commercial basic alumina (activity I) and evenly distributed (activity IV: $10 \% \mathrm{w} / \mathrm{w}$ water). ${ }^{1}$

Preparation of a 0.61 M solution of LiHMDS.

A solution of HMDS ($0.14 \mathrm{ml}, 0.67 \mathrm{mmol}$) in THF (0.48 mL) was cooled to $-78^{\circ} \mathrm{C}$ for 5 min then n BuLi ($0.38 \mathrm{~mL}, 0.61 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise. Solution stirred at $-78^{\circ} \mathrm{C}$ for 30 min then warmed to $0^{\circ} \mathrm{C}$ for 30 min prior to use.

Optimisation of Oxetane Formation

Initial investigations treated sulfone $\mathbf{4 a}(0.52 \mathrm{mmol})$ with base (2 equiv.) in THF at $0^{\circ} \mathrm{C}$ for 1 h then warmed to rt for 1 h (Table S1, entries 1-7). Amine bases were generally successful in promoting cyclisation, with LiHMDS the most effective, especially when freshly prepared (entries 7 and 8).

Table S1: Selected optimisation: intramolecular cyclisation of sulfone 4a to oxetane 1a.

4a 1a

entry	base	equiv. base	concn [M]	order of addition ${ }^{\text {a }}$	$\begin{aligned} & \text { yield } \\ & (\%)^{b} \\ & \hline \end{aligned}$
1	NaH	2	0.025	A	0
2	$L^{\text {LDA }}$	2	0.025	A	12
3	$\mathrm{LiTMP}^{\text {c }}$	2	0.025	A	32
4	$n \mathrm{BuLi}^{\text {d }}$	2	0.025	A	68
5	KHMDS	2	0.025	A	45
6	NaHMDS	2	0.025	A	33
7	LiHMDS	2	0.025	A	50
8	LiHMDS ${ }^{\text {c }}$	2	0.025	A	63
9	$n \mathrm{BuLi}^{\text {d }}$	2	0.025	B	52
10	$L^{\text {iHMDS }}{ }^{\text {c }}$	2	0.025	B	89
11	LiHMDS ${ }^{\text {c }}$	1.2	0.025	B	97
12	LiHMDS ${ }^{\text {c }}$	1.2	0.05	B	81
13	LiHMDS ${ }^{\text {c }}$	1.2	0.0125	B	99
14	LiHMDS ${ }^{\text {c,e }}$	1.2	0.025	B	99
15	LiHMDS ${ }^{\text {c,e }}$	1.1	0.025	B	99
16	LiHMDS ${ }^{\text {c,e }}$	1.05	0.025	B	93

${ }^{\text {a }}$ Conditions A , addition of the substrate to a solution of the base; Conditions B, addition of the base to a solution of the substrate. ${ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR with respect to $1,3,5$ trimethoxybenzene as an internal standard. ${ }^{\text {c }}$ Base made immediately prior to use. ${ }^{d}$ Reaction run at $-78^{\circ} \mathrm{C}$ as opposed to $0^{\circ} \mathrm{C}$. ${ }^{e}$ Reaction time of 1 h .

The order of addition of the base and substrate was examined next using LiHMDS and nBuLi as they were the two most effective bases under the original conditions adding a solution of tosyl sulfone 4a to a solution of base in THF. Reversing the addition, base added to sulfone, resulted in a marked increase in yield using LiHMDS to 89% by ${ }^{1} \mathrm{H}$ NMR (entries 8 and 10). Under these conditions the amount of LiHMDS could be reduced to 1.2 equiv affording a further increase in yield (entry 11). The concentration of the reaction was next investigated, maintaining relatively dilute conditions to favour intramolecular cyclisation. Increasing the concentration from 0.025 M to 0.05 M gave a notable reduction in yield (entry 12). More dilute conditions (entry 13) gave a marginal increase in yield and 0.025 M was chosen as optimal. The reaction time could be reduced to 1 h at $0^{\circ} \mathrm{C}$ (entry 14). Further reduction of the amount of base to 1.1 equiv gave the optimal reaction conditions (entry 15) which afforded a quantitative conversion to the oxetane product; decreasing the equivalents further resulted in a decrease in yield (entry 16).

Under these conditions, the synthesis was scaled up to 6.5 mmol to give 1.2 g oxetane $\mathbf{1 a}$ with a 93% isolated yield (Scheme 1).

Synthesis of 2-[(4-methylphenyl)sulfonyl]oxetane 1a

p-Methylphenyl chloromethyl sulfide (2a)

Potassium carbonate ($122.2 \mathrm{~g}, 885 \mathrm{mmol}$) was added to a solution of 4-methyl benzene thiol S1 ($100 \mathrm{~g}, 805 \mathrm{mmol}$) in acetone (1 L) followed by Mel (52.6 mL , 845 mmol) and the reaction stirred at rt for 14 h . The reaction was filtered through celite and the solvent removed under reduced pressure. The crude material was dissolved in diethyl ether (300 mL) and washed with $5 \% \mathrm{NaOH}(3 \times 150 \mathrm{~mL})$. The combined aqueous layers were extracted with ether $(150 \mathrm{~mL})$ then the combined organics were washed with brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent removed under reduced pressure to afford p-tolyl methyl sulfide $\mathbf{S 2}$ ($109.3 \mathrm{~g}, 98 \%$) as a yellow liquid which was used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.20(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.0\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right)$, $134.6\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 129.6(2 \times \mathrm{Ar}-\mathrm{C})$, $127.22(2 \times \mathrm{Ar}-\mathrm{C}), 21.0\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 16.5\left(\mathrm{CH}_{3}\right)$. The observed data $\left({ }^{1} \mathrm{H}\right)$ was consistent with that reported in the literature. ${ }^{2}$
N-Chlorosuccinimide ($33.4 \mathrm{~g}, 250 \mathrm{mmol}$) was added portionwise to a solution of p-tolyl methyl sulfide (S2) ($34.6 \mathrm{~g}, 228 \mathrm{mmol}$) in carbon tetrachloride (250 mL). The reaction was stirred at rt for 14.5 h then filtered through a short pad of silica, eluting with $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ and the solvent removed under reduced pressure. Purification by vacuum distillation afforded chloromethyl sulfide 2a (36.9 g , 94%) as an orange oil. b.p. $=98^{\circ} \mathrm{C}$ at 2.1 mbar (lit. b.p. $=88^{\circ} \mathrm{C}$ at 0.2 Torr$) .{ }^{3} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ph}-\mathrm{H}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ph}-\mathrm{H}), 4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 131.6(2 \times \mathrm{Ar}-\mathrm{C}), 129.9(2 \times \mathrm{Ar}-\mathrm{C})$, $129.4\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 51.9\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$. The observed data $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ was consistent with that reported in the literature. ${ }^{4}$

p-Tolyl sulfanyImethoxy-ethanol (3a)

Sodium hydride (60% in mineral oil, $2.57 \mathrm{~g}, 64.2 \mathrm{mmol}$) was added to ethylene glycol (400 mL) at $0^{\circ} \mathrm{C}$ and stirred for 1 h 15 min . Sodium iodide ($9.62 \mathrm{~g}, 64.2 \mathrm{mmol}$) was added followed by a solution of sulfide $2 \mathrm{a}(10.04 \mathrm{~g}, 58.4 \mathrm{mmol})$ in ethylene glycol (5 mL). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h then warmed to rt for 4 h . $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added and the product was extracted with ethyl acetate ($10 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (50% EtOAc/hexane) afforded alcohol 3 a (9.60 g , 83%) as a yellow oil. $\mathrm{R}_{f}=0.34$ ($50 \% \mathrm{EtOAc} /$ hexane). IR (film) $/ \mathrm{cm}^{-1} 3449,2926,2872,1734,1493$, $1461,1373,1250,1052,1017,806,734 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, $2 \times \mathrm{Ar}-\mathrm{H}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 3.78-3.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2\left(\mathrm{Ar}_{\mathrm{C}}\right)$, $131.5\left(\mathrm{Ar} \mathrm{C}_{\mathrm{q}}\right)$, $131.1(2 \times \mathrm{Ar}-\mathrm{C})$, $129.8(2 \times \mathrm{Ar}-\mathrm{C}), 77.0\left(\mathrm{SCH}_{2} \mathrm{O}\right), 69.7\left(\mathrm{OCH}_{2}\right), 61.7\left(\mathrm{OCH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 221.0607$; Found: $221.0607[\mathrm{M}+\mathrm{Na}]^{+}$.

Toluene-4-sulfonic acid 2-p -tolylsulfanylmethoxy ethyl ester (S3)
Triethylamine ($3.14 \mathrm{~mL}, 22.5 \mathrm{mmol}$) and trimethylamine hydrochloride $(70 \mathrm{mg}, 0.75 \mathrm{mmol})$ were added to a solution of sulfide $3 \mathrm{a}(1.50 \mathrm{~g}$, $7.5 \mathrm{mmol})$ in toluene (10 mL) at $0^{\circ} \mathrm{C}$ and stirred for 10 min . A suspension of 4-toluenesulfonyl chloride ($2.86 \mathrm{~g}, 15 \mathrm{mmol}$) in toluene (10 mL) was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then allowed to warm to rt slowly over 40 min and stirred for a further $1 \mathrm{~h} 20 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ was added to the reaction and the product was extracted with EtOAc $(4 \times 50 \mathrm{~mL})$. The
combined organic layers were washed with brine $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded tosylate $\operatorname{S3}\left(2.50 \mathrm{~g}, 97 \%\right.$) as a yellow oil. $\mathrm{R}_{f}=0.34$ (40% EtOAc/hexane). IR (film)/cm ${ }^{-1}$ 2984, 2891, 1734, 1596,1499, 1362, 1237, 1175, 1095, 1011, 915, 807. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}), 7.34-7.30(4 \mathrm{H}, \mathrm{m}$, $2 \times$ Ts-H + $2 \times$ Tol-H), $7.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times\right.$ Tol-H), $4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 4.22-4.18$ ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{TsOCH}_{2}\right), 3.83-3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{CH}_{3}\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Tol-CH} 3) .{ }^{13} \mathrm{C}$ NMR
 $129.8(2 \times \mathrm{Ar}-\mathrm{C}), 129.7(2 \times \mathrm{Ar}-\mathrm{C}), 127.9(2 \times \mathrm{Ar}-\mathrm{C}), 76.8\left(\mathrm{SCH}_{2} \mathrm{O}\right), 68.7\left(\mathrm{SCH}_{2} \mathrm{OCH}_{2}\right), 65.5$ $\left(\mathrm{TsOCH}_{2}\right), 21.6\left(\mathrm{Ts}-\mathrm{CH}_{3}\right), 21.0\left(\mathrm{Tol}^{-C H_{3}}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 370.1141; Found: $370.1134\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Toluene-4-sulfonic acid 2-toluene 4-sulfonylmethoxy ethyl ester (4a) meta-Chloroperbenzoic acid (1.47 g 8.50 mmol) was added to a solution of sulfide S3 ($1.00 \mathrm{~g}, 2.84 \mathrm{mmol}$) in dichloromethane (15 mL) at $0^{\circ} \mathrm{C}$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(25 \mathrm{~mL})$ and extracted with dichloromethane ($6 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $1 \mathrm{M} \mathrm{NaOH}(3 \times 15 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded sulfone $4 \mathrm{a}(1.04 \mathrm{~g}, 96 \%)$ as a white solid; $\mathrm{mp}=73-79{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.65$ (EtOAc). IR (film)/cm ${ }^{-1}$ 2992, 2926, 2885, 1599, 1461, 1350, 1327, 1300, 1170, 1130, 1080, 813. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.78(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ar}-\mathrm{H}), 7.41-7.35(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ar}-\mathrm{H}), 4.52(2 \mathrm{H}, \mathrm{s}$, $\mathrm{SCH}_{2} \mathrm{O}$), 4.19-4.15 (2 H, m, TsOCH 2$), ~ 4.12-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{TsOCH}_{2} \mathrm{CH}_{2}\right), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{CH}_{3}\right)$, 2.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Tol}^{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 145.4 ($\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), 145.0 ($\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), 133.9 ($\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), $132.7\left(\mathrm{Ar}_{-\mathrm{C}}\right.$), $130.0(2 \times \mathrm{Ar}-\mathrm{C}), 129.9(2 \times \mathrm{Ar}-\mathrm{C}), 128.9(2 \times \mathrm{Ar}-\mathrm{C}), 127.9(2 \times \mathrm{Ar}-\mathrm{C}), 86.2\left(\mathrm{SCH}_{2} \mathrm{O}\right)$, $70.6\left(\mathrm{TsOCH}_{2} \mathrm{CH}_{2}\right), 68.5\left(\mathrm{TsOCH}_{2}\right)$, $21.7\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 402.1040$; Found: $402.1040\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

2-[(4-Methylphenyl)sulfonyl] oxetane (1a)

A solution of LiHMDS (0.61 M in THF, $11.7 \mathrm{~mL}, 7.16 \mathrm{mmol}$) was added dropwise to a solution of sulfone $4 \mathrm{a}(2.50 \mathrm{~g}, 6.51 \mathrm{mmol})$ in THF $(250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for 1 h . Reaction quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and extracted with CHCl_{3} $(8 \times 30 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane 1a $(1.28 \mathrm{~g}, 93 \%)$ as a white solid; $\mathrm{mp}=106-108{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.26(40 \% \mathrm{EtOAc} / \mathrm{hexane})$. IR (film) $/ \mathrm{cm}^{-1}$ 2977, 2901, 1596, 1447, 1406, 1310, 1147, 1089, 1030, 984, 909, 816, 717. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,5.6 \mathrm{~Hz}, \mathrm{OCHS}), 4.80-4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.67-4.61(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.17-3.05(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4\left(\mathrm{Ar}_{\mathrm{C}}\right)$), $132.2\left(\mathrm{Ar}_{\mathrm{C}} \mathrm{C}\right.$), 129.9 $(2 \times \mathrm{Ar}-\mathrm{C}), 129.5(2 \times \mathrm{Ar}-\mathrm{C})$, $94.0(\mathrm{OCHS}), 71.3\left(\mathrm{OCH}_{2}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 213.0580$; Found: $213.0580[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of 2-[(phenyl)sulfonyl]oxetane 1b

2-((Phenylthio)methoxy)ethanol (3b)
Sodium hydride (60% in mineral oil, $0.70 \mathrm{~g}, 17.6 \mathrm{mmol}$) was added to ethylene glycol (100 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h 15 min . Sodium iodide $(2.60 \mathrm{~g}, 17.3 \mathrm{mmol})$ was added followed by sulfide $\mathbf{2 b}(2.50 \mathrm{~g}, 15.7 \mathrm{mmol})$. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h then warmed to rt for $5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the product was extracted with ethyl acetate $(6 \times 40 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/heptane) afforded alcohol 3b ($2.54 \mathrm{~g}, 87 \%$) as a colourless oil. $\mathrm{R}_{f}=0.42$ (50%, EtOAc/heptane). IR (film $/ \mathrm{cm}^{-1} 3402,2927,1583,1480,1438,1370,1304,1102,1053,887$, 823, 690, 673. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.46(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.33-7.27(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ar}-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}), 5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 3.74-3.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $2.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.5\left(\mathrm{Ar}_{\mathrm{C}}\right)$), 130.4 ($2 \times \mathrm{Ar}-\mathrm{C}$), $129.0(2 \times \mathrm{Ar}-\mathrm{C})$, 126.9 (Ar-C), $76.4\left(\mathrm{SCH}_{2} \mathrm{O}\right), 69.9\left(\mathrm{OCH}_{2}\right), 61.6\left(\mathrm{OCH}_{2}\right) . \mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}^{+}$ $\left[\mathrm{M}^{+}\right.$: 184.0553; Found: $184.0550[\mathrm{M}]^{+}$.

2-((Phenylthio)methoxy)ethyl 4-methylbenzenesulfonate (S4)

Triethylamine ($5.54 \mathrm{~mL}, 39.7 \mathrm{mmol}$) and trimethylamine hydrochloride (127 mg ,
$1.32 \mathrm{mmol})$ were added to a solution of sulfide $3 \mathrm{~b}(2.44 \mathrm{~g}, 13.2 \mathrm{mmol})$ in toluene (20 mL) at $0^{\circ} \mathrm{C}$ and stirred for 20 min . A suspension of 4 -toluenesulfonyl chloride (5.05 g , $26.5 \mathrm{mmol})$ in toluene (15 mL) was added dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 35 min then allowed to warm to rt slowly over 40 min and stirred for a further 1 h 30 min . $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added to the reaction and the product was extracted with EtOAc ($5 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (10 mL) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/heptane) afforded tosylate S4 (4.40 g, 98\%) as a colourless oil. $\mathrm{R}_{f}=0.49$ (40\% EtOAc/heptane). IR (film)/cm ${ }^{-1}$ 2972, 2903, 1593, 1566, 1468, 1443, 1389, 1314, 1270, 1231, 1185, 1064, 1029, 938, 908, 859, 829, 737, 722, 697, 677. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}), 7.43-7.39(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $2 \times \mathrm{Ts}-\mathrm{H}), 7.29-7.19(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}-\mathrm{H}), 4.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 4.21-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{TsOCH}_{2}\right)$, $3.81-3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $144.8\left(\mathrm{Ts}-\mathrm{C}_{\mathrm{q}}\right)$,
 126.9 (Ar-C), $76.3\left(\mathrm{SCH}_{2} \mathrm{O}\right)$, $68.7\left(\mathrm{SCH}_{2} \mathrm{OCH}_{2}\right), 65.7\left(\mathrm{TsOCH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. HRMS (CI) m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}_{2}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 356.0990; Found: $356.0997\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

2-((Phenylthio)methoxy)ethyl 4-methylbenzenesulfonate (4b)

meta-Chloroperbenzoic acid ($8.34 \mathrm{~g}, 37.2 \mathrm{mmol}$) was added to a solution of sulfide S4 ($4.20 \mathrm{~g}, 12.4 \mathrm{mmol}$) in dichloromethane (65 mL) at $0^{\circ} \mathrm{C}$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ $(60 \mathrm{~mL})$ and extracted with dichloromethane $(5 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{NaOH}(3 \times 30 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($50 \% \mathrm{EtOAc} / \mathrm{heptane}$) afforded sulfone $4 \mathrm{~b}\left(4.27 \mathrm{~g}, 93 \%\right.$) as a white solid, $\mathrm{mp}=82-83^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.19$ (40% EtOAc/heptane). IR (film)/cm ${ }^{-1} 3071,1594,1493,1445,1419,1323,1296,1251,1149,1127$, 1080, 1016, 927, 939, 893, 818, 803, 705. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.90(2 \mathrm{H}, \mathrm{m}$,
K. F. Morgan, I. A. Hollingsworth, J. A. Bull
$2 \times$ Ts-H), $7.77(2 \mathrm{H}, \mathrm{dt}, J=8.3,2.1 \mathrm{~Hz}, 2 \times \mathrm{Ph}-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{tt}, J=7.4,1.3 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.61-7.56$ ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}$), 7.35-7.31 (2 H, m, $2 \times \mathrm{Ts}-\mathrm{H}), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 4.18-4.15(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{TsOCH}_{2}\right), 4.10-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right) .2 .45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0$ $\left(\mathrm{Ar}_{\mathrm{C}}^{\mathrm{q}}\right), 137.0\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 134.2(\mathrm{Ph}-\mathrm{C}), 132.8\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 129.9(2 \times \mathrm{Ar}-\mathrm{C}), 129.3(2 \times \mathrm{Ar}-\mathrm{C}), 128.8$ $(2 \times \mathrm{Ar}-\mathrm{C}), 127.9(2 \times \mathrm{Ar}-\mathrm{C}), 86.2\left(\mathrm{SCH}_{2} \mathrm{O}\right), 70.7\left(\mathrm{SCH}_{2} \mathrm{OCH}_{2}\right), 68.4\left(\mathrm{TsOCH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.0442; Found: $393.0451[\mathrm{M}+\mathrm{Na}]^{+}$.

2-(Phenylsulfonyl)oxetane (1b)
A solution of LiHMDS (0.61 M in THF, $12.2 \mathrm{~mL}, 7.4 \mathrm{mmol}$) was added dropwise to a solution of sulfone $\mathbf{4 b}(2.50 \mathrm{~g}, 6.75 \mathrm{mmol})$ in THF $(240 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for 1 h. Reaction quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \times 50 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/heptane) afforded oxetane 1b $(1.01 \mathrm{~g}, 75 \%)$ as a white solid, $\mathrm{mp}=87-88^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.23\left(40 \%\right.$ EtOAc/heptane). IR (film)/cm ${ }^{-1} 2996$, 2980, 2908, 1583, 1478, 1445, 1301, 1288, 1266, 1144, 1084, 1026, 977, 901, 762, 730. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01-7.97(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.62-7.56$ ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}$), $5.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1,6.0 \mathrm{~Hz}, \mathrm{OCHS}$), 4.81-4.76 (1 H, m, OCHH), 4.67-4.62 $(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.16-3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 134.2$ ($\mathrm{Ar}-\mathrm{C}$), $129.5(2 \times \mathrm{Ar}-\mathrm{C}), 129.2(2 \times \mathrm{Ar}-\mathrm{C}), 94.1(\mathrm{OCHS}), 71.4\left(\mathrm{OCH}_{2}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 199.0423; Found: $199.0423[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of 2-[(4-chlorophenyl)sulfonyl] oxetane 1c

Chloromethyl 4-chlorophenyl sulfide (2c)
Potassium carbonate ($109.7 \mathrm{~g}, 795 \mathrm{mmol}$) was added to a solution of 4-chloro benzene thiol $\mathbf{S 5}(95 \mathrm{~g}, 722 \mathrm{mmol})$ in acetone (1.1 L) followed by Mel $(50.5 \mathrm{~mL}$, 811 mmol) and the reaction stirred at rt for 4 h . The reaction was filtered through celite and the solvent removed under reduced pressure. The crude material was dissolved in diethyl ether $(300 \mathrm{~mL})$ and washed with $5 \% \mathrm{NaOH}(3 \times 150 \mathrm{~mL})$. The combined aqueous layers were extracted with ether $(2 \times 100 \mathrm{~mL})$ then the combined organics were washed with brine $(100 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and solvent removed under reduced pressure to afford 4-chlorophenyl methyl sulfide S6 ($96.5 \mathrm{~g}, 84 \%$) as a yellow liquid which was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.20(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right)$.
N -Chlorosuccinimide ($9.26 \mathrm{~g}, 69 \mathrm{mmol}$) was added portionwise to a solution of 4-chloro phenyl methyl sulfide $\mathbf{S 6}(10 \mathrm{~g}, 63 \mathrm{mmol})$ in carbon tetrachloride (65 mL). The reaction was stirred at rt for 19 h then filtered through a short pad of silica, eluting with $\mathrm{CCl}_{4}(30 \mathrm{~mL})$, and the solvent removed under reduced pressure to afforded chloromethyl 4-chlorophenyl sulfide 2c (11.5 g, 94\%) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{Cl}\right)$. The observed data $\left({ }^{1} \mathrm{H}\right)$ was consistent with that reported in the literature. ${ }^{5}$

2-(((4-Chloropheny)thio)methoxy)ethanol (3c)
Sodium hydride (60% in mineral oil, $1.56 \mathrm{~g}, 38.9 \mathrm{mmol}$) was added to ethylene glycol (200 mL) at $0^{\circ} \mathrm{C}$ and stirred for 30 min . Sodium iodide $(5.83 \mathrm{~g}, 38.9 \mathrm{mmol})$ was added followed by chloromethyl 4-chlorophenyl sulfide $\mathbf{2 c}(6.26 \mathrm{~g}, 32.4$ mmol) using DMF (5 mL) to aid transfer. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h then warmed to rt for 12 h . The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and the mixture extracted with EtOAc $(4 \times 75 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (50% EtOAc/hexane) afforded alcohol 3c ($5.27 \mathrm{~g}, 74 \%$) as a colourless oil. $\mathrm{R}_{f}=0.31$ (50% EtOAc/hexane). IR (film)/cm ${ }^{-1}$ 3388, 2934, 2872, 1481, 1392, 1313, 1095, 1059, 1013, 816, 683. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.36(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.31-7.23(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 5.01(2 \mathrm{H}$, $\mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}$), 3.80-3.69 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б $133.9\left(\mathrm{Ar}_{-\mathrm{C}}^{\mathrm{q}} \mathrm{)}\right.$, $133.0\left(\mathrm{Ar}_{\mathrm{C}} \mathrm{q}\right), 131.6(2 \times \mathrm{Ar}-\mathrm{C}), 129.1(2 \times \mathrm{Ar}-\mathrm{C}), 76.4\left(\mathrm{SCH}_{2} \mathrm{O}\right), 69.8\left(\mathrm{OCH}_{2}\right), 61.5$ $\left(\mathrm{OCH}_{2}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClNaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 241.0060$; Found: 241.0060 $[\mathrm{M}+\mathrm{Na}]^{+}$.

2-(((4-Chlorophenyl)thio)methoxy)ethyl 4-methylbenzenesulfonate (S7) Triethylamine ($6.19 \mathrm{~mL}, 44.4 \mathrm{mmol}$) and trimethylamine hydrochloride $(141 \mathrm{mg}, 1.48 \mathrm{mmol})$ were added to a solution of alcohol $3 \mathrm{c}(3.24 \mathrm{~g}$, $14.8 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for 20 min . 4-Toluenesulfonyl chloride $(5.65 \mathrm{~g}, 29.6 \mathrm{mmol})$ was added portionwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then at rt for 2 h . The reaction was quenched by the addition of sat. aq. NaHCO_{3} $(200 \mathrm{~mL})$ and the mixture extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded tosylate $\mathbf{S 7}$ ($5.39 \mathrm{~g}, 98 \%$) as a colourless oil. $\mathrm{R}_{f}=0.24$ (20% EtOAc/hexane). IR (film) $/ \mathrm{cm}^{-1} 2920,1601,1482$, $1358,1180,1095,1093,1017,922,820,776,668,559 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(2 \mathrm{H}, \mathrm{d}$,
$J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}), 7.38-7.31(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ts}-\mathrm{H}+2 \times \mathrm{Ar}-\mathrm{H}), 7.26-7.20(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.92$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}$), 4.23-4.19 (2 H, m, TsOCH 2$), 3.84-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9\left(\mathrm{Ts}-\mathrm{C}_{\mathrm{q}}\right)$, $133.7\left(\mathrm{Ar}_{\mathrm{C}}^{\mathrm{q}}\right.$), $133.0\left(\mathrm{Ts}-\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 131.7$ $(2 \times \mathrm{Ar}-\mathrm{C}), 129.8(2 \times \mathrm{Ar}-\mathrm{C}), 129.0(2 \times \mathrm{Ar}-\mathrm{C}), 127.9(2 \times \mathrm{Ar}-\mathrm{C}), 76.3\left(\mathrm{SCH}_{2} \mathrm{O}\right), 68.6\left(\mathrm{SCH}_{2} \mathrm{OCH}_{2}\right)$, $65.6\left(\mathrm{TsOCH}_{2}\right)$, $21.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{CINO}_{4} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 390.0595$; Found: $390.0595\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

2-(((4-Chlorophenyl)sulfonyl)methoxy)ethyl 4-methylbenzenesulfonate

 (4c)meta-Chloroperbenzoic acid (7.5 g 43.5 mmol) was added to a solution of sulfide $\mathbf{S 7}(5.39 \mathrm{~g}, 14.5 \mathrm{mmol})$ in dichloromethane $(75 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 5 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(125 \mathrm{~mL})$ and extracted with dichloromethane $(6 \times 35 \mathrm{~mL})$. The combined organic layers were washed with 1 M NaOH $(3 \times 25 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (50% EtOAc/hexane) afforded sulfone 4c ($5.58 \mathrm{~g}, 95 \%$) as a white solid, $\mathrm{mp}=87-88{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.19$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$). IR (film) $/ \mathrm{cm}^{-1} 3130,2952,2892,1578,1495,1474,1423,1397,1357,1323,1291,1135,1108,1040$, 1017, 948, 804, 728, 701, 686. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H})$, $7.77(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.54(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}), 7.35(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $2 \times \mathrm{Ar}-\mathrm{H}), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2}\right), 4.18-4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.1\left(\mathrm{Ts}_{\mathrm{C}} \mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{Ar}_{\mathrm{C}}^{\mathrm{q}} \mathrm{)}\right), 135.2\left(\mathrm{Ts}-\mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 130.4(2 \times \mathrm{Ar}-\mathrm{C}), 129.9$ $(2 \times \mathrm{Ar}-\mathrm{C}), 129.6(2 \times \mathrm{Ar}-\mathrm{C}), 127.9(2 \times \mathrm{Ar}-\mathrm{C}), 86.0\left(\mathrm{SCH}_{2} \mathrm{O}\right), 70.6\left(\mathrm{TsOCH}_{2} \mathrm{CH}_{2}\right), 68.4\left(\mathrm{TsOCH}_{2}\right)$, $21.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{CINaO}_{6} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 427.0047$ Found: 427.0044 $[\mathrm{M}+\mathrm{Na}]^{+}$.

2-((4-Chlorophenyl)sulfonyl)oxetane (1c)
A solution of LiHMDS (0.61 M in THF, $4.45 \mathrm{~mL}, 2.72 \mathrm{mmol}$) was added dropwise to a solution of sulfone $4 \mathrm{c}(0.99 \mathrm{~g}, 2.47 \mathrm{mmol})$ in $\mathrm{THF}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for 1 h . Reaction quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(8 \times 20 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded oxetane 1c ($0.48 \mathrm{~g}, 84 \%$) as a white solid, $\mathrm{mp}=91-93^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.36$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$). IR (film) $/ \mathrm{cm}^{-1} 3092,2977,2927,1654,1581,1474,1393,1312,1273,1144,1087,1010,976,940$, 897, $843,712 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.56(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), $5.37(1 \mathrm{H}, \mathrm{dd}, J=7.6,5.4 \mathrm{~Hz}, \mathrm{OCHS}), 4.83-4.77(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.66(1 \mathrm{H}$, $\mathrm{dt}, J=8.6,6.1 \mathrm{~Hz}, \mathrm{OCHH}), 3.18-3.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2$ $\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{Ar}-\mathrm{C}_{q}\right), 130.9(2 \times \mathrm{Ar}-\mathrm{C})$, $129.5(2 \times \mathrm{Ar}-\mathrm{C}), 94.0(\mathrm{OCHS}), 71.5\left(\mathrm{OCH}_{2}\right), 22.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 233.0034$ Found: 233.0034 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of 2-(Oxetan-2-ylsulfonyl)pyridine 1d

2-((Chloromethly)thio)pyridine (2d)

Sodium hydride (60% in mineral oil, $0.79 \mathrm{~g}, 19.8 \mathrm{mmol}$) was added to a solution of 2mercaptopyridine $\mathbf{S 8}(2.0 \mathrm{~g}, 18.0 \mathrm{mmol})$ in DMF (50 mL) at $-5^{\circ} \mathrm{C}$ and stirred for 10 min . A solution of chloroiodomethane ($1.96 \mathrm{~mL}, 27 \mathrm{mmol}$) in DMF $(7 \mathrm{~mL})$ was added in one portion and stirred for 1 h 45 min at rt. The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$ and diluted with EtOAc $(30 \mathrm{~mL})$ then extracted with EtOAc $(4 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure to give an orange oil. The crude product consisting of a 9:1 mixture of 2-((chloromethly)thio)pyridine 2d and bis(pyridine-2-ylthio)methane $(2.6 \mathrm{~g}, 91 \%, 9: 1)$ was used without further purification. $\mathrm{R}_{f}=0.80$ ($40 \% \mathrm{EtOAc} /$ heptane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56-8.54(1 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.4,1.9 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}), 7.27$ ($1 \mathrm{H}, \mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}$), 7.11 ($1 \mathrm{H}, \mathrm{ddd}, J=7.4,4.9,1.0 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}$), $5.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7$ ($\mathrm{Py}-\mathrm{C}_{\mathrm{q}}$), 149.9 (Py-C), 136.6 (Py-C), 122.9 (Py-C), 120.8 (Py-C), $45.3\left(\mathrm{SCH}_{2} \mathrm{Cl}\right)$. The observed data $\left({ }^{1} \mathrm{H}\right)$ was consistent with that reported in the literature. ${ }^{6}$

2-((Pyridine-2-ylthio)methoxy)ethanol (3d)
Sodium hydride (60% in mineral oil, $0.55 \mathrm{~g}, 13.78 \mathrm{mmol}$) was added to ethylene glycol (120 mL) at $0^{\circ} \mathrm{C}$ and stirred for 55 min . Sodium iodide (2.06 g , $13.78 \mathrm{mmol})$ was added followed by 2-((chloromethly)thio)pyridine 2d ($2.0 \mathrm{~g}, 12.53 \mathrm{mmol}$) using ethylene glycol (1 mL) to aid transfer. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 25 min then warmed to rt for 19 h 20 min . The reaction was quenched by the addition of water (150 mL) and the mixture extracted with EtOAc $(10 \times 35 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($0-80 \%$ EtOAc/heptane) afforded alcohol 3 d ($1.46 \mathrm{~g}, 63 \%$) as a colourless oil. $\mathrm{R}_{f}=0.59$ (80% EtOAc/heptane). IR (film)/cm ${ }^{-1} 3344,2925,1656,1577,1454,1416,1281,1102,1060,908,824$, $758,721,678 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46-8.44(1 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0,7.2$, 1.9 Hz, Py-H), $7.29(1 \mathrm{H}, \mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}$, Py-H), $7.04(1 \mathrm{H}, \mathrm{ddd}, J=7.3,5.0,1.0 \mathrm{~Hz}$, Py-H), 5.38 ($2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}$), $3.77-3.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.95(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4\left(\mathrm{Py}_{\mathrm{C}} \mathrm{C}_{\mathrm{q}}\right), 149.5(\mathrm{Py}-\mathrm{C}), 136.5$ ($\mathrm{Py}-\mathrm{C}$), 123.2 ($\mathrm{Py}-\mathrm{C}$), 120.4 (Py-C), $71.9\left(\mathrm{SCH}_{2} \mathrm{O}\right), 70.5$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 61.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 186.0583$ Found: $186.0582[\mathrm{M}+\mathrm{H}]^{+}$.

2-((Pyridin-2-ylthio)methoxy)ethyl 4-methylbenzenesulfonate (S9)

Triethylamine ($4.06 \mathrm{~mL}, 29.2 \mathrm{mmol}$) and trimethylamine hydrochloride (93 mg , $0.97 \mathrm{mmol})$ were added to a solution of alcohol $3 \mathrm{~d}(0.90 \mathrm{~g}, 4.86 \mathrm{mmol})$ in toluene (30 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . A solution of 4-toluenesulfonyl chloride (3.71 g , $19.4 \mathrm{mmol})$ in toluene (10 mL) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 35 min then at rt for 2 h 35 min . The reaction was quenched by the addition of water (50 mL) and the mixture extracted with EtOAc $(7 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (30 mL) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($0-40 \%$ EtOAc/heptane) afforded tosylate $\mathbf{S 9}$ ($1.57 \mathrm{~g}, 95 \%$) as a colourless oil. $\mathrm{R}_{f}=0.36$ (40% EtOAc/heptane). IR (film)/cm ${ }^{-1} 307,2924,1610,1533,1494$, 1453, 1419, 1353, 1281, 1216, 1172, 1119, 1032, 1009, 916, 816, 767, 680. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.43-8.41(1 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 7.76(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.4$, $1.9 \mathrm{~Hz}, \operatorname{Py}-\mathrm{H}$), 7.31 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ts}-\mathrm{H}$), $7.24(1 \mathrm{H}, \mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}), 7.02(1 \mathrm{H}$,
ddd, $J=7.4,4.9,1.0 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}), 5.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right)$, 4.18-4.16 (2 H, m, OCH OH_{2}), 3.79-3.76 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2\left(\mathrm{Py}_{\mathrm{C}} \mathrm{C}_{\mathrm{q}}\right.$, $149.4(\mathrm{Py}-\mathrm{C})$, 144.7 (Ts-C ${ }_{q}$), 136.4 (Py-C), 133.0 (Ts-C ${ }_{q}$), 129.7 ($2 \times$ Ts-C), 127.8 ($2 \times$ Ts-C), 122.8 (Py-C), 120.3 (Py-C), $71.8\left(\mathrm{SCH}_{2} \mathrm{O}\right), 68.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$. HRMS (NSI) m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 340.0672$ Found: $340.0674[\mathrm{M}+\mathrm{H}]^{+}$.

2-((Pyridin-2-ylsulfonyl)methoxy)ethyl 4-methylbenzenesulfonate (4d)

meta-Chloroperbenzoic acid (3.05 g 12.4 mmol) was added to a solution of sulfide $\mathbf{S 9}(1.40 \mathrm{~g}, 4.12 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 2 h then at rt for a further 2.5 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ and extracted with dichloromethane $(5 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($50 \% \mathrm{EtOAc} /$ heptane) afforded sulfone $4 \mathrm{~d}(1.31 \mathrm{~g}, 86 \%$) as a white solid, $\mathrm{mp}=95-9 \mathrm{~F}^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.46(40 \% \mathrm{EtOAc} / \mathrm{heptane}) . \mathrm{IR}($ film $) / \mathrm{cm}^{-1} 3069,1598,1454,1431,1358,1323$, $1238,1173,1127,1104,1032,990,926,836,824,808,736,663 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79-8.77(1 \mathrm{H}, \mathrm{m}$, Py-H), $8.11(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{td}, J=7.8,1.7 \mathrm{~Hz}$, Py-H), 7.73 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times$ Tol-H), $7.59(1 \mathrm{H}, \mathrm{ddd}, J=7.8,4.7,1.3$, Py-H), 7.33 ($2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, \mathrm{Tol}-\mathrm{H}), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 4.10-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}\right), 4.05-4.03(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$), $2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6$ ($\mathrm{Py}-\mathrm{C}_{\mathrm{q}}$), 150.4 (Py-C), $145.0\left(\mathrm{Ts}-\mathrm{C}_{\mathrm{q}}\right), 138.2$ (Py-C), $132.7\left(\mathrm{Ts}_{\mathrm{c}}^{\mathrm{q}} \mathrm{q}\right), 129.8(2 \times \mathrm{Ts}-\mathrm{C}), 127.8(2 \times \mathrm{Ts}-\mathrm{C}), 127.6$ (Py-C), 123.8 (Py-C), $82.9\left(\mathrm{SCH}_{2} \mathrm{O}\right), 70.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}\right), 68.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}\right), 21.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 372.0570$ Found: $372.0576[\mathrm{M}+\mathrm{H}]^{+}$.

2-(Oxetan-2-ylsulfonyl)pyridine (1d)

A solution of LiHMDS (0.61 M in THF, $4.08 \mathrm{~mL}, 2.49 \mathrm{mmol}$) was added dropwise to a solution of sulfone $4 \mathrm{~d}(0.56 \mathrm{~g}, 1.52 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for 1 h . Reaction quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \times 30 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/heptane) afforded oxetane 1d $(0.25 \mathrm{~g}, 81 \%)$ as a white solid, $\mathrm{mp}=64-65^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.16$ ($40 \% \mathrm{EtOAc} / \mathrm{heptane}$). IR (film) $/ \mathrm{cm}^{-1} 3101$, 3051, 2974, 2904, 1580, 1426, 1415, 1311, 1272, 1230, 1161, 1108, 1040, 1024, 991, 906, 792, 734, 682. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77-8.75(1 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}$, Py-H), $7.97(1 \mathrm{H}, \mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{ddd}, J=7.7,4.7,1.2, \mathrm{Py}-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{dd}$, $J=8.0,5.2 \mathrm{~Hz}, \mathrm{OCHS}), 4.93-4.87(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.71-4.66(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.31-3.15(2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1\left(\mathrm{Py}-\mathrm{C}_{q}\right), 150.4$ (Py-C), 138.0 (Py-C), 127.6 (Py-C), 124.3 (Py-C), 91.9 (OCHS), $72.0\left(\mathrm{OCH}_{2}\right), 21.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 200.0386$; Found: $200.0389[\mathrm{M}+\mathrm{H}]^{+}$.

Optimisation of Deprotonation of 1a for Reaction with Electrophiles

With LiHMDS (Conditions A, Table 1)

Under the initial conditions oxetane 1a was treated with various bases at T1 for time 1 prior to the addition of Mel to form oxetane 5. The reaction was then warmed to T2 over time 2. Entries 1-4 in table S2 show that under these conditions LiHMDS was the best base affording a yield of 76%. Warming to $0^{\circ} \mathrm{C}$ was required; quenching the reaction at $-78^{\circ} \mathrm{C}$ afforded a much lower yield (entry 5). Increasing the deprotonation time to 30 min did increase the yield to 84% (entry 6). The equivalents of LiHMDS employed were also investigated however it was found that increasing the equivalents to 1.3 and 1.5 did not affect the reaction yield. The addition of the substrate in THF to a solution of the base was favourable over the addition of the base to the substrate (entries 6 and 7). Finally we investigated the addition of Mel immediately after the addition of base. Pleasingly this increased the yield of the reaction with Mel to 90% (entry 8), and provided our optimised set of conditions A.

Table S2: Selected optimisation: deprotonation of oxetane 1a to form oxetanes 5.

entry ${ }^{\text {a }}$	base	order of addition b	temperature 1 (T1, ${ }^{\circ} \mathrm{C}$)	temperature 2 ($\mathrm{T} 2^{\circ} \mathrm{C}$)	time 1 (min)	time 2 (min)	Yield ${ }^{\text {c }}$
1	LDA	B	-78	-78 to 0	15	45	62
2	$n \mathrm{BuLi}$	B	-78	-78 to 0	15	45	49
3	sBuLi	B	-78	-78 to 0	15	45	20
4	LiHMDS	B	-78	-78 to 0	15	45	76
5	LiHMDS	B	-78	-78	15	45	22
6	LiHMDS	B	-78	-78 to 0	30	45	84
7	LiHMDS	A	-78	-78 to 0	30	45	61
8	LiHMDS	B	-78	-78 to 0	90		90

${ }^{a}$ Conditions: oxetane 1a (0.24 mmol), base (1.1 equiv), at temp 1 for time 1; Mel (2 equiv) added then warmed to temp 2 for time 2. ${ }^{b}$ Order of addition. A: addition of the base to a solution of the substrate; B : addition of the substrate to a solution of the base. ${ }^{c}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR with respect to $1,3,5$ trimethoxybenzene as an internal standard.

With nBuLi (Conditions B, Table 1)

During the course of this work, Capriati and co-workers reported the deprotonation of 2-phenyloxetane with sBuLi. ${ }^{7}$ Consequently sBuLi was further examined to deprotonate the sulfonyl oxetane. A summary of the results is shown in Table S3.

Table S3: Selected optimisation: deprotonation of oxetane 1a to form oxetanes 5.

entry ${ }^{\text {a }}$	base	equiv. base	time 1 (min)	time 2 (min)	Temperature 2 $\left({ }^{\circ} \mathrm{C}\right)$	Yield ${ }^{\text {b }}$		
						5	1a	10
1	sBuLi	1.1	5	25	-78	71	27	1
2	$s \mathrm{BuLi}$	1.2	5	25	-78	77	4	3
3	sBuLi	1.4	5	25	-78	83	6	3
4	sBuLi	1.4	10	25	-78	84	4	12
5	sBuLi	1.1	10	25	-78	80	6	4
6	sBuLi	1.4	5	25	-78 to rt	68	0	20
7	$s \mathrm{BuLi}$	1.4	35		-78	74	3	18
8	$n \mathrm{BuLI}$	1.2	5	25	-78	64	21	0
9	$n \mathrm{BuLi}$	1.3	5	25	-78	86	7	5
10	$n \mathrm{BuLi}$	1.4	5	25	-78	85	3	10

${ }^{\text {a }}$ Conditions: base added to oxetane $1 \mathrm{a}(0.24 \mathrm{mmol})$, at $-78^{\circ} \mathrm{C}$ for time 1 ; Mel (2 equiv) added then warmed to temp 2 for time 2. ${ }^{b}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR with respect to $1,3,5$ trimethoxybenzene as an internal standard.

The initial conditions employed 1.1 equivalents of $s B u L i$ followed by the addition of 2 equivalents of Mel after 5 min . (table S3, entry 1). Two products were obtained, the desired methylated oxetane 5 but also 1% of the double methylated oxetane 10, along with remaining 1a. Increasing the equivalents of $s B$ BLi employed from 1.1 to 1.2 and 1.4 increased the yield of the desired product however unreacted starting material and double methylated oxetane were also observed (table S3, entries 2 and 3). This implies that the second methylation occurs before all $1 \mathbf{a}$ is consumed. Increasing the deprotonation time (time 1) afforded an increase in formation of oxetane 10 (entry 4). Using 1.1 equiv base with the longer deprotonation did reduce the formation of 10 but decreased the yield of the desired oxetane 5 as well (entry 5). Warming the reaction to rt immediately after addition of Mel significantly increased the amount of oxetane 10 formed and decreased the yield of oxetane 5, however for the first time no unreacted starting material was observed (entry 6). The addition of Mel immediately after the addition of sBuLi was investigated (entry 7) but this was not an improvement on previous reaction conditions.

As a result we further investigated the use of $n \mathrm{BuLi}$ (entries 9-10), which displayed reduced formation of 10. The optimal yield of oxetane $\mathbf{5}$ was achieved using 1.3 equiv nBuLi which limited the amounts of starting material and double methylated product whilst improving the yield of desired product to 86% (entry 9). This provided the second set of optimised conditions (conditions B).

Synthesis of 2,2-disubstituted oxetanes 5-9 from oxetane 1a

General Procedure A (Table S2, entry 9; Conditions B Table 2)

A solution of oxetane 1a ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$) in THF (1 mL) was added dropwise to a solution of LiHMDS (1 M in THF, $0.25 \mathrm{~mL}, 0.25 \mathrm{mmol}$) in THF (0.95 mL) at $-78^{\circ} \mathrm{C}$. The electrophile (for Mel: $0.03 \mathrm{~mL}, 0.47 \mathrm{mmol}$) was then added immediately and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , before being warmed to $0^{\circ} \mathrm{C}$ in an ice bath for 15 min . The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane 5.

General Procedure B (Table S3, entry 8; Conditions B Table 2)

n BuLi (1.60 M in hexane, $0.18 \mathrm{~mL}, 0.28 \mathrm{mmol}$) was added dropwise to a solution of oxetane 1a ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) in THF (1.2 mL) at $-78^{\circ} \mathrm{C}$ and stirred at $-78^{\circ} \mathrm{C}$ for 5 min . The electrophile (for Mel: $0.03 \mathrm{~mL}, 0.47 \mathrm{mmol}$) was added and the reaction stirred at $-78^{\circ} \mathrm{C}$ for 25 min . The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography on basic alumina (activity IV) or by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane 5.

2-Methyl-2-[(4-methylphenyl)sulfonyl]oxetane (5)

Prepared according to the General Procedure A described above using methyl iodide ($0.03 \mathrm{~mL}, 0.47 \mathrm{mmol}$). Purification by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane $5(51 \mathrm{mg}, 93 \%)$ as a yellow solid. $\mathrm{R}_{f}=0.27$ (20\% EtOAc/hexane). IR (film) $/ \mathrm{cm}^{-1} 3064,2978,2906,1602,1444,1375,1287,1141$, $1113,1075,973,941,864,749 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H})$, $7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.56-4.51(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.45(1 \mathrm{H}, \mathrm{dt}, J=8.5,5.4 \mathrm{~Hz}$, $\mathrm{OCHH}), 3.25\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.4,8.5,5.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.45(3 \mathrm{H}, \mathrm{s}$, Ar- CH_{3}), $1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1\left(\mathrm{Ar}_{\mathrm{C}}\right)$), 130.9 ($\mathrm{Ar}-\mathrm{C} q$), 130.3 $(2 \times \mathrm{Ar}-\mathrm{C}), 129.6(2 \times \mathrm{Ar}-\mathrm{C}), 100.3\left(\mathrm{C}_{\mathrm{q}}\right), 67.3\left(\mathrm{OCH}_{2}\right), 28.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{Ar}-\mathrm{CH}_{3}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 227.0736$; Found: $227.0736[\mathrm{M}+\mathrm{H}]^{+}$.

2-Ethyl-2-[(4-methylphenyl)sulfonyl]oxetane (6)
Prepared according to the General Procedure A described above using ethyl iodide ($0.04 \mathrm{~mL}, 0.46 \mathrm{mmol}$). Purification by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane $6(47 \mathrm{mg}, 85 \%)$ as a white solid. $\mathrm{R}_{f}=0.44$ (40\% EtOAc/hexane). IR (film) $/ \mathrm{cm}^{-1} 2971,2899,1596,1460,1309,1299.1288$, 1237,1113, 1076, 1035, 967, 952, 931, 853, 813, 707. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (2 H, d, $J=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \times \operatorname{Ar}-\mathrm{H}), 4.55-4.50(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.38(1 \mathrm{H}, \mathrm{dt}$, $J=8.7,5.6 \mathrm{~Hz}, \mathrm{OCHH}), 3.16-3.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.91-2.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.45(3 \mathrm{H}$, s, Ar-CH3 $), 2.00-1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHHCH}_{3}\right), 1.76-1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHHCH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\mathrm{CCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0\left(\mathrm{Ar}_{\mathrm{C}} \mathrm{C}\right), 131.5\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 130.4(2 \times \mathrm{Ar}-\mathrm{C}), 129.5$ $(2 \times \mathrm{Ar}-\mathrm{C}), 103.5\left(\mathrm{C}_{\mathrm{q}}\right), 67.8\left(\mathrm{OCH}_{2}\right), 26.2\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 24.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $21.6\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 7.1\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 241.0893$; Found: $241.0894[\mathrm{M}+\mathrm{H}]^{+}$.

2-Allyl-2-tosyloxetane (7)

Prepared according to the General Procedure A described above using allyl bromide ($0.04 \mathrm{~mL}, 0.48 \mathrm{mmol}$). Purification by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane $7(54 \mathrm{mg}, 91 \%)$ as an orange solid. $\mathrm{R}_{f}=0.28$ ($20 \% \mathrm{EtOAc} /$ hexane). IR (film) $/ \mathrm{cm}^{-1} 2970,2899,1641,1597,1403,1300$, 1288, 1235, 1156, 1106 1070, 944, 857, 814, 710. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(2 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), $7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 6.08-5.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 5.33-5.24(2 \mathrm{H}$, $\left.\mathrm{m},=\mathrm{CH}_{2}\right), 4.46(1 \mathrm{H}$, ddd, $J=8.6,7.5,5,5 \mathrm{~Hz}, \mathrm{OCHH}), 4.32(1 \mathrm{H}, \mathrm{ddd}, J=8.9,5.7,5,5 \mathrm{~Hz}, \mathrm{OCHH})$, 3.06 (1 H , ddd, $J=12.7,8.6,5.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHH}$), $2.87\left(1 \mathrm{H}, \mathrm{ddd}, J=12.7,8.9,7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHH}\right.$), $2.61\left(1 \mathrm{H}, \mathrm{dd}, J=14.6,8.8 \mathrm{~Hz}, \mathrm{CHHCH}=\mathrm{CH}_{2}\right), 2.47-2.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}+\mathrm{CHHCH}=\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2\left(\mathrm{Ar}_{\mathrm{C}}^{\mathrm{q}}\right.$), $131.0\left(\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}\right), 130.4(2 \times \mathrm{Ar}-\mathrm{C}), 130.1(\mathrm{CH}=), 129.6(2 \times \mathrm{Ar}-\mathrm{C})$, $121.0\left(=\mathrm{CH}_{2}\right), 101.9\left(\mathrm{C}_{\mathrm{q}}\right), 67.7\left(\mathrm{OCH}_{2}\right), 37.5\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 24.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 253.0893$; Found: $253.0899[\mathrm{M}+\mathrm{H}]^{+}$.

2-(3-Fluorobenzyl)-2-tosyloxetane (8)

Prepared according to the General Procedure B described above using 3 -fluorobenzyl bromide ($0.06 \mathrm{~mL}, 0.48 \mathrm{mmol}$). Purification by flash chromatography on basic alumina (activity IV) (10-50\% EtOAc/hexane) afforded oxetane 8 ($68 \mathrm{mg}, 90 \%$) as a white solid. $\mathrm{R}_{f}=0.26$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$). IR (film)/cm ${ }^{-1} 2970$, 2899, 2255, 1616, 1590, 1487, 1449, 1301, 1255, 1155, 1104, 952, 941, 906, 861, $725,703 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.40(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $2 \times$ Ar-H), 7.33-7.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.09-6.98 ($3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ar}-\mathrm{H}$), 4.28-4.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), 3.83 ($1 \mathrm{H}, \mathrm{dt}, J=9.0,5.5 \mathrm{~Hz}, \mathrm{OCHH}$), $3.14(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{CCHH}), 3.04-2.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right)$, $2.93(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{CCHH}), 2.54-2.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right) 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=245.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), 145.3 ($\mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), 136.7 (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}_{\mathrm{q}}$), 131.1 ($\mathrm{Ar}^{2} \mathrm{C}_{\mathrm{q}}$), 130.4 ($2 \times$ Tol-C), 129.8 ($\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}$, Ar-C), 129.7 ($2 \times$ Tol-C), 126.3 (d $\left.J_{C-F}=2.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 117.4\left(\mathrm{~d}, J_{\mathrm{C}-F}=21.3 \mathrm{~Hz}\right.$, Ar-C), $114.3\left(\mathrm{~d}, J_{C-F}=21.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right) 102.1\left(\mathrm{C}_{\mathrm{q}}\right), 67.5$ $\left(\mathrm{OCH}_{2}\right), 38.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 24.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 321.0955 ; Found: $321.0978[\mathrm{M}+\mathrm{H}]^{+}$.

2-Methyl-1-(2-tosyloxetan-2-yl)propan-1-ol (9)

Prepared according to the General Procedure B using isobutyraldehyde (0.04 mL , 0.48 mmol). Purification by filtration through a pad of basic alumina (activity IV) eluting with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ afforded oxetane $9\left(57 \mathrm{mg}, 86 \%\right.$, dr 1: 0.9). $\mathrm{R}_{f}=0.28(20 \%$ EtOAc/hexane). IR (film)/cm ${ }^{-1} 3504,2966,2905,1596,1493,1448,1365,1311,1299$, 1287, 1154, 1134, 1067, 935, 815, 713. Major ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ ($2 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{dt}, J=9.0,5.7 \mathrm{~Hz}, \mathrm{OCHH})$, 4.14-4.03 (1 H, m, OCHH), 3.72-3.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}$), $3.24\left(1 \mathrm{H}, \mathrm{dt}, J=12.4,8.6, \mathrm{OCH}_{2} \mathrm{CHH}\right.$), 2.92-2.85 (1 H, m, OCH 2 CHH), $2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.42-2.36\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.02(3 \mathrm{H}, \mathrm{d}$, $\left.\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz,CDCl}_{3}\right) ~ \delta 145.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.4(2 \times \mathrm{Ar}-\mathrm{C}), 129.5(2 \times \mathrm{Ar}-\mathrm{C}), 104.5\left(\mathrm{C}_{\mathrm{q}}\right), 74.4(\mathrm{HOCH}), 69.0\left(\mathrm{OCH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, 23.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.7\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right)$. Minor ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.50-4.38(2 \mathrm{H}, \mathrm{m}$, OCH_{2}), 3.72-3.68 (1 H, m, HOCH), 3.19-2.98 ($3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$), $2.48(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$) $145.4\left(\mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(2 \times \mathrm{Ar}-\mathrm{C})$, $129.5(2 \times \mathrm{Ar}-\mathrm{C}), 103.7\left(\mathrm{C}_{\mathrm{q}}\right), 74.4(\mathrm{HOCH}), 68.7$ $\left(\mathrm{OCH}_{2}\right), 29.8\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, 23.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.7\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m/z Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 285.1161; Found: $285.1179[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of Oxetane 10 by Directed ortho-Metallation

2-((2,4-Dimethylphenyl)sulfonyl)-2-methyloxetane (10)

n BuLi (1.60 M in hexane, $0.16 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added dropwise to a solution of oxetane $5(50.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Mel ($0.027 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added and the reaction stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by the addition of sat. aq. $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography on basic alumina (activity IV) ($25 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) afforded oxetane 10 as a colourless oil. $\mathrm{R}_{f}=0.28(20 \%$ EtOAc/hextane). IR (film)/cm ${ }^{-1}$ 2974, 2931, 2900, 1602, 1567, 1440, 1373, 1294, 1212, 1174, 1107, 1050, 973, 948, 865, 744, 675. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.19-7.14 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 4.57-4.50(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.49-4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.31-3.22$, $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.78\left(1 \mathrm{H}, \mathrm{dt}, J=12.6,8.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHH}\right), 2.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.39(3 \mathrm{H}, \mathrm{s}$, Ar-CH3), $1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.9\left(\mathrm{Ar}_{\mathrm{C}} \mathrm{C}\right), 141.3\left(\mathrm{Ar}_{\mathrm{C}} \mathrm{C}_{\mathrm{q}}\right), 133.6$ (Ar-C), 132.6 (Ar-C), $129.6\left(\right.$ Ar-C $\left.{ }_{q}\right) 126.8(\mathrm{Ar}-\mathrm{C}), 101.6\left(\mathrm{C}_{\mathrm{q}}\right), 67.3\left(\mathrm{OCH}_{2}\right), 29.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 22.1$ $\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 21.3\left(\mathrm{Ar}-\mathrm{CH}_{3}\right)$. HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 241.0893$; Found: $241.0927[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of Oxetanes 11-12 by Fe-Catalysed Cross-Coupling of Oxetane 1c with Grignard Reagents

Conditions reported by Fürstner were employed. ${ }^{8}$

2-((4-Hexylphenyl)sulfonyl)oxetane (11)
n Hexylmagnesium bromide ($0.16 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added dropwise to a solution of oxetane $1 \mathrm{c}(48 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{acac})_{3}(3.6 \mathrm{mg}$, 0.01 mmol) in THF/NMP ($9: 1,2 \mathrm{~mL}$). The reaction was stirred at rt for 15 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 7 \mathrm{~mL})$. Combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (0-20\% EtOAc/heptane) afforded oxetane $11(41 \mathrm{mg}, 70 \%)$ as a colourless oil. $\mathrm{R}_{f}=0.18(20 \%$ EtOAc/heptane). IR (film)/ cm^{-1} 2928, 2858, 2257, 1596, 1465, 1408, 1309, 1232, 1148, 1089, 1029, 984, 908, 816, 727. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.38(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), $5.37(1 \mathrm{H}, \mathrm{dd}, J=6.7,6.2 \mathrm{~Hz}, \mathrm{OCHS}), 4.80-4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.66-4.61$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), 3.13-3.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.64(2 \mathrm{H}, \mathrm{qn}$, $\left.J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.36-1.28\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 132.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(2 \times \mathrm{Ar}-\mathrm{C}), 129.2(2 \times \mathrm{Ar}-\mathrm{C}), 94.1$ (OCHS), 71.3 $\left(\mathrm{OCH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. HRMS (APCI) m / z Calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 300.1628$; Found: $300.1627\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

2-((4-Hexylphenyl)sulfonyl)oxetane (12)
n Propylmagnesium chloride (1 M in MeTHF, $0.25 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added dropwise to a solution of oxetane 1 c ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathrm{Fe}(\mathrm{acac})_{3}(4 \mathrm{mg}$, 0.01 mmol) in THF/NMP ($9: 1,2 \mathrm{~mL}$). The reaction was stirred at rt for 15 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 7 \mathrm{~mL})$. Combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded oxetane 12 ($37 \mathrm{mg}, 71 \%$) as a colourless oil. $\mathrm{R}_{f}=0.19$ ($\left.20 \% \mathrm{EtOAc} / \mathrm{hexane)} .\mathrm{IR} \mathrm{(film}\right) / \mathrm{cm}^{1}$ 2962, 2932, 2872, 1596, 1444, 1408, 1307, 1274, 1232, 1184, 1146, 1090, 1065, 1029, 939, 910, $843,804,768,694 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.38(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), 5.38 ($1 \mathrm{H}, \mathrm{dd}, J=6.9,6.0 \mathrm{~Hz}, \mathrm{OCHS}$), $4.81-4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), 4.67-4.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), $3.16-3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.68(2 \mathrm{H}, \mathrm{tq}$, $J=7.5,7.4 \mathrm{~Hz}, \mathrm{Ar}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.96\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0$ $\left(\mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(2 \times \mathrm{Ar}-\mathrm{C}), 129.3(2 \times \mathrm{Ar}-\mathrm{C}), 94.0(\mathrm{OCHS}), 71.4\left(\mathrm{OCH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 258.1158; Found: $258.1158\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Preparation of Oxetanes 13-16 by Suzuki Cross-Coupling of Oxetane 1c

Conditions related to those reported by Buchwald were employed, using the S-Phos ligand. ${ }^{9}$

2-([1,1'-Biphenyl]-4-ylsulfonyl)oxetane (13)
Phenylboronic acid ($38 \mathrm{mg}, 0.31 \mathrm{mmol}$) and oxetane 1c ($54 \mathrm{mg}, 0.23 \mathrm{mmol}$) were added to $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol})$, $\mathrm{S}-\mathrm{Phos}(9 \mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.46 \mathrm{mmol})$ and the reaction vessel was placed under N_{2}. The mixture was dissolved in dioxane:water ($4: 1,2.5 \mathrm{~mL}$) and heated to $65^{\circ} \mathrm{C}$ for 3 h 30 min . The crude mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in EtOAc $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($0-100 \%$ EtOAc/heptane) afforded oxetane 13 ($55 \mathrm{mg}, 86 \%$) as a white solid. $\mathrm{R}_{f}=0.39$ (40\% EtOAc/heptane). IR (film) $/ \mathrm{cm}^{-1} 3066,2980,2909,1592,1563,1479,1446$, 1396, 1302, 1144, 1091, 900, 838, 762, 720, 657. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \times \operatorname{Ar}-\mathrm{H}), 7.64-7.59(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.52-7.42$ ($3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ar}-\mathrm{H}$), $5.43(1 \mathrm{H}, \mathrm{dd}, J=7.0,6.5 \mathrm{~Hz}, \mathrm{OCHS}), 4.86-4.81(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.70-4.65$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), 3.18-3.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס $147.3\left(\mathrm{C}_{\mathrm{q}}\right), 139.2$ $\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(2 \times \mathrm{Ar}-\mathrm{C}), 129.1(2 \times \mathrm{Ar}-\mathrm{C})$, $128.7(\mathrm{Ar}-\mathrm{C}), 127.8(2 \times \mathrm{Ar}-\mathrm{C}), 127.4(2 \times \mathrm{Ar}-\mathrm{C})$, $94.1(\mathrm{OCHS}), 71.4\left(\mathrm{OCH}_{2}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}^{+}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 292.1002$; Found $292.1001\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

2-([3',5'-Dimethylbiphenyl]-4-ylsulfonyl)oxetane (14)
3,5 -Dimethylbenzeneboronic acid ($60 \mathrm{mg}, 0.42 \mathrm{mmol}$) and oxetane 1c ($75 \mathrm{mg}, 0.32 \mathrm{mmol}$) were added to $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.016 \mathrm{mmol})$, S-Phos $(12 \mathrm{mg}, 0.032 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(88 \mathrm{mg}, 0.64 \mathrm{mmol})$ and the reaction vessel was placed under Ar. The mixture was dissolved in dioxane:water (4:1, 3.1 mL) and heated to $65^{\circ} \mathrm{C}$ for 5 h . The crude mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in EtOAc $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded oxetane 14 as a colourless oil (83 mg, 86\%). $\mathrm{R}_{f}=0.53$ (40% EtOAc/hexane). IR (film)/cm ${ }^{-1}$ 2972, 2903, 1593, 1443, 1389, 1314, 1270, 1231, 1185 1064, 1029, $982,908,829,737,722,697 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.77$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \times \operatorname{Ar}-\mathrm{H}), 7.23(2 \mathrm{H}, \mathrm{s}, 2 \times \operatorname{Ar}-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{dd}, J=7.4$, $6.0 \mathrm{~Hz}, \mathrm{OCHS}), 4.84-4.77(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.70-4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.19-3.08(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.40\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5\left(\mathrm{C}_{\mathrm{q}}\right), 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 138.6$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.3(\mathrm{Ar}-\mathrm{C}), 129.8(2 \times \mathrm{Ar}-\mathrm{C}), 127.7(2 \times \mathrm{Ar}-\mathrm{C}), 125.2(2 \times \mathrm{Ar}-\mathrm{C}), 94.0$ $(\mathrm{OCHS}), 71.4\left(\mathrm{OCH}_{2}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 21.3\left(2 \times \mathrm{CH}_{3}\right) . \mathrm{HRMS}(\mathrm{El}) \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[M]^{+}: 302.0971$; Found $302.0973[M]^{+}$.

2-([4'-Methoxybiphenyl]-4-ylsulfonyl)oxetane (15)
4-Methoxyphenylboronic acid ($64 \mathrm{mg}, 0.42 \mathrm{mmol}$) and oxetane 1c $(75 \mathrm{mg}, 0.32 \mathrm{mmol})$ were added to $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.016 \mathrm{mmol})$, S-Phos $(12 \mathrm{mg}, 0.032 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(88 \mathrm{mg}, 0.64 \mathrm{mmol})$ and the reaction vessel was placed under Ar. The mixture was dissolved in dioxane:water ($4: 1,3.1 \mathrm{~mL}$) and heated to $65^{\circ} \mathrm{C}$ for 5 h 30 min . The crude mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in EtOAc $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded oxetane 15 as a white solid ($92 \mathrm{mg}, 95 \%$). $\mathrm{R}_{f}=0.34$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$). IR (film)/cm ${ }^{-1}$ 2980, 2909, 2839, 1603, 1591, 1523, 1457, 1425, 1396, 1294, 1136, 1091, 1063, 1012, 982, 936, 907, 849, 819, 751, 712, 682. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \times \mathrm{Ar} \mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), $5.42(1 \mathrm{H}, \mathrm{dd}, J=7.0,6.4 \mathrm{~Hz}, \mathrm{OCHS}), 4.85-4.79(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.70-4.64$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.19-3.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3\left(\mathrm{C}_{\mathrm{q}}\right), 146.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(2 \times \mathrm{Ar}-\mathrm{C}), 128.6(2 \times \mathrm{Ar}-\mathrm{C}), 127.2(2 \times \mathrm{Ar}-\mathrm{C})$, $114.5(2 \times \mathrm{Ar}-\mathrm{C})$, $94.1(\mathrm{OCHS})$, $71.4\left(\mathrm{OCH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (EI) m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 304.0769$; Found $304.0744[\mathrm{M}]^{+}$.

2-([1,1'-Biphenyl]-3-carboxaldehyde-4-ylsulfonyl)oxetane (16)

3-Formylphenylboronic acid ($60 \mathrm{mg}, 0.42 \mathrm{mmol}$) and oxetane 1c (75 mg , 0.32 mmol) were added to $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.016 \mathrm{mmol})$, $\mathrm{S}-\mathrm{Phos}$ (12 mg , $0.032 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(88 \mathrm{mg}, 0.64 \mathrm{mmol})$ and the reaction vessel was placed under Ar. The mixture was dissolved in dioxane:water ($4: 1,3.1 \mathrm{~mL}$) and heated to $65^{\circ} \mathrm{C}$ for 20 h . The crude mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in EtOAc $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. Purification by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$) afforded oxetane 16 as a colourless oil ($57 \mathrm{mg}, 59 \%$). $\mathrm{R}_{f}=0.13$ ($40 \% \mathrm{EtOAc} /$ hexane). IR (film) $/ \mathrm{cm}^{-1} 2973,2902,2827,1694$, 1595, 1585, 1442, 1398, 1380, 1314, 1232, 1180, 1090, 1064, 1028, 937, 868, 843, 769, 761, 660. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.13-8.11(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 8.06(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}$), $7.93(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.81$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{dd}, J=7.2,5.5 \mathrm{~Hz}, \mathrm{OCHS})$, 4.85-4.79 (1 H, m, OCHH), 4.70-4.64 (1 H, m, OCHH), 3.21-3.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8(\mathrm{C}=\mathrm{O}), 145.6\left(\mathrm{C}_{\mathrm{q}}\right), 140.0\left(\mathrm{C}_{\mathrm{q}}\right), 137.0\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.1$ (Ar-C), 130.1 ($2 \times$ Ar-C), 130.0 (Ar-C), 129.8 (Ar-C), 128.1 (Ar-C), 127.8 ($2 \times$ Ar-C), 94.0 (OCHS), 71.5 $\left(\mathrm{OCH}_{2}\right), 22.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$. HRMS (APCI) m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 320.0951$; Found $320.0951\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Calculated fragment-like and lead-like properties of oxetanes 1a-d, 5-9 and 10-16

The scope of oxetanes prepared were analysed against parameters used to indicate desirable molecular properties, with particular reference to the Astex 'rule of 3' for fragments, and leadlikeness criteria recently proposed by Churcher and co-workers.

Criteria as defined by Congreve et al. for fragments. ${ }^{10}$

- cLogP < 3^{11}
- Three or fewer H-bond donors (HBD)
- Three or fewer H-bond acceptors (HBA)
- MW < 300 daltons

Secondary criteria include: Number of rotatable bonds $($ NROT $) \leq 3$; Polar surface area (PSA) ≤ 60.
Köster et al recently proposed six or fewer HBA to be a more appropriate guideline. ${ }^{12}$
Criteria as defined by Churcher et al. for lead-like compound: ${ }^{13}$

- $14 \leq$ heavy atoms $\leq 26(200 \leq$ Molecular weight $(M W) \leq 300 \mathrm{Da})$
- $-1 \leq \mathrm{cLog} \mathrm{P} \leq 3$
- more 3D shape/sp ${ }^{3}$ content favoured

Compounds 1a-d

O O MW=232

These compounds conform well to the fragment guidelines.
To illustrate the 3 -dimensional shape of the oxetane fragments we calculated the minimum energy structure of 1a using Gaussian 09 (GaussView 5), ${ }^{14}$ up to the B3LYP/3-21G level of theory with default solvation (water; scrf = pcm).

Oxetanes 5-9

Entry	Electrophile (E ${ }^{+}$)	Conditions ${ }^{\text {a }}$	Oxetane		Yield (\%)	Calculated molecular properties
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Mel Mel	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$		5	$\begin{aligned} & 93 \% \\ & 71 \% \end{aligned}$	$\begin{gathered} M W=226 \\ c \log P=0.80 \pm 0.4 \\ H A C=15 \\ H B D / A=0 / 3 \end{gathered}$
3	Etl	A		6	85\%	$\begin{gathered} M W=240 \\ \operatorname{cog} P=1.33 \pm 0.4 \\ H A C=16 \\ H B D / A=0 / 3 \end{gathered}$
4	allyl bromide	A		7	91\%	$\begin{gathered} M W=252 \\ \operatorname{cog} P=1.64 \pm 0.4 \\ H A C=17 \\ H B D / A=0 / 3 \end{gathered}$
5		B		8	90\%	$\begin{gathered} M W=320 \\ \operatorname{cog} P=2.62 \pm 0.5 \\ H A C=22 \\ H B D / A=0 / 4 \end{gathered}$
6		B		9	$86 \%{ }^{\text {b }}$	$\begin{gathered} M W=284 \\ \operatorname{cog} P=1.59 \pm 0.5 \\ H A C=19 \\ H B D / A=1 / 4 \end{gathered}$

DFT calculation of minimum energy structure of oxetane 5 (B3LYP/3-21G, water); ${ }^{14}$

Oxetanes 10-16
The physicochemical properties of these compounds conform well to lead-like guidelines.

K. F. Morgan, I. A. Hollingsworth, J. A. Bull S23
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of selected compounds
K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

S3
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{9}{2} \underset{\sim}{9}$ ij
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

4a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

				$\stackrel{+}{6}$	$\begin{aligned} & \text { H} \\ & \hline \mathrm{i} \\ & \text { in } \end{aligned}$				$\begin{aligned} & \text { T } \\ & \hline- \\ & \hline- \end{aligned}$					$\begin{aligned} & \text { بr } \\ & \hline 1 \end{aligned}$	$\underset{\text { N }}{\text { N }}$					
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \text { ppm } \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

[^0]K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}\right)$

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

수두ํㅇํㅇํㅇㄷㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
$\stackrel{+}{\text { i }}$

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)
 1b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

$\stackrel{\text { i }}{\text { i }}$
${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

1c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $\underbrace{0 \text { enjo }}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

3d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

4d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

1d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}$)

$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \% \mathrm{SiMe}_{4}\right)$

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

14
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

References

1 For discussion see: T. Boultwood, D. P. Affron, A. D. Trowbridge and J. A. Bull, J. Org. Chem., 2013, 78, 6632.
2 A. Mccurdy, L. Jimenez, D. A. Stauffer and D. A. Dougberty, J. Am. Chem. Soc., 1992, 114, 10314.

3 R. H. Ryanrandt, Tetrahedron Lett., 1971, 38, 3553.
4 R. F. Langler, F. J. Baerlocher, L. Z. Penn, Sulfur containing compounds, US2003/220524 A1, 2003.

5 Y. Tamura, H. Annoura, M. Fuji, M. Okura and H. Ishibashi, Chem. Pharm. Bull., 1986, 34, 540.

6 A. Maslankiewicz and L. Skrzypek, Synthesis, 1986, 10, 835.
7 D. I. Coppi, A. Salomone, F. M. Perna and V. Capriati, Chem. Comm., 2011, 47, 9918.
8 A. Fürstner and A. Leitner, Angew. Chem. Int. Ed., 2002, 41, 609.
9 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L Buchwald, J. Am. Chem. Soc., 2005, 127, 4685.

10 M. Congreve, R. Carr, C. Murray, Drug Discov. Today 2003, 8, 876.
11 cLogP values were determined using ACDlabs LogP calculator http://www.acdlabs.com/resources/freeware/chemsketch/logp.
12 H. Köster, T. Craan, S. Brass, C. Herhaus, M. Zentgraf, L. Neumann, A. Heine and G. Klebe, J. Med. Chem., 2011, 54, 7784.
13 A. Nadin, C. Hattotuwagama and I. Churcher, Angew. Chem. Int. Ed. 2012, 51, 1114.
14 Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[^0]:

