Lewis Base-catalyzed Reactions of Cyclopropenones: Novel Synthesis of Monoor Multi-substituted Allenic Esters

Yuan-Liang Yang, Zhen Zhang, Xiao-Nan Zhang, Dei Wang, Yin Wei,* Min Shi*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. weiyin@mail.sioc.ac.cn; mshi@mail.sioc.ac.cn. Fax: 86-21-64166128.

CONTENTS

1.	General Remarks and Procedures for the Preparation of Substrates 2	S2
2.	Reference	S48
3.	General Procedure and Spectroscopic Data of the Products 3	S50
4.	General Procedure and Spectroscopic Data of the Products 4	S67
5.	HPLC Spectra	S81
6.	X-ray Structure of 3j	S86
7.	Calculation Results for the Stabilities of Zwitterionic Intermediates	S87

General Remarks: ¹H NMR spectra were recorded on a Bruker AM-400 spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as internal standard; J-values are in Hz. Mass spectra were recorded with a HP-5989 instrument. All of the compounds reported in this paper gave satisfactory HRMS analytic data. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; [α]_D-values are given in unit of 10 deg⁻¹ cm² g⁻¹. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Chiral HPLC was performed on a SHIMADZU SPD-10A vp series with chiral columns (Chiralpak AD-H, IC-H columns 4.6 × 250 mm, (Daicel Chemical Ind., Ltd.)). THF, toluene and Et₂O were distilled from sodium (Na) under argon (Ar) atmosphere. CH₃CN, 1,2-dichloroethane and dichloromethane were distilled from CaH₂ under argon (Ar) atmosphere. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

Table S. Preparation of various substrates **2**.

31	12 h	24 h	2	OIX				
Entry	$R^{1}/R^{2}/R^{3}/R^{3}$	₹ ⁴	yield (two	steps%) ^a				
1	C ₆ H ₅ /H/H/Ac	(S1a)	50	(2 a)				
2	4-MeOC ₆ H ₄ /H/H/	Ac (S1b)	47	(2b)				
3	4-NO ₂ C ₆ H ₄ /H/H/	Ac (S1c)	52	(2c)				
4	4- ^t BuC ₆ H ₄ /H/H/	\c (S1d)	10	(2d)				
5	4-CIC ₆ H ₄ /H/H/A	c (S1e)	55	(2e)				
6	4-BrC ₆ H ₄ /H/H/A	Ac (S1f)	57	(2f)				
7	3-FC ₆ H ₄ /H/H/A	55	(2g)					
8	3-BrC ₆ H ₄ /H/H/A		(2h)					
9	3-MeC ₆ H ₄ /H/H/	Ac (S1i)		(2i)				
10	2-CNC ₆ H ₄ /H/H/	Ac (S1j)		(2j)				
11	2-CO ₂ MeC ₆ H ₄ /H/H	H/Ac (S1k)		(2k)				
12	2-MeOC ₆ H ₄ /H/H	/Ac (S1I)		(2I)				
13	1-naphthyl/H/H/A	\c (S1m)		(2m)				
14	CH ₂ C ₆ H ₅ /H/H/A	.c (S1n)		(2n)				
15	2-thienyl/H/H/A		45	(2o)				
16	C ₆ H ₅ /C ₆ H ₅ /H/A	c (S1p)	59	(2p)				
17	C ₆ H ₅ /4-CIC ₆ H ₄ /H	/Ac (S1q)	56	(2q)				
18	C ₆ H ₅ /2-naphthyl/F	-d/Ac (S1r)		(2r)				
19	C ₆ H ₅ /1-naphthyl/H	l/Ac (S1s)	40	(2s)				
20	C ₆ H ₅ /9-phenanthryl	/H/Ac (S1t)	46	(2t)				
21	$C_6H_5/3$ -Me C_6H_4/H	I/Ac (S1u)	46	(2u)				
22	$C_6H_5/2$ -Br C_6H_4/H	/Ac (S1v)		(2v)				
23	$C_6H_5/2,4-Cl_2C_6H_3/l$	H/Ac (S1w)	58	(2w)				
24	4-CIC ₆ H ₄ /Me/H//	4c (S1x)		(2x)				
25	$C_6H_5/(CH_2)_5/A_6$	c (S1y)		(2y)				
26	$C_6H_5/CH_3/4-CIC_6H$			(2z)				
27	4-BrC ₆ H ₄ /2-naphthyl			(2 aa)				
28	4-MeC ₆ H ₄ /2-naphthyl			2 bb)				
29	3-MeC ₆ H ₄ /2-naphthyl	/H/Ac (S1cc		(2cc)				
30	C ₆ H ₅ /H/H/Ms (S1dd)	60 ((2dd)				
المامانية المامانية								

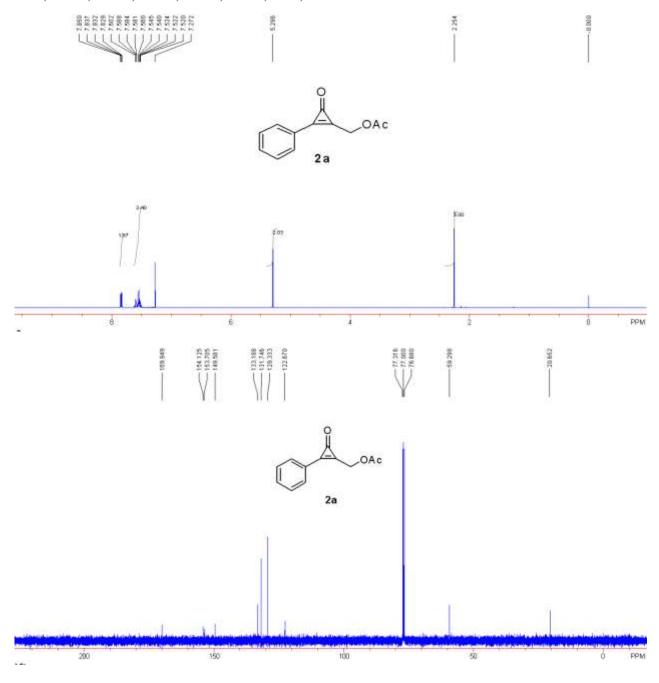
^alsolated yield.

Table S1. Optimization of the reaction conditions.

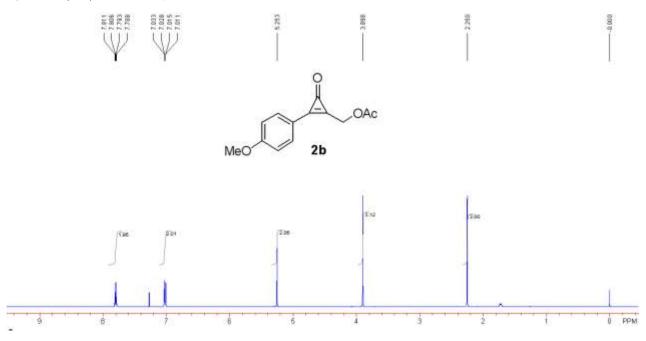
PI	OAc	cat. (20 mol ^o sol, NuH, 0 °C	%) →	ОН
entry	catalyst	solvent	NuH (equiv)	yie l d ^a
1	DABCO	toluene	H ₂ O (1.0)	N.R
2	DABCO	MeCN	H ₂ O (1.0)	N.R
3	DABCO	DCM	H ₂ O (1.0)	N.R
4	DABCO	DMF	H ₂ O (1.0)	N.D
5	DABCO	Et ₂ O	H ₂ O (1.0)	N.R
6	DABCO	THF	H ₂ O (2.0)	38 (3a ')
7	DABCO	THF	H ₂ O (5.0)	38 (3a ')
8	DABCO	THF	H ₂ O (10.0)	31 (3a ')
9	-	THF	H ₂ O (1.0)	N.R
10	DABCO	THF	H ₂ O (0.5)	trace

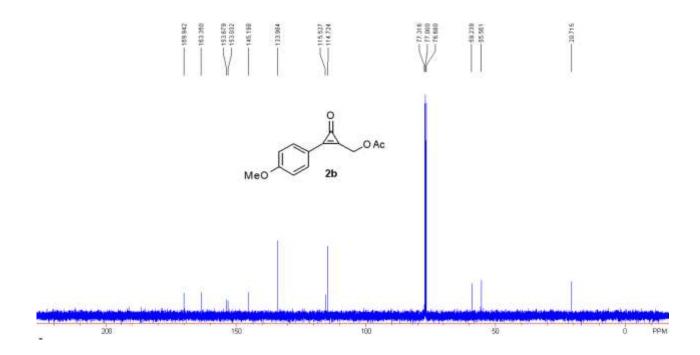
^aIsolated yield. Unless otherwise specified, to a mixture of **2a** (0.10 mmol) and catalyst (0.02 mmol) in solvent (1.0 mL) under Ar atmosphere at 0 °C was added NuH, then the resulting reaction mixtures were stirred at room temperature for 3 days.

We found that these solvents were not suitable for the reaction and the corresponding product 3a' could not be obtained (Table S1, entries 1-5). The employed amount of H₂O ranging from 0.50 to 10.0 equiv with respect to 2a was also investigated and we found that the yield decreased along with the employed amount of H₂O increasing (Table S1, entries 6-8). When the employed amount of H₂O was reduced to 0.50 equiv, only trace amount of product was obtained (Table S1, entry 10). The control experiment indicated that the reaction did not take place in the absence of DABCO (Table S1, entry 9).

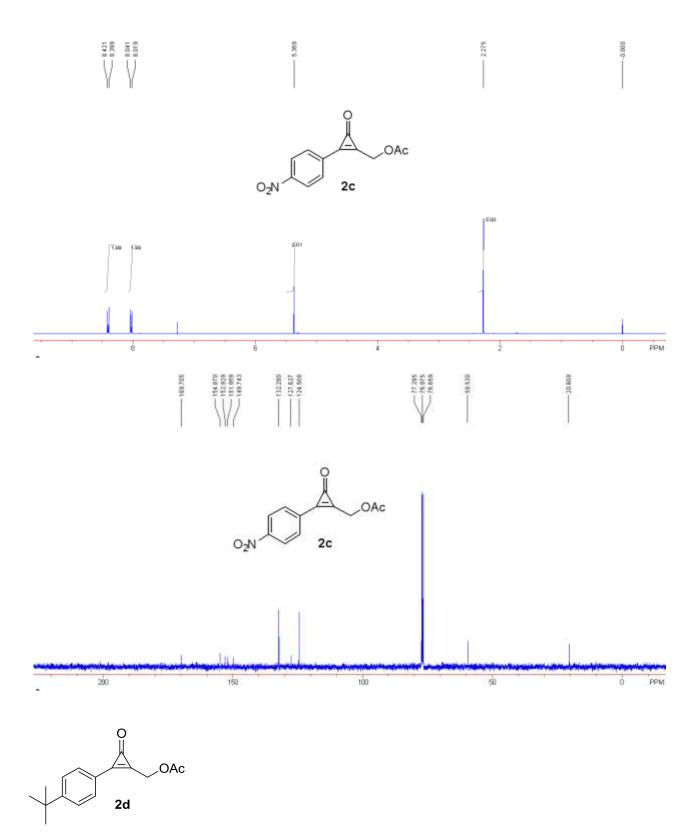

General Procedure for the Preparation of Substrates 2 using 2a as an Example.

Following the previous literature, ^{[1][2]} **1a** (10.0 mmol), NaI (22.0 mmol), TMSCF₃ (20 mmol) and 20.0 mL THF were added to a pressure tube under Ar atmosphere, and the resulting mixture was conducted at 120 °C for 12 hours. On cooling to room temperature, the reaction solution was filtered by a celite and the filtrate was concentrated under reduced pressure for next step without further purification. Above intermediate was dissolved in 20.0 mL Et₂O and 1.5 mL BF₃·Et₂O was added in

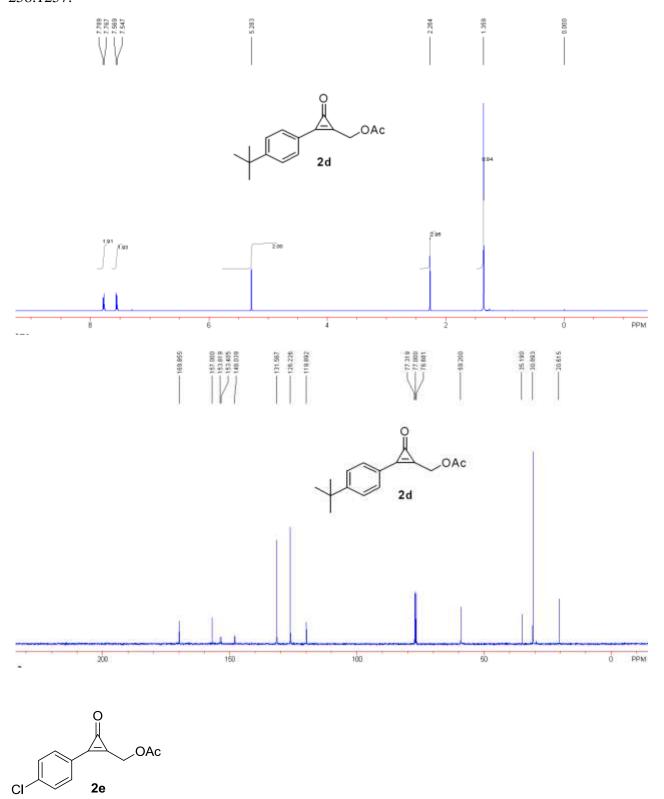

one portion, the resulting mixture was stirred at room temperature and monitored by TLC. After the intermediate was consumed, the reaction was quenched by addition of saturated NaHCO₃ solution, extracted with Et_2O , dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/PE = $1/2\sim2/1$ as eluent) to furnish product **2a** as a yellow solid (1.02 g, 50% yield).


(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2a:

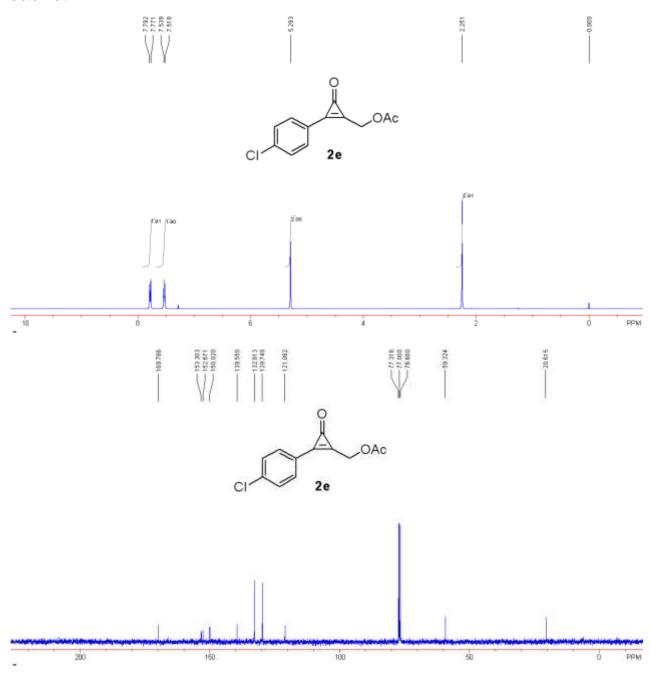
This is a known compound. ^[2] A yellow solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.85-7.83 (2H, m), 7.60-7.52 (3H, m), 5.30 (2H, s), 2.25 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 154.1, 153.7, 149.6, 133.2, 131.7, 129.3, 122.7, 59.3, 20.7.

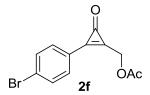


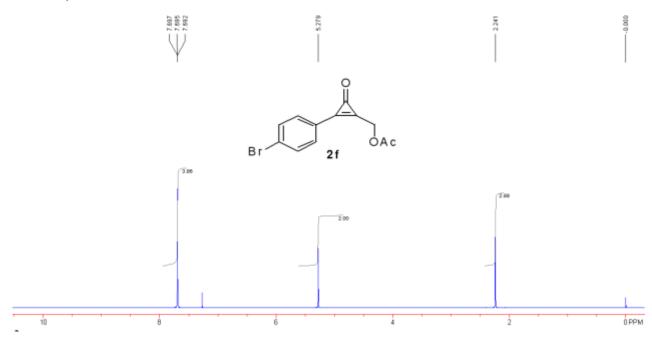
(2-(4-methoxyphenyl)-3-oxocycloprop-1-enyl)methyl acetate 2b: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2b (47% yield). A yellow solid. m.p. for 2b = 115-116 °C; IR (CH₂Cl₂): v 3051, 2922, 2842, 1856, 1743, 1630, 1600, 1571, 1507, 1467, 1370, 1307, 1257, 1218, 1171, 1113, 1024, 910, 833 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.80 (2H, dd, J_I = 7.6 Hz, J_2 = 2.0 Hz), 7.02 (2H, dd, J_I = 7.6 Hz, J_2 = 2.0 Hz), 5.25 (2H, s), 3.90 (3H, s), 2.25 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 163.3, 153.7, 153.0, 145.2, 134.0, 115.5, 114.7, 59.2, 55.6, 20.7; MS (ESI) m/e 233.1 (M⁺+H); HRMS (ESI) for C₁₃H₁₂O₄ (M⁺): 232.0736, Found: 232.0747.

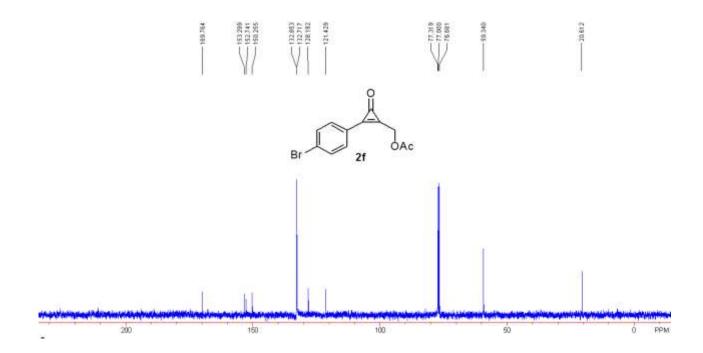


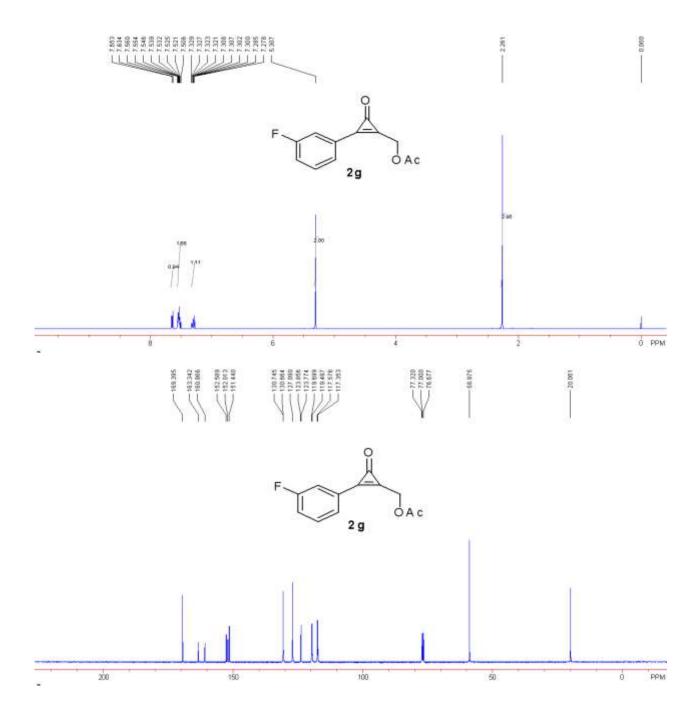
(2-(4-nitrophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2c: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2c (52% yield). A yellow solid. m.p. for 2c = 139-140 °C; IR (CH₂Cl₂): v 3104, 2924, 2853, 1861, 1746, 1647, 1600, 1519, 1432, 1380, 1343, 1316, 1281, 1219, 1090, 1043, 990, 867, 855 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.41 (2H, d, J = 8.8 Hz), 8.03 (2H, d, J = 8.8 Hz), 5.37 (2H, s), 2.28 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 154.9, 152.9, 152.0, 149.7, 132.3, 127.6, 124.5, 59.5, 20.6; MS (ESI) m/e 248.1 (M⁺+H); HRMS (ESI) for C₁₂H₉NO₅ (M⁺): 247.0481, Found: 247.0486.

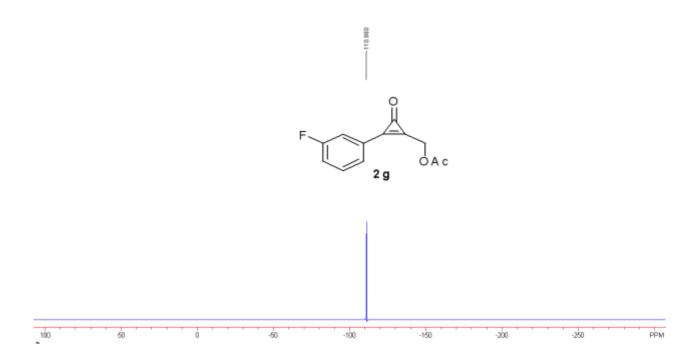

(2-(4-tert-butylphenyl)-3-oxocycloprop-1-enyl)methyl acetate 2d: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2d (10% yield). A yellow solid. m.p. for 2d = 116-117 °C; IR (CH₂Cl₂): v 2961, 2926, 1854, 1748, 1638, 1504, 1412, 1364, 1259, 1218, 1088, 1037, 1016, 841, 795 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.78 (2H, d, J = 8.8 Hz), 7.56 (2H, d, J = 8.8 Hz), 5.28 (2H, s), 2.26 (3H, s), 1.36

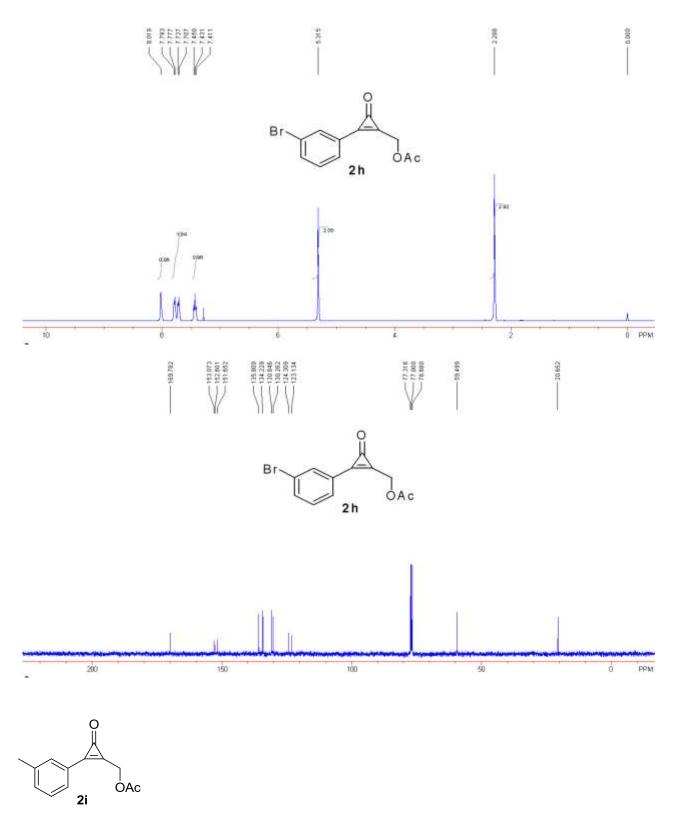

(9H, s); ^{13}C NMR (CDCl₃, 100 MHz): δ 169.9, 157.0, 153.8, 153.4, 148.0, 131.6, 126.2, 119.9, 59.2, 35.2, 30.9, 20.6; MS (ESI) m/e 259.1 (M⁺+H); HRMS (ESI) for $C_{16}H_{18}O_3$ (M⁺): 258.1256, Found: 258.1257.


(2-(4-chlorophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2e: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2e

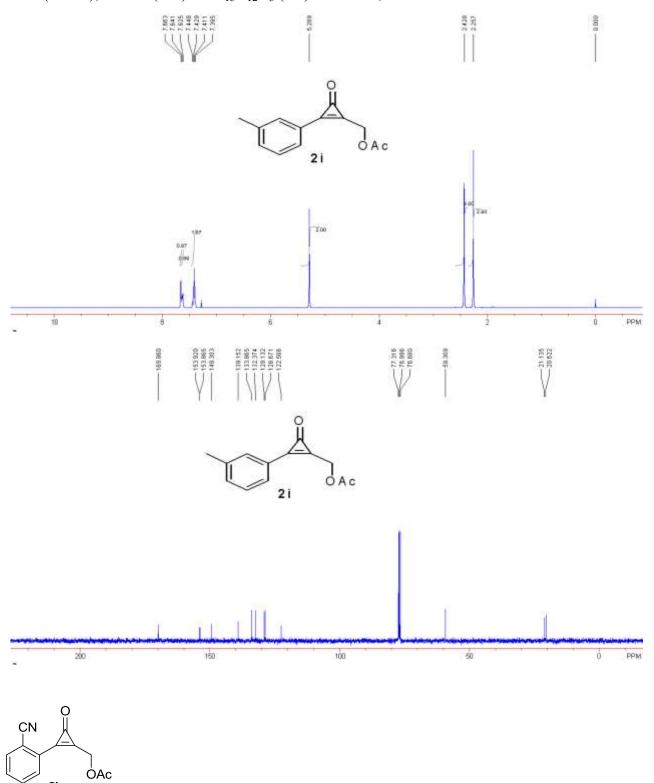

(55% yield). A yellow solid. m.p. for 2e = 126-127 °C; IR (CH₂Cl₂): v 3087, 2929, 1934, 1859, 1807, 1741, 1634, 1587, 1566, 1482, 1440, 1402, 1368, 1276, 1224, 1173, 1095, 1044, 1011, 990, 845 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.78 (2H, d, J = 8.4 Hz), 7.53 (2H, d, J = 8.4 Hz), 5.29 (2H, s), 2.25 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 153.3, 152.7, 150.0, 139.6, 132.8, 129.7, 121.1, 59.3, 20.6; MS (ESI) m/e 237.0 (M⁺+H); HRMS (ESI) for C₁₂H₉ClO₃ (M⁺): 236.0240, Found: 236.0249.



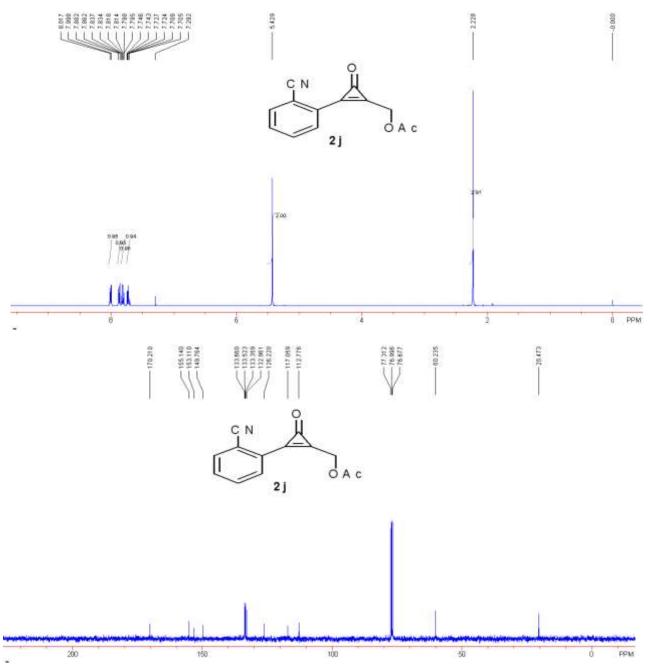

(2-(4-bromophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2f: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2f (57% yield). A yellow solid. m.p. for 2f = 153-155 °C; IR (CH₂Cl₂): v 2962, 1860, 1746, 1634, 1582, 1400, 1259, 1236, 1090, 1064, 1017, 797 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.70-7.69 (4H, m), 5.28 (2H, s), 2.24 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 153.3, 152.7, 150.3, 132.9, 132.7, 128.2, 121.4, 59.3, 20.6; MS (ESI) m/e 281.0 (M⁺+H); HRMS (ESI) for C₁₂H₉BrO₃ (M⁺): 279.9735, Found: 279.9747.



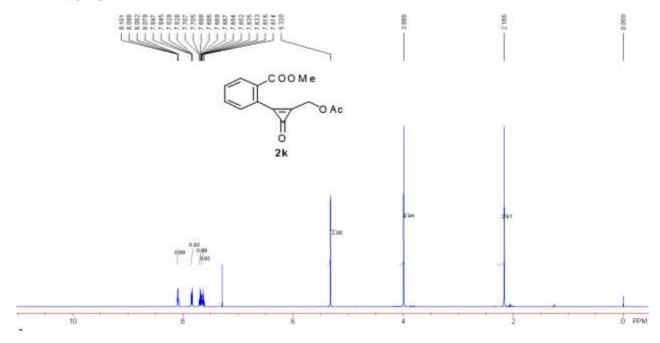
(2-(3-fluorophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2g: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2g (55% yield). A yellow solid. m.p. for 2g = 90-92 °C; IR (CH₂Cl₂): v 3054, 1854, 1749, 1646, 1607, 1584, 1483, 1442, 1377, 1265, 1217, 1040, 878, 793 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.64 (1H, d, J = 7.6 Hz), 7.56-7.51 (2H, m), 7.33-7.28 (1H, m), 5.31 (2H, s), 2.26 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 163.3, 160.9, 152.6, 152.0, 151.4, 130.7 (d, $J_{C-F} = 8.1$ Hz), 127.1, 123.8 (d, $J_{C-F} = 8.1$ Hz), 119.6 (d, $J_{C-F} = 21.2$ Hz), 117.5 (d, $J_{C-F} = 22.3$ Hz), 59.0, 20.1; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -110.9; MS (ESI) m/e 221.0 (M⁺+H); HRMS (ESI) for C₁₂H₉FO₃ (M⁺): 220.0536, Found: 220.0544.

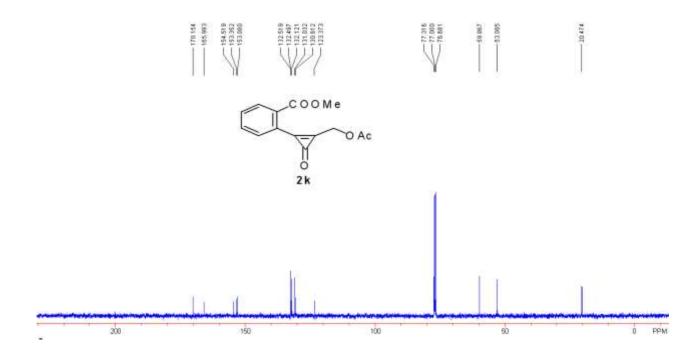


(2-(3-bromophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2h: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2h (52% yield). A yellow solid. m.p. for 2h = 107-109 °C; IR (CH₂Cl₂): v 3094, 3052, 2926, 1934, 1859, 1745, 1638, 1589, 1558, 1472, 1422, 1379, 1264, 1221, 1071, 1044, 937, 894 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.02 (1H, s), 7.79 (1H, d, J = 6.4 Hz), 7.72 (1H, d, J = 8.0 Hz), 7.43 (1H, t, J = 8.0 Hz), 5.32 (2H, s), 2.29 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 153.1, 152.6, 151.7, 135.8, 134.2, 130.8, 130.3, 124.3, 123.1, 59.5, 20.7; MS (ESI) m/e 281.0 (M⁺+H); HRMS (ESI) for C₁₂H₉BrO₃ (M⁺): 279.9735, Found: 279.9742.

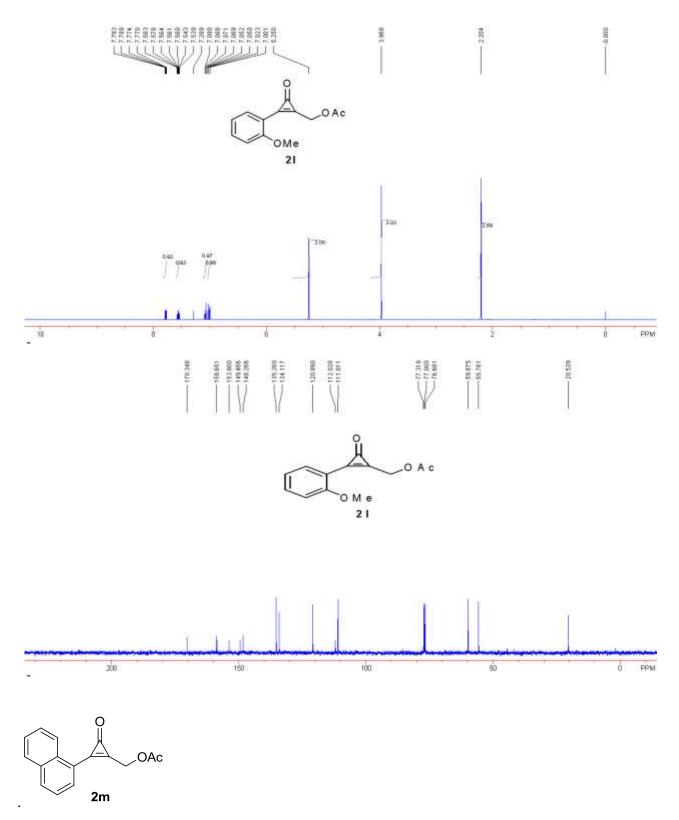

(3-oxo-2-m-tolylcycloprop-1-enyl)methyl acetate 2i: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2i (54% yield). A yellow solid. m.p. for 2i = 67-69 °C; IR (CH₂Cl₂): v 2925, 1851, 1745, 1637, 1483, 1423, 1375, 1215, 1090, 1039, 922, 888 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.66 (1H, s), 7.63 (1H, d, J = 6.4 Hz), 7.45-7.40 (2H, m), 5.29 (2H, s), 2.43 (3H, s), 2.26 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ

169.9, 153.9, 153.86, 149.3, 139.2, 133.9, 132.4, 129.1, 128.7, 122.6, 59.3, 21.1, 20.6; MS (ESI) m/e 217.1 (M^++H); HRMS (ESI) for $C_{13}H_{12}O_3$ (M^+): 216.0786, Found: 216.0794.

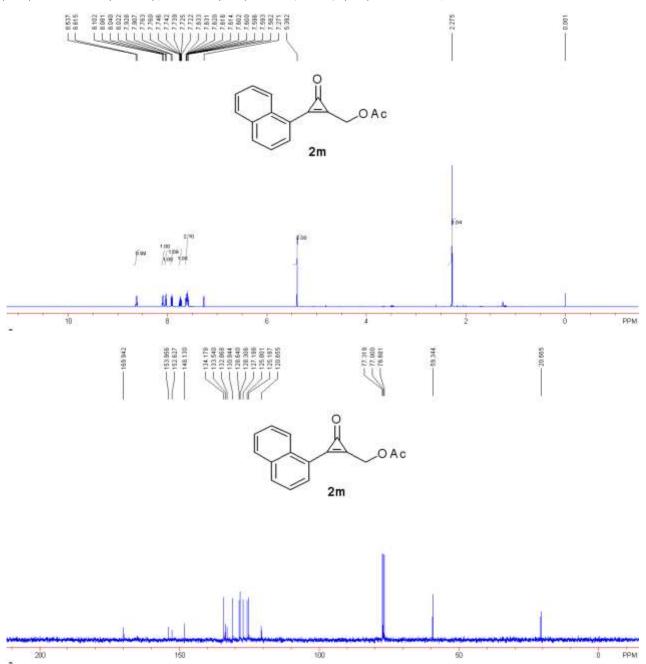



(2-(2-cyanophenyl)-3-oxocycloprop-1-enyl)methyl acetate 2j: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2j (45% yield). A yellow solid. m.p. for 2j = 152-154 °C; IR (CH₂Cl₂): v 2961, 2928, 2231, 1859, 1753,

1644, 1480, 1427, 1379, 1259, 1218, 1089, 1035, 928, 865 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.00 (1H, d, J = 7.6 Hz), 7.87 (1H, d, J = 8.0 Hz), 7.82 (1H, dt, J_I = 8.0 Hz, J_2 = 1.2 Hz), 7.72 (1H, dt, J_I = 8.0 Hz, J_2 = 1.2 Hz), 5.43 (2H, s), 2.23 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.2, 155.1, 153.1, 149.8, 133.7, 133.5, 133.4, 133.0, 126.2, 117.1, 112.8, 60.2, 20.5; MS (ESI) m/e 228.1 (M⁺+H); HRMS (ESI) for C₁₃H₉NO₃ (M⁺): 227.0582, Found: 227.0591.



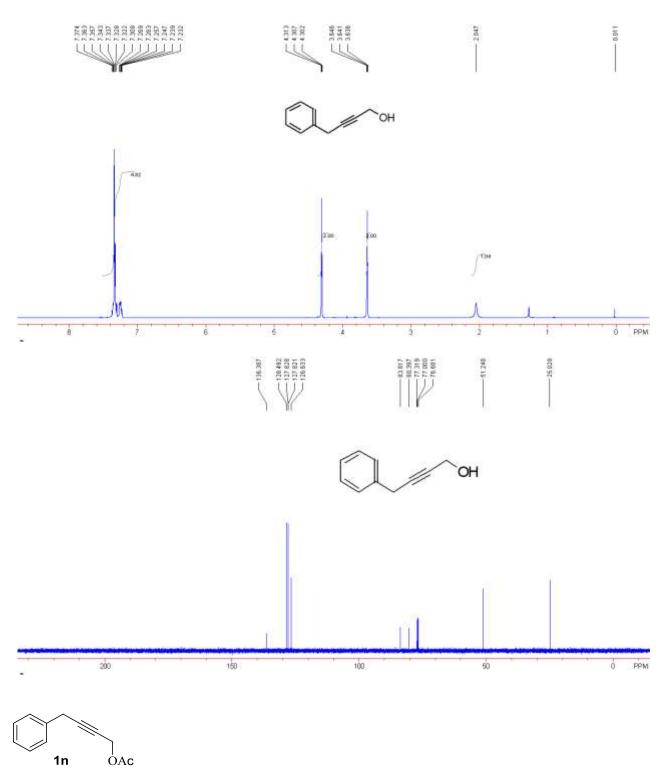
methyl 2-(2-(acetoxymethyl)-3-oxocycloprop-1-enyl)benzoate 2k: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **2k** (60% yield). A white solid. m.p. for **2k** = 66-67 °C; IR (CH₂Cl₂): v 2953, 1857, 1744, 1719, 1641, 1594, 1573, 1432, 1374, 1271, 1217, 1130, 1082, 1043, 960, 865 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09 (1H, dd, J_I = 7.6 Hz, J_2 = 1.2 Hz), 7.84 (1H, dd, J_I = 7.6 Hz, J_2 = 0.8 Hz), 7.69 (1H, dt, J_I = 7.6 Hz, J_2 = 0.8 Hz), 7.63 (1H, dt, J_I = 7.6 Hz, J_2 = 0.8 Hz), 5.32 (2H, s), 3.99 (3H, s), 2.17 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.2, 166.0, 154.5, 153.4, 153.1, 132.52, 132.50, 132.1, 131.0, 130.6, 123.4, 59.9, 53.1, 20.5; MS (ESI) m/e 261.1 (M⁺+H); HRMS (ESI) for C₁₄H₁₂O₅ (M⁺): 260.0685, Found: 260.0692.



(2-(2-methoxyphenyl)-3-oxocycloprop-1-enyl)methyl acetate 2l: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2l (36% yield). A yellow solid. m.p. for 2l = 98-100 °C; IR (CH₂Cl₂): v 2938, 1848, 1744, 1636, 1596, 1577, 1488, 1465, 1436, 1372, 1279, 1219, 1163, 1043, 1020, 865 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.78 (1H, dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz), 7.58-7.54 (1H, m), 7.07 (1H, dt, J_1 = 7.6 Hz, J_2 = 0.8 Hz), 7.01 (1H, d, J = 8.8 Hz), 5.25 (2H, s), 3.97 (3H, s), 2.20 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 158.7, 153.8, 149.5, 148.3, 135.3, 134.1, 120.9, 112.0, 111.0, 59.9, 55.8, 20.5; MS (ESI) m/e 233.1 (M⁺+H); HRMS (ESI) for C₁₃H₁₂O₄ (M⁺): 232.0736, Found: 232.0745.

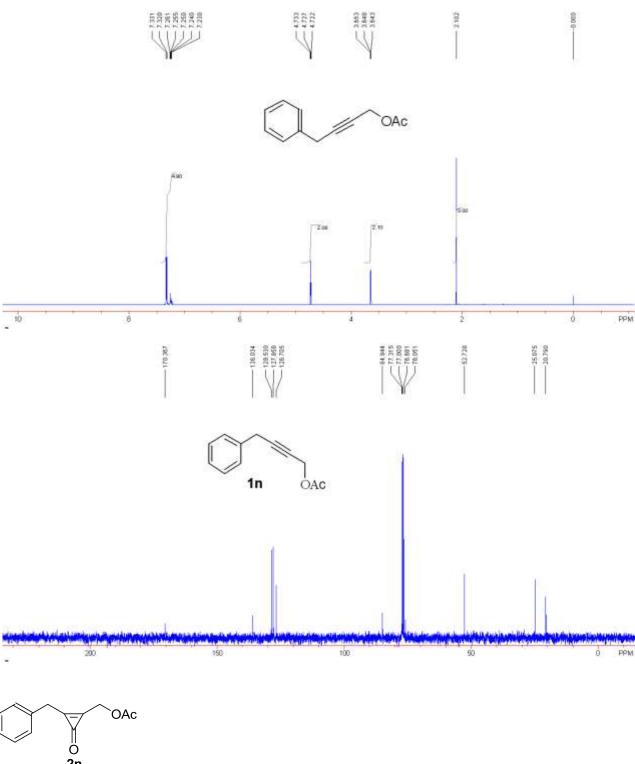
(2-(naphthalen-1-yl)-3-oxocycloprop-1-enyl)methyl acetate 2m: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2m (55% yield). A yellow solid. m.p. for 2m = 111-113 °C; IR (CH₂Cl₂): v 2962, 1845, 1749, 1630, 1374, 1259, 1221, 1087, 1015, 864, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.63 (1H, d, J = 8.8 Hz), 8.09 (1H, d, J = 8.4 Hz), 8.03 (1H, d, J = 6.4 Hz), 7.92 (1H, d, J = 8.4 Hz), 7.76-7.72 (1H,

m), 7.63-7.58 (2H, m), 5.39 (2H, s), 2.28 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 169.9, 154.0, 152.7, 148.1, 134.2, 133.5, 132.9, 130.9, 128.6, 128.3, 127.2, 125.8, 125.2, 120.7, 59.3, 20.7; MS (ESI) m/e 253.1 (M⁺+H); HRMS (ESI) for $C_{16}H_{12}O_3$ (M⁺): 252.0786, Found: 252.0792.


Typical procedure for preparation of **2n**:

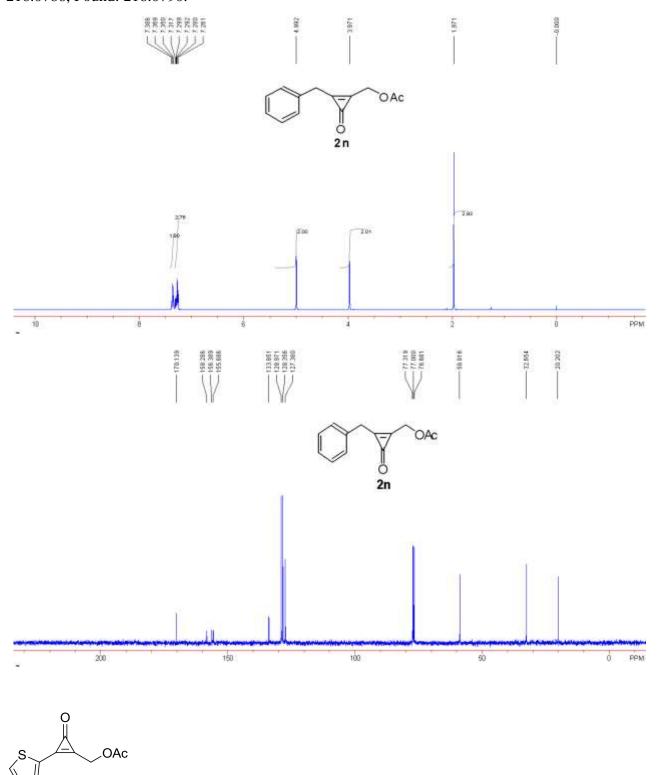
OTHP
$$\frac{\text{n-BuLi/THF}}{\text{BnBr, -78 °C-rt}}$$
 $\frac{\text{p-TsOH}}{\text{DCM}}$ $\frac{\text{AcCl/Et}_3N}{\text{DCM}}$ $\frac{\text{DCM}}{\text{DCM}}$ $\frac{\text{DCM}}{\text{In-1}}$ $\frac{\text{OAc}}{\text{DCM}}$ $\frac{\text{Nal, TMSCF}_3}{\text{THF, 120 °C}}$ $\frac{\text{BF}_3 \cdot \text{Et}_2\text{O}}{\text{Et}_2\text{O, rt}}$ $\frac{\text{Et}_2\text{O, rt}}{\text{24 h}}$ $\frac{\text{OAc}}{\text{DCM}}$

To a solution of 2-(prop-2-ynyloxy)tetrahydro-2H-pyran (10.0 mmol) in 10.0 mL THF at -78 $^{\circ}$ C was added n-BuLi (2.50 M ,4.40 mL) under Ar atmosphere, the resulting mixture was stirred for 1 hour at this temperature and BnBr (11.0 mmol) was added, then the reaction was allowed to warm to room temperature for 2 hours. After the reaction completed, the reaction was quenched by addition of saturated NH₄Cl solution, extracted with Et₂O, dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/20) to give the target product **1n-1**.

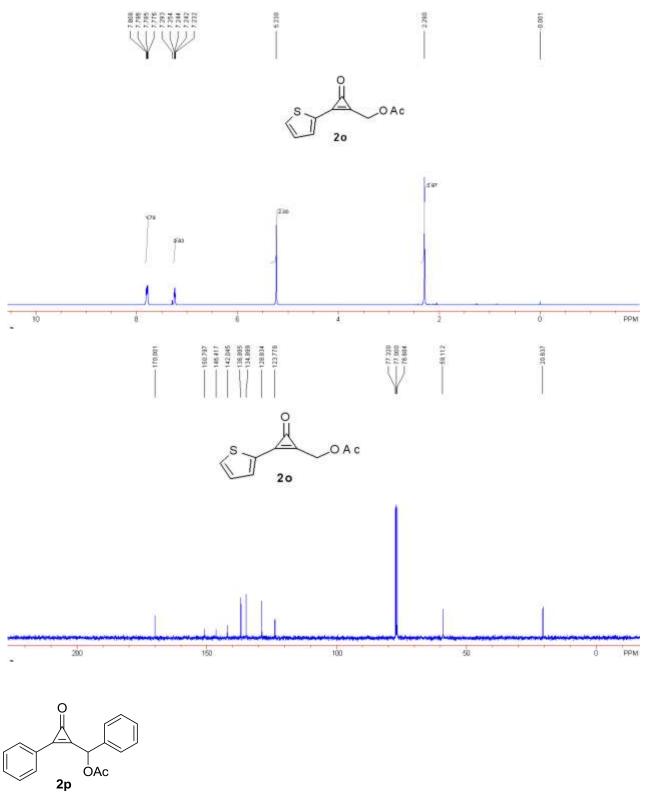

Above **1n-1** (470 mg, 3.2 mmol) was dissolved in 10 mL of CH_2Cl_2 mixed with 0.51 mL (3.86 mmol) Et_3N and 0.28 mL (3.86 mmol) of AcCl was added at 0 °C, the resulting mixture was stirred at this temperature for 1 hour. The reaction was quenched by addition of saturated NaHCO₃ solution, extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/PE = 1/8 as eluent) to furnish product **1n** as colorless oil (300 mg, 50% yield).

4-phenylbut-2-yn-1-ol 1n-1: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1n-1** (29% yield). A colorless oil. IR (CH₂Cl₂): v 3338, 3061, 3029, 2924, 1719, 1600, 1494, 1452, 1397, 1263, 1176, 1129, 1073, 1018, 730 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.37-7.23 (5H, m), 4.31 (2H, t, J = 2.0 Hz), 3.64 (2H, t, J = 2.0 Hz), 2.05 (1H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 136.4, 128.5, 127.83, 127.82, 126.6, 83.8, 80.4, 51.2, 25.0; MS (%) m/e 146 (53), 131 (14), 128 (82), 115 (100), 102 (11), 91 (35), 77 (16), 63 (14); HRMS (EI) for C₁₀H₁₀O: 146.0732; Found: 146.0729.

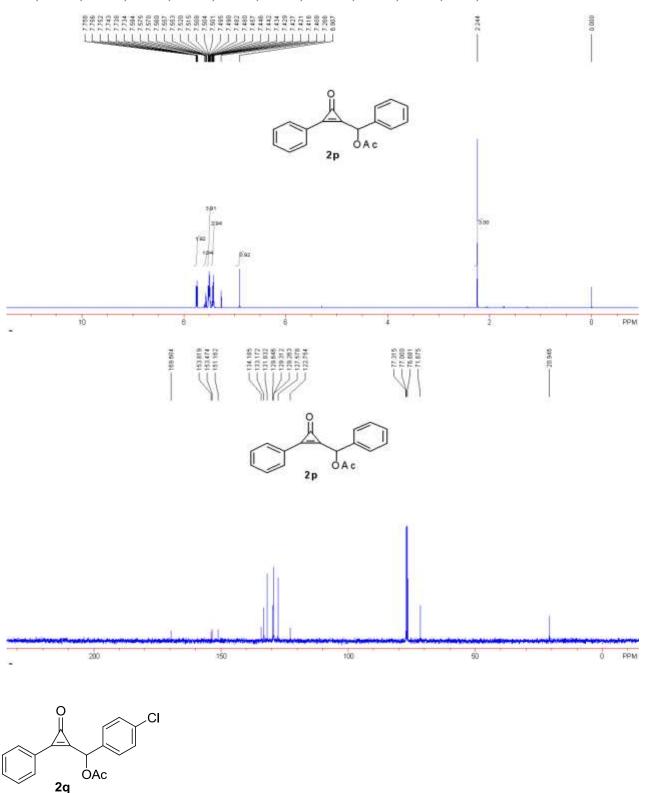
4-phenylbut-2-ynyl acetate 1n: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1n** (50% yield). A colorless oil. IR (CH₂Cl₂): v 2954, 2923, 2852, 1850, 1745, 1643, 1602, 1496, 1454, 1375, 1219, 1145, 1044, 832, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.33-7.23 (5H, m), 4.73 (2H, t, J = 2.0 Hz), 3.65 (2H, t, J = 2.0 Hz), 2.10 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 136.0, 128.5, 127.9, 126.7, 84.9, 76.1, 52.7, 25.1, 20.8; MS (%) m/e 188 (2), 146 (48), 128 (100), 115 (25), 102 (21), 91 (12), 77



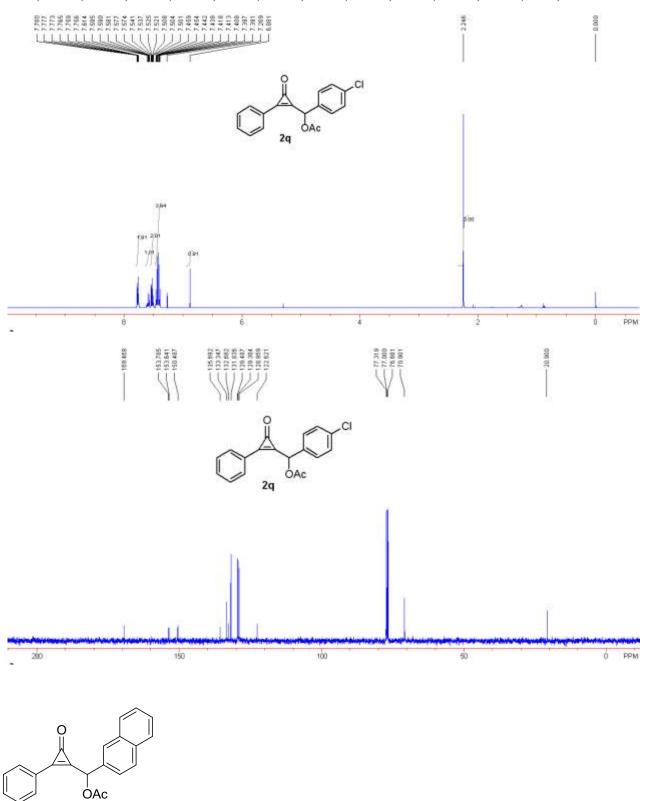
(2-benzyl-3-oxocycloprop-1-enyl)methyl acetate 2n: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2n (30% yield). A colorless oil. IR (CH₂Cl₂): v 2962, 1850, 1744, 1641, 1496, 1454, 1414, 1258, 1219, 1016, 863, 795, 731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.38 (2H, d, J = 7.2 Hz), 7.35-7.26 (3H, m), 4.99 (2H, s), 3.97 (2H, s), 1.97 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.1, 158.3, 156.4, 155.7, 133.9,


20

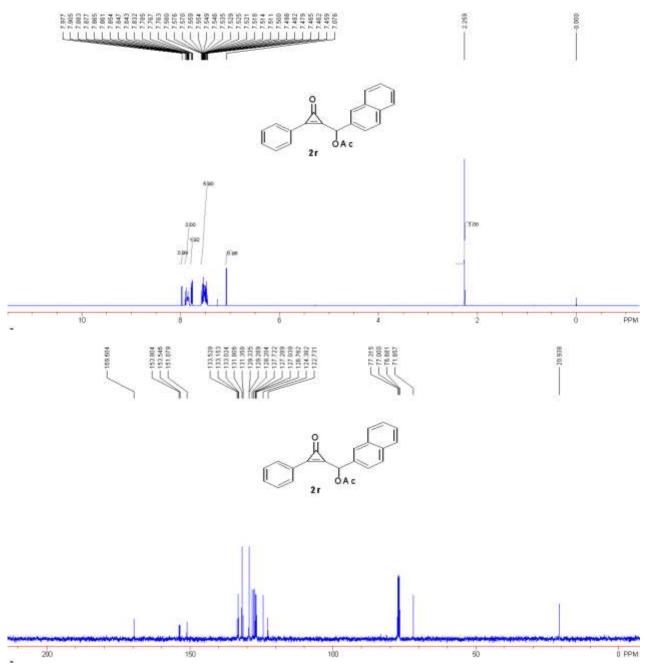
129.0, 128.4, 127.4, 58.8, 32.7, 20.2; MS (ESI) m/e 217.1 (M^+ +H); HRMS (ESI) for $C_{13}H_{12}O_3$ (M^+): 216.0786, Found: 216.0790.


(3-oxo-2-(thiophen-2-yl)cycloprop-1-enyl)methyl acetate 2o: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2o (45% yield). A yellow solid. m.p. for 2o = 109-111 °C; IR (CH₂Cl₂): v 3088, 2928, 1850, 1743, 1627, 1409,

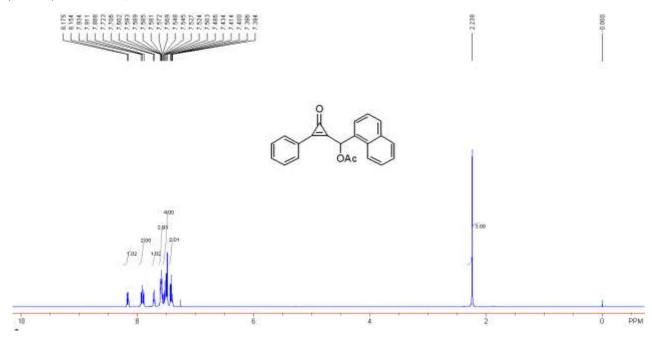
1378, 1365, 1215, 1037, 928, 853 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.79 (2H, dd, J_I = 8.0 Hz, J_2 = 4.0 Hz), 7.25 (1H, dd, J_I = 4.8 Hz, J_2 = 4.0 Hz), 5.23 (2H, s), 2.29 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 170.0, 150.8, 146.4, 142.0, 136.9, 134.9, 128.8, 123.8, 59.1, 20.6; MS (ESI) m/e 209.0 (M⁺+H); HRMS (ESI) for C₁₀H₈O₃S (M⁺): 208.0194, Found: 208.0203.

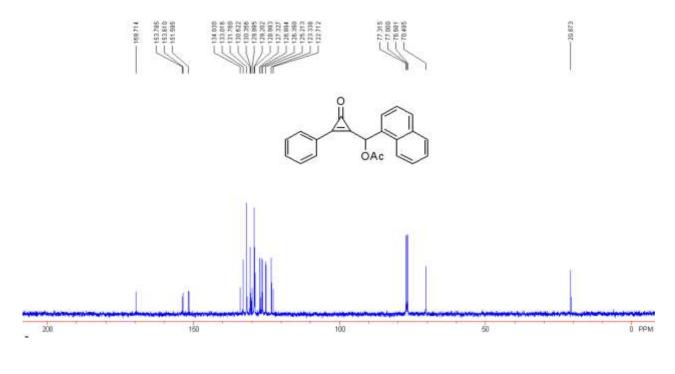

(3-oxo-2-phenylcycloprop-1-enyl)(phenyl)methyl acetate 2p: This is a known compound. [2] A S26

yellow solid. 1 H NMR (400 MHz, CDCl₃, TMS): δ 7.76-7.73 (2H, m), 7.58-7.55 (1H, m), 7.52-7.48 (4H, m), 7.46-7.41 (3H, m), 6.91 (1H, s), 2.24 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 169.6, 153.8, 153.5, 151.2, 134.2, 133.2, 131.8, 129.6, 129.3, 129.26, 127.6, 122.8, 71.7, 20.9.

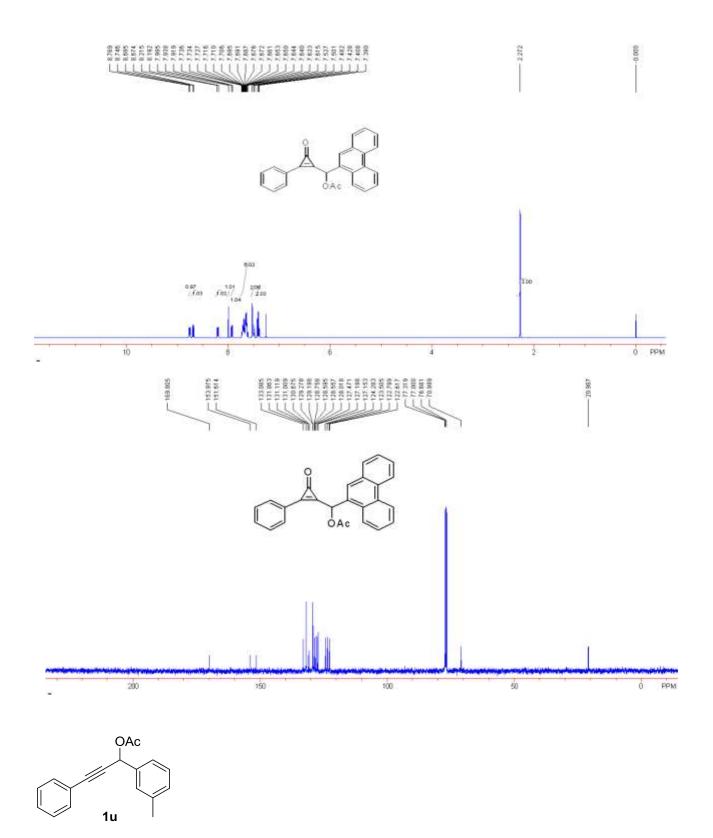

(4-chlorophenyl)(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2q: This is a known compound. ^[2] A yellow solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.78-7.76 (2H, m), 7.61-7.57 (1H,

m), 7.54-7.50 (2H, m), 7.46-7.39 (4H, m), 6.88 (1H, s), 2.25 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 169.5, 153.8, 153.6, 150.5, 135.7, 133.3, 132.7, 131.8, 129.5, 129.4, 129.0, 122.6, 70.9, 20.9.

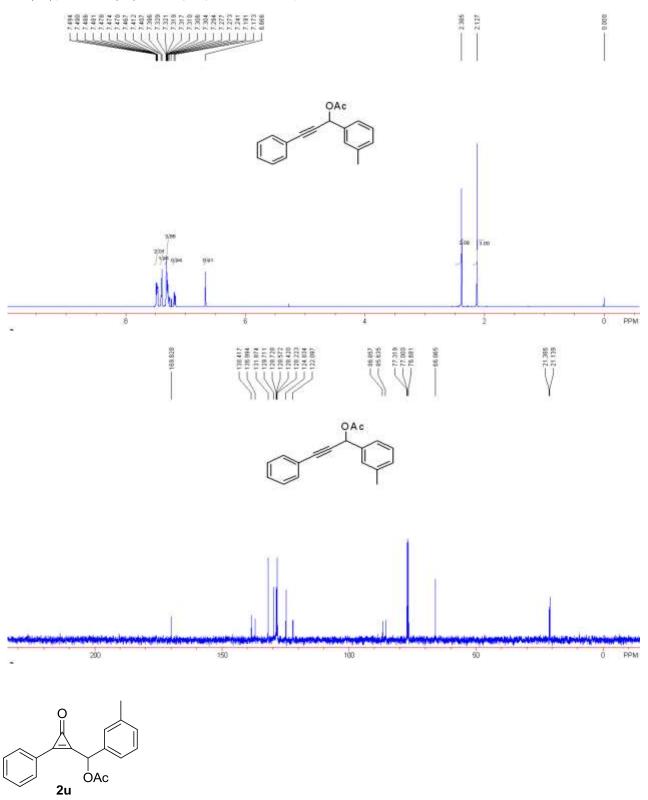



naphthalen-2-yl(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2r: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target

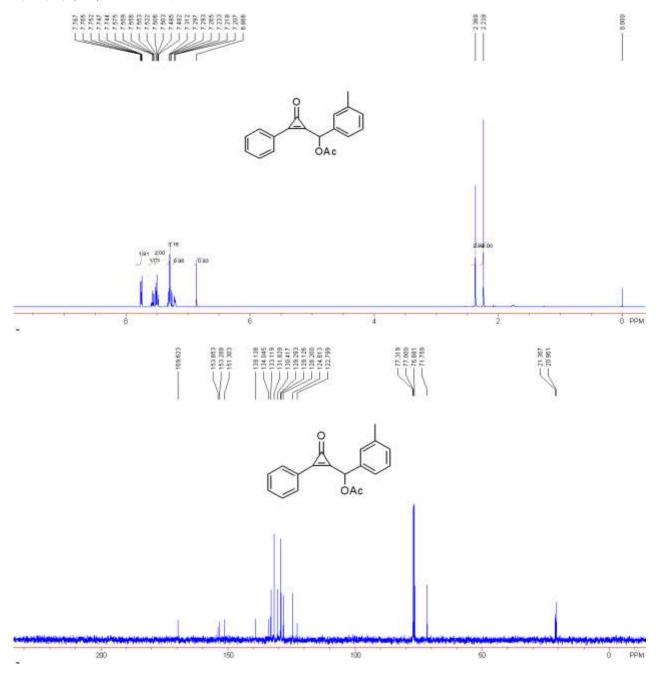
product **2r** (52% yield). A yellow solid. m.p. for **2r** = 161-162 °C; IR (CH₂Cl₂): v 3057, 2961, 1854, 1744, 1637, 1508, 1488, 1448, 1369, 1218, 1168, 1125, 1022, 934, 816, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.98 (1H, s), 7.91-7.83 (3H, m), 7.79-7.63 (2H, m), 7.58-7.46 (6H, m), 7.08 (1H, s), 2.26 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 153.8, 153.5, 151.1, 133.5, 133.2, 133.0, 131.8, 131.4, 129.3, 129.29, 128.2, 127.7, 127.3, 127.0, 126.8, 124.4, 122.7, 71.9, 20.9; MS (ESI) m/e 679.2 (2M⁺+Na); HRMS (ESI) for C₂₂H₁₆O₃Na (M⁺+Na): 351.0992, Found: 351.0995.



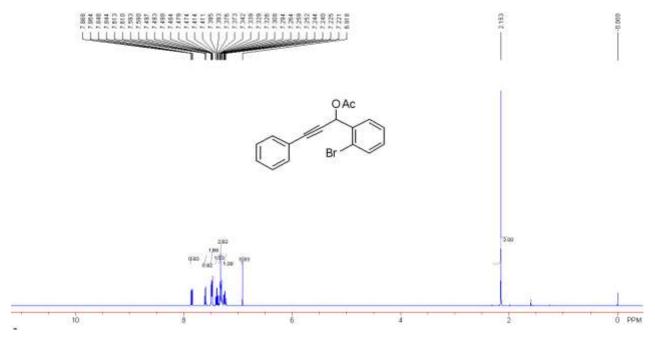
naphthalen-1-yl(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2s: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2s (40% yield). A yellow solid. m.p. for 2s = 118-120 °C; IR (CH₂Cl₂): v 3062, 1853, 1731, 1640, 1508, 1488, 1446, 1366, 1285, 1218, 1168, 1123, 1077, 1015, 934, 858 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.16 (1H, d, J = 8.1 Hz), 7.91 (2H, t, J = 9.2 Hz), 7.71 (1H, d, J = 6.8 Hz), 7.60-7.57 (3H, m), 7.55-7.49 (4H, m), 7.43-7.39 (2H, m), 2.24 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 153.8, 153.6, 151.6, 134.0, 133.0, 131.8, 130.6, 130.4, 130.0, 129.2, 129.0, 127.3, 126.9, 126.4, 125.2, 123.3, 122.7, 70.5, 20.9; MS (ESI) m/e 329.1 (M⁺+H); HRMS (ESI) for C₂₂H₁₇O₃ (M⁺+H): 329.1172, Found: 329.1169.

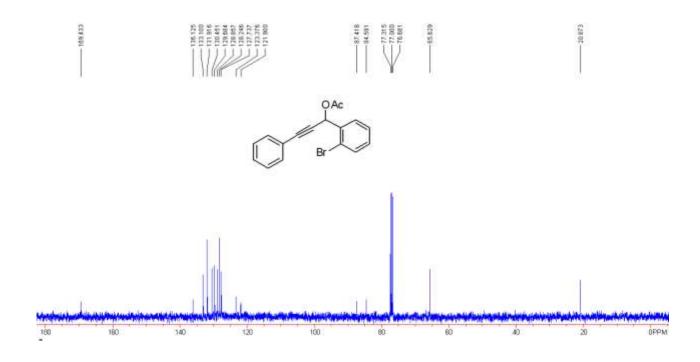


(3-oxo-2-phenylcycloprop-1-enyl)(phenanthren-9-yl)methyl acetate 2t: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2t (46% yield). A white solid. m.p. for 2t = 177-179 °C; IR (CH₂Cl₂): v 2924, 2853, 1854, 1746, 1636, 1530, 1488, 1448, 1370, 1260, 1217, 1175, 1094, 1019, 974, 766 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.76 (1H, d, J = 9.2 Hz), 8.68 (1H, d, J = 8.4 Hz), 8.20 (1H, d, J = 9.2 Hz), 8.00 (1H, s), 7.30 (1H, d, J = 7.2 Hz), 7.74-7.62 (6H, m), 7.53-7.48 (2H, m), 7.43-7.39 (2H, m), 2.27 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 154.0, 151.6, 133.1, 131.9, 131.1, 131.0, 130.7, 129.3, 129.2, 128.8, 128.6, 128.5, 128.0, 127.5, 127.2, 127.1, 124.3, 123.5, 122.8, 122.6, 71.0, 21.0; MS (ESI) m/e 319.1 (M-OAc); HRMS (ESI) for C₂₄H₁₅O (M-OAc): 319.1117, Found: 319.1120.

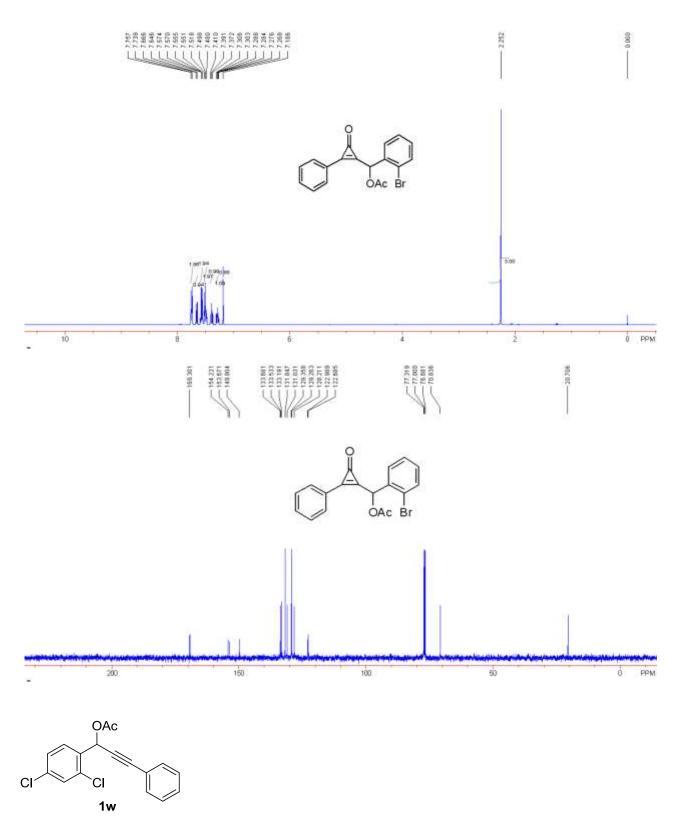

3-phenyl-1-m-tolylprop-2-ynyl acetate 1u: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1u** (81% yield). A colorless oil. IR (CH₂Cl₂): v 2923, 1739, 1608, 1490, 1443, 1368, 1332, 1259, 1218, 1153, 1012, 955, 915, 881 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.49-7.47 (2H, m), 7.41-7.40 (2H, m), 7.33-7.28 (4H, s), 7.18 (1H, d, J = 7.2 Hz), 6.67 (1H, s), 2.39 (3H, s), 2.13 (3H, s); ¹³C NMR (CDCl₃,

100 MHz): δ 169.8, 138.4, 137.0, 131.9, 129.7, 128.7, 128.6, 128.4, 128.2, 124.8, 122.1, 86.9, 85.6, 66.1, 21.4, 21.1; MS (%) m/e 264 (60), 222 (100), 205 (72), 189 (39), 178 (37), 165 (9), 144 (11), 130 (13); HRMS (EI) for $C_{18}H_{16}O_2$: 264.1150; Found: 264.1151.

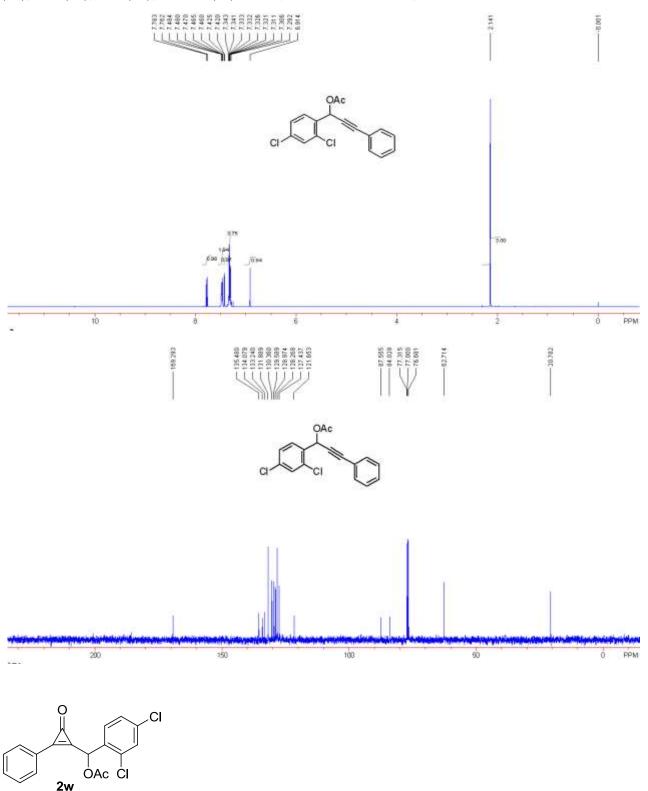



(3-oxo-2-phenylcycloprop-1-enyl)(m-tolyl)methyl acetate 2u: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2u

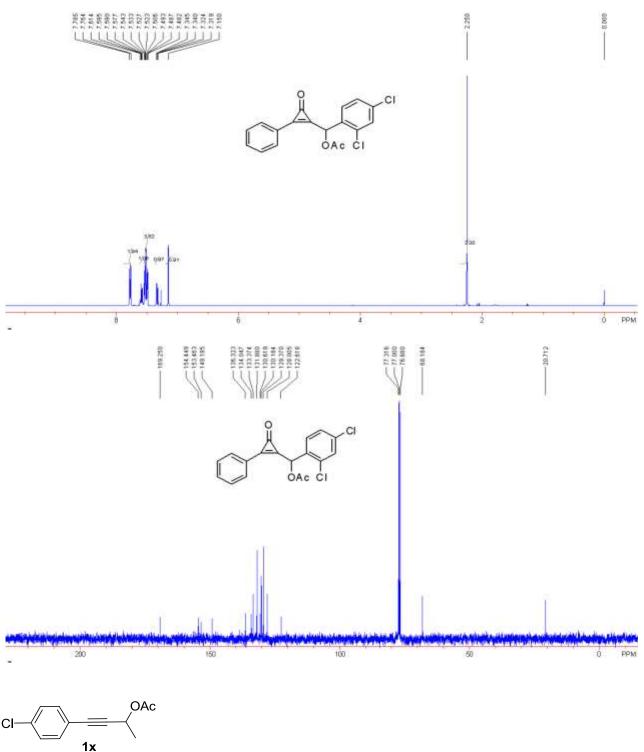
(46% yield). A yellow solid. m.p. for 2u = 59-61 °C; IR (CH₂Cl₂): v 2923, 1851, 1743, 1636, 1488, 1448, 1370, 1175, 1156, 974, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.77-7.74 (2H, m), 7.59-7.55 (1H, m), 7.52-7.48 (2H, m), 7.33-7.21 (4H, m), 6.87 (1H, s), 2.37 (3H, s), 2.24 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 153.9, 153.3, 151.3, 139.1, 134.0, 133.1, 131.8, 130.4, 129.3, 129.1, 128.2, 124.6, 122.8, 71.8, 21.4, 21.0; MS (ESI) m/e 293.1 (M⁺+H); HRMS (ESI) for C₁₉H₁₆O₃ (M⁺): 292.1099, Found: 292.1108.



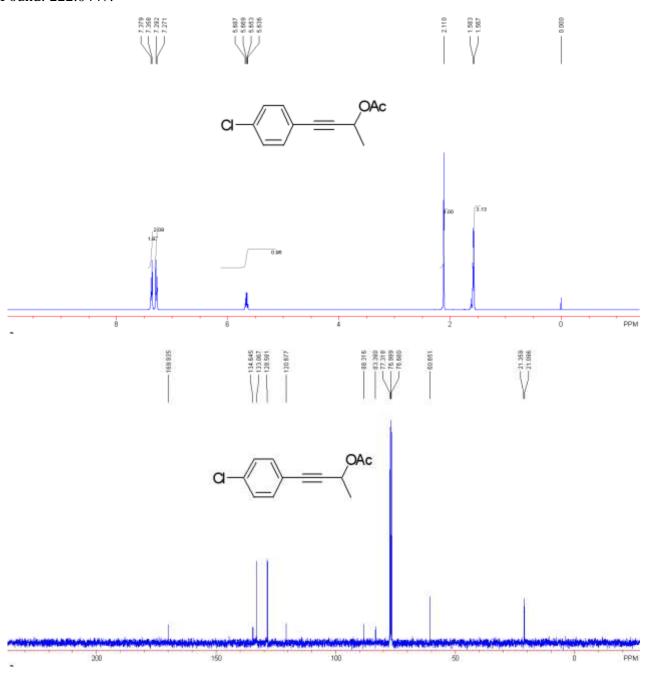
1-(2-bromophenyl)-3-phenylprop-2-ynyl acetate 1v: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1v** (80% yield). A colorless oil. IR (CH₂Cl₂): v 3061, 2228, 1741, 1570, 1490, 1470, 1441, 1368, 1334, 1213, 1120, 1070, 1014, 954, 912 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.86 (1H, dd, J_I = 8.0 Hz, J_2 = 1.6 Hz), 7.60 (1H, dd, J_I = 8.0 Hz, J_2 = 1.2 Hz), 7.50-7.47 (2H, m), 7.41-7.37 (1H, m), 7.34-7.29 (3H, m), 7.26-7.22 (1H, m), 6.92 (1H, s), 2.15 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 136.1, 133.1, 131.9, 130.5, 129.7, 128.9, 128.2, 127.7, 123.4, 121.9, 87.4, 84.6, 65.6, 20.9; MS (%) m/e 328 (31), 288 (40), 269 (27), 259 (10), 207 (89), 189 (100), 178 (61); HRMS (EI) for C₁₇H₁₃O₂Br: 328.0099; Found: 328.0102.



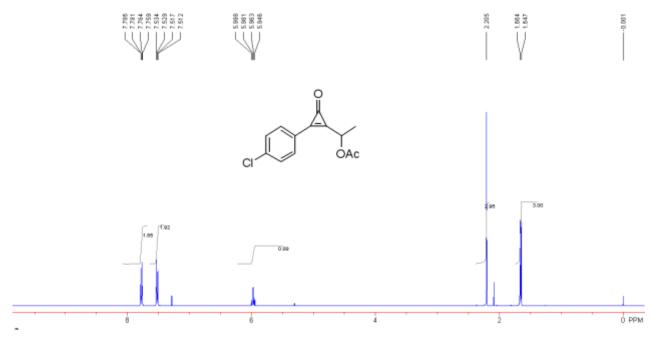
(2-bromophenyl)(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2v: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2v (51% yield). A yellow solid. m.p. for 2v = 102-104 °C; IR (CH₂Cl₂): v 3058, 1854, 1746, 1636, 1488, 1448, 1370, 1265, 1213, 1122, 1022, 927 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.75 (2H, d, J = 7.2 Hz), 7.66 (1H, d, J = 7.2 Hz), 7.59-7.55 (2H, m), 7.50 (2H, t, J = 7.2 Hz), 7.39 (1H, t, J = 7.2 Hz), 7.31-7.27 (1H, m), 7.19 (1H, s), 2.25 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 154.2, 153.7, 149.8, 133.7, 133.5, 133.2, 131.8, 131.0, 129.4, 129.3, 128.2, 123.0, 122.7, 70.8, 20.7; MS (ESI) m/e 357.0 (M⁺+H); HRMS (ESI) for C₁₈H₁₃O₃Br (M⁺): 356.0048, Found: 356.0055.

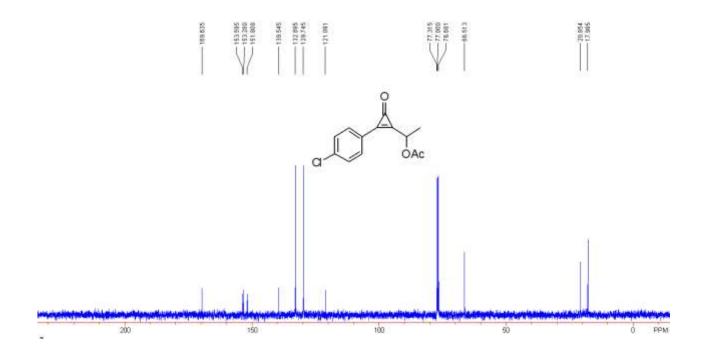

1-(2,4-dichlorophenyl)-3-phenylprop-2-ynyl acetate 1w: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1w** (95% yield). A yellow oil. IR (CH₂Cl₂): v 2962, 2230, 1746, 1589, 1563, 1490, 1471, 1368, 1216, 1139, 1102, 1057, 954, 913 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.77 (1H, d, J = 8.4 Hz), 7.47 (2H, dd, J₁ = 6.0 Hz, J₂ = 2.0 Hz), 7.42 (1H, d, J = 2.0 Hz), 7.34-7.29 (4H, m), 6.92 (1H, s), 2.14 (3H, s);

¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 135.3, 134.1, 133.2, 131.9, 130.4, 129.6, 129.0, 128.3, 127.4, 121.7, 87.6, 84.0, 62.7, 20.8; MS (%) m/e 318 (65), 276 (66), 259 (79), 247 (30), 241 (100), 223 (55), 212 (36), 189 (50); HRMS (EI) for $C_{17}H_{12}O_2Cl_2$: 318.0214; Found: 318.0218.

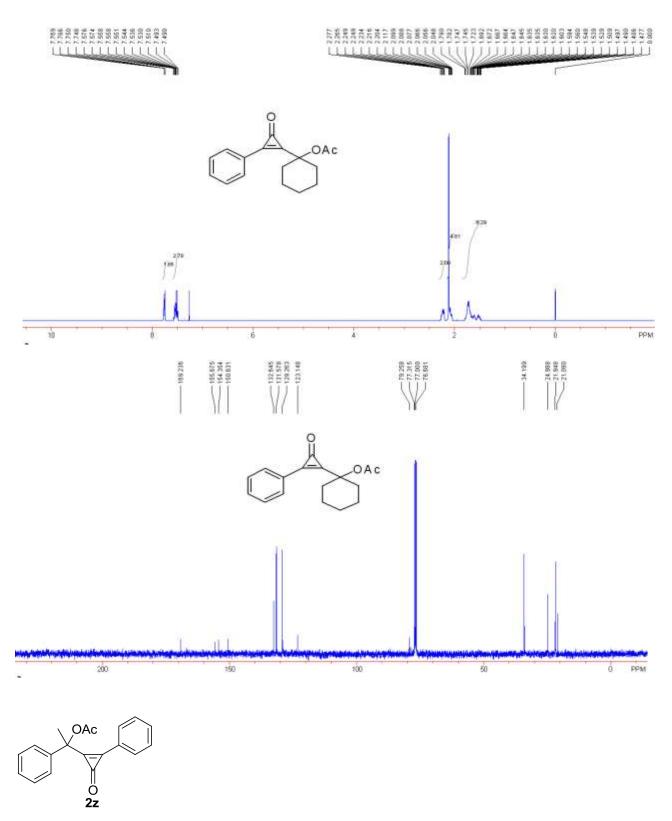


(2,4-dichlorophenyl)(3-oxo-2-phenylcycloprop-1-enyl)methyl acetate 2w: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target

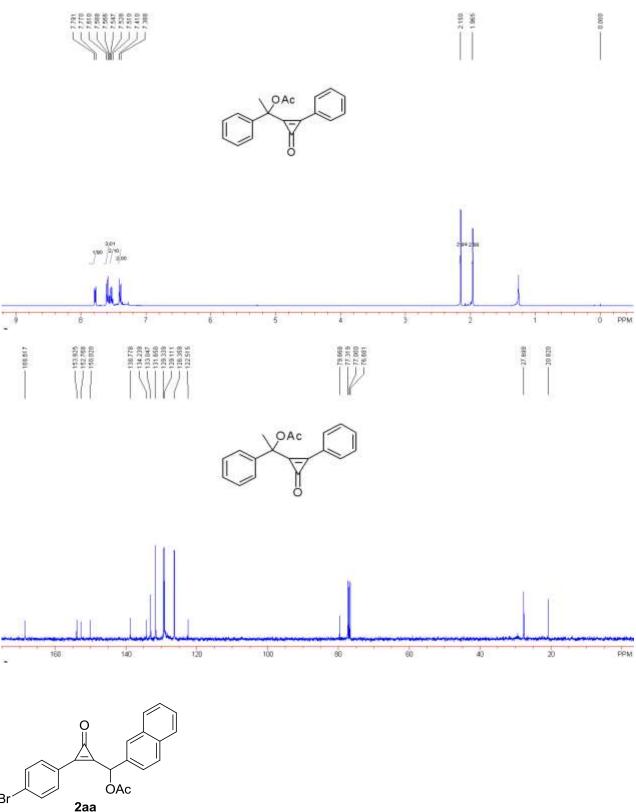

product **2w** (58% yield). A yellow solid. m.p. for **2w** = 85-86 °C; IR (CH₂Cl₂): v 2962, 1854, 1746, 1637, 1588, 1473, 1448, 1370, 1259, 1212, 1089, 1020, 866 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.77 (2H, d, J = 8.4 Hz), 7.61-7.58 (1H, m), 7.54-7.48 (4H, m), 7.33 (1H, dd, J_I = 8.4 Hz, J_2 = 2.0 Hz), 7.15 (1H, s), 2.25 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 154.4, 153.5, 149.2, 136.3, 134.0, 133.4, 131.9, 130.6, 130.2, 129.4, 128.0, 122.6, 68.2, 20.7; MS (ESI) m/e 347.0 (M⁺+H); HRMS (ESI) for C₁₈H₁₂O₃Cl₂ (M⁺): 346.0163, Found: 346.0169.



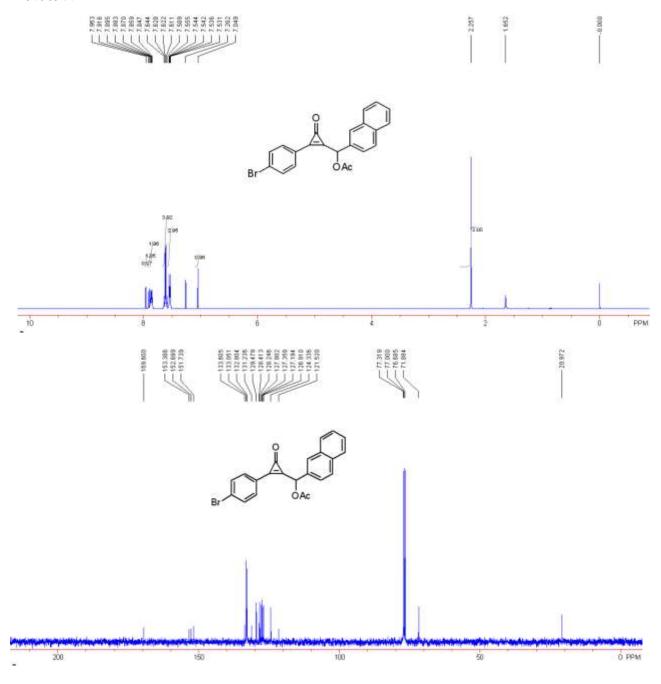
4-(4-chlorophenyl)but-3-yn-2-yl acetate 1x: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **1x** (87% yield). A yellow oil. IR (CH₂Cl₂): v 2962, 1743, 1488, 1448, 1370, 1339, 1259, 1225, 1083, 1030, 1014, 952 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.37 (2H, d, J = 8.4 Hz), 7.28 (2H, d, J = 8.4 Hz), 5.66 (1H, q, J = 2.8 Hz), 2.11 (3H, s), 1.58 (3H, d, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 134.6, 133.1, 128.6, 120.7, 88.3, 83.4, 60.7, 21.4, 21.1; MS (%) m/e 222 (18), 207 (45), 180 (45), 162 (100), 145 (63), 136 (19), 127 (91), 115 (24), 101 (24); HRMS (EI) for C₁₂H₁₁O₂Cl: 222.0448; Found: 222.0447.

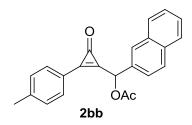


1-(2-(4-chlorophenyl)-3-oxocycloprop-1-enyl)ethyl acetate 2x: Following the general procedure, the mixture was purified by column chomatography using silica gel to give the target product **2x** (53% yield). A yellow solid. m.p. for **2x** = 50-52 °C; IR (CH₂Cl₂): v 2936, 1850, 1741, 1639, 1589, 1485, 1444, 1402, 1371, 1222, 1033, 1014, 948 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.77 (2H, dd, $J_I = 8.8$ Hz, $J_2 = 2.0$ Hz), 7.52 (2H, dd, $J_I = 8.8$ Hz, $J_2 = 2.0$ Hz), 5.97 (1H, q, J = 6.8 Hz), 2.21 (3H, s), 1.66 (3H, d, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 153.6, 153.3, 151.8, 139.5, 132.9, 129.7, 121.1, 66.5, 20.9, 18.0; MS (ESI) m/e 251.0 (M⁺+H); HRMS (ESI) for C₁₃H₁₁O₃Cl (M⁺): 250.0397, Found: 250.0404.

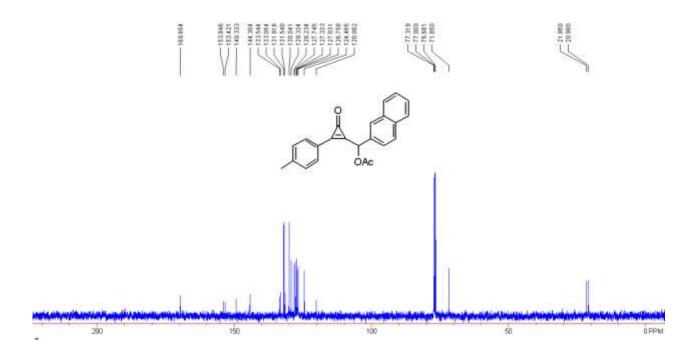


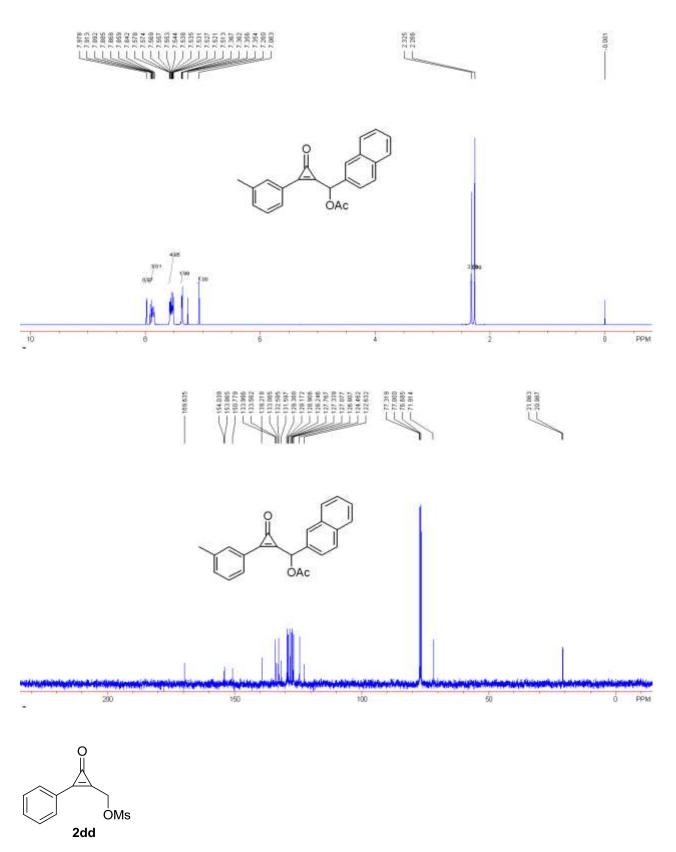
1-(3-oxo-2-phenylcycloprop-1-enyl)cyclohexyl acetate 2y: Following the general procedure, the mixture was purified by column chomatography using silica gel to give the target product **2y** (80% yield). A yellow solid. m.p. for **2y** = 83-85 °C; IR (CH₂Cl₂): v 2939, 2862, 1854, 1739, 1633, 1489, 1448, 1369, 1259, 1228, 1089, 1013, 970, 929, 796, 770, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.76 (2H, dd, J_I = 8.0 Hz, J_2 = 1.6 Hz), 7.56-7.49 (3H, m), 2.28-2.21 (2H, m), 2.12-2.06 (5H, m), 1.77-1.53 (6H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 169.2, 155.7, 154.4, 150.6, 132.6, 131.6, 129.3, 123.1, 79.3, 34.2, 25.0, 21.9, 21.1; MS (ESI) m/e 271.1 (M⁺+H); HRMS (ESI) for C₁₇H₁₈O₃ (M⁺): 270.1256, Found: 270.1251.


1-(3-oxo-2-phenylcycloprop-1-enyl)-1-phenylethyl acetate 2z: Following the general procedure, the mixture was purified by column chomatography using silica gel to give the target product **2z** (45% yield). A yellow oil; IR (CH₂Cl₂): v 2962, 2849, 1857, 1742, 1635, 1490, 1447, 1403, 1369, 1261, 1225, 1093, 1012, 940, 799, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.80 (2H, d, J = 8.4 Hz), 7.60 (2H, d, J = 8.4 Hz), 7.57-7.51 (3H, m), 7.40 (2H, d, J = 8.8 Hz), 2.15 (3H, s), 1.97 (3H,

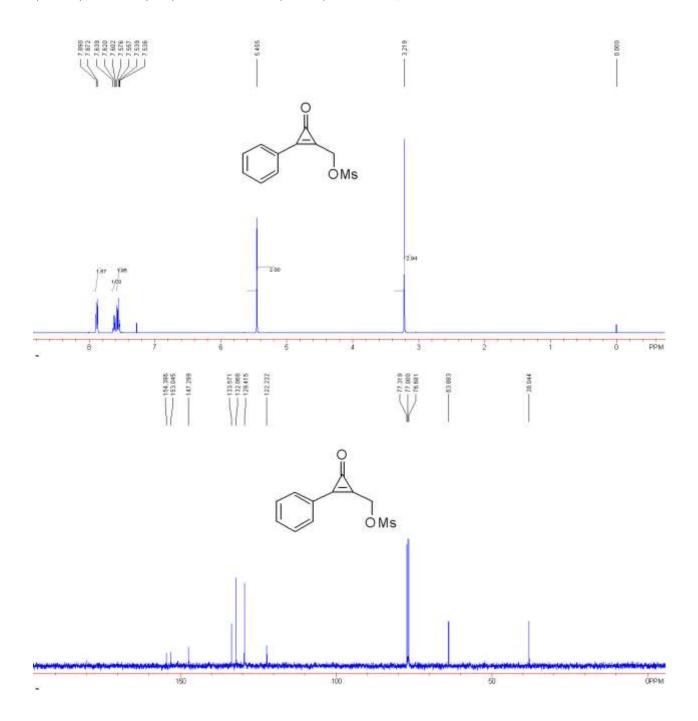

s); 13 C NMR (CDCl₃, 100 MHz): δ 168.6, 153.9, 152.8, 150.0, 138.8, 134.2, 133.0, 131.7, 129.3, 129.1, 126.4, 122.5, 79.7, 27.7, 20.8; MS (ESI) m/e 239.1 (M-OAc-CO); HRMS (ESI) for C₁₆H₁₂Cl (M-OAc-CO): 239.0622, Found: 239.0626.

(2-(4-bromophenyl)-3-oxocycloprop-1-enyl)(naphthalen-2-yl)methyl acetate 2aa: Following the


general procedure, the mixture was purified by column chromatography using silica gel to give the target product **2aa** (38% yield). A yellow solid. m.p. for **2aa** = 165-168 °C; IR (CH₂Cl₂): v 3062, 1850, 1736, 1637, 1583, 1478, 1397, 1366, 1215, 1207, 1103, 1016, 948, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.96 (1H, s), 7.91 (1H, d, J = 8.4 Hz), 7.88-7.85 (2H, m), 7.64-7.59 (4H, m), 7.56-7.53 (3H, m), 7.05 (1H, s), 2.26 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 153.4, 152.7, 151.7, 133.6, 133.0, 132.8, 131.2, 129.5, 128.4, 128.2, 127.8, 127.4, 127.2, 126.9, 124.3, 121.5, 71.9, 21.0; MS (ESI) m/e 429.9 (M⁺+Na); HRMS (ESI) for C₂₂H₁₅O₃BrNa (M⁺+Na): 429.0107, Found: 429.0097.



naphthalen-2-yl(3-oxo-2-p-tolylcycloprop-1-enyl)methyl acetate 2bb: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2bb (39% yield). A yellow solid. m.p. for 2bb = 180-182 °C; IR (CH₂Cl₂): v 3060, 1850, 1789, 1735, 1631, 1504, 1426, 1366, 1306, 1219, 1207, 1172, 1123, 970, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.97 (1H, s), 7.90-7.83 (3H, m), 7.66 (2H, d, J = 8.0 Hz), 7.58-7.51 (3H, m), 7.28 (2H, d, J = 8.0 Hz), 7.06 (1H, s), 2.41 (3H, s), 2.26 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 153.8, 153.4, 149.3, 144.3, 133.5, 133.0, 131.9, 131.5, 130.0, 129.3, 128.2, 127.7, 127.3, 127.0, 126.8, 124.5, 120.1, 71.9, 21.9, 21.0; MS (%) m/e 342 (25), 300 (100), 281 (4), 253 (6), 239 (12), 228 (10), 207 (2), 43 (11); HRMS (EI) for C₂₃H₁₈O₃: 342.1256; Found: 342.1258.

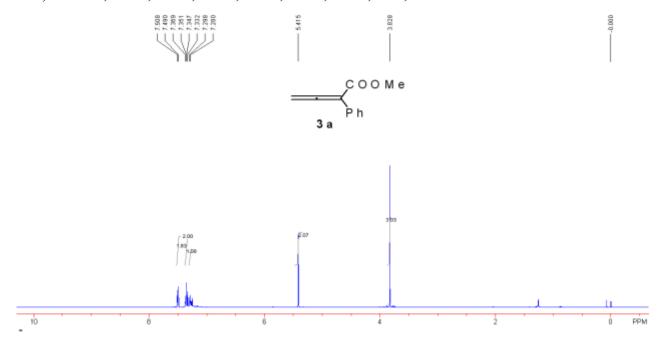


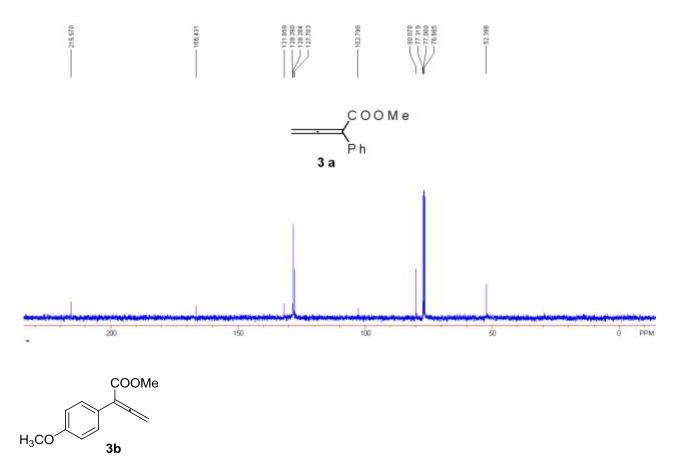
naphthalen-2-yl(3-oxo-2-m-tolylcycloprop-1-enyl)methyl acetate 2cc: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **2cc** (30% yield). A yellow solid. m.p. for **2cc** = 126-128 °C; IR (CH₂Cl₂): v 3025, 1848, 1736, 1636, 1599, 1365, 1218, 1207, 1195, 1016, 971, 867 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.98 (1H, s), 7.91-7.84 (3H, m), 7.58-7.51 (5H, m), 7.37-7.36 (2H, m), 7.06 (1H, s), 2.33 (3H, s), 2.27 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 154.0, 153.9, 150.8, 139.2, 134.0, 133.6, 133.1, 132.6, 131.6, 129.4, 129.2, 128.9, 128.2, 127.8, 127.3, 127.1, 126.8, 124.5, 122.6, 71.9, 21.1, 21.0; MS (ESI) m/e 685.1 (2M⁺+H); HRMS (ESI) for C₂₃H₁₈O₃Na (M⁺+Na): 365.1150, Found: 365.1148.

(3-oxo-2-phenylcycloprop-1-enyl)methyl methanesulfonate 2ab: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 2ab (59% yield). A white solid. m.p. for 2ab = 122-124 °C; IR (CH₂Cl₂): v 2961, 2922, 1861, 1841, 1630, 1449, 1356, 1260, 1167, 1094, 982, 893 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.88 (2H, d, J =

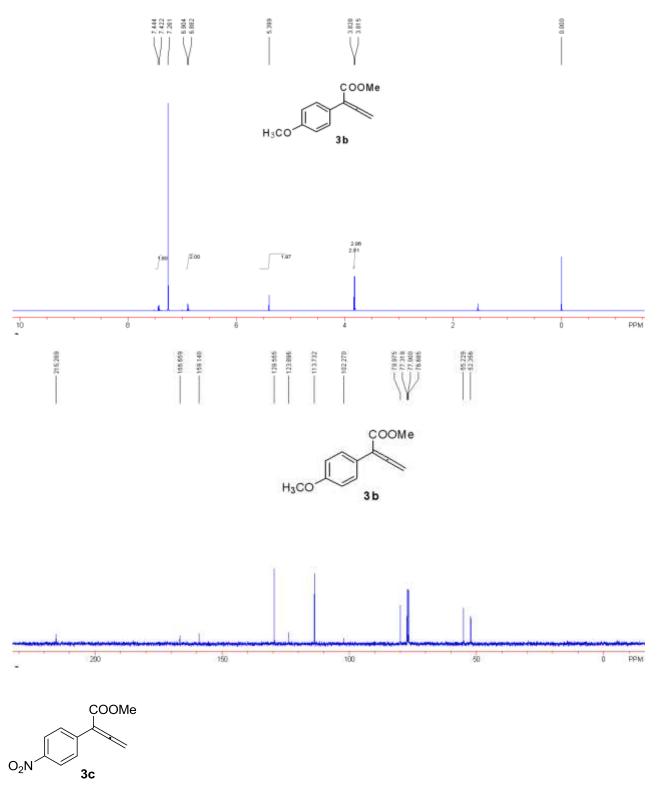
7.2 Hz), 7.62 (1H, t, J = 7.2 Hz), 7.58-7.54 (2H, m), 5.46 (2H, s), 3.22 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 154.4, 153.0, 147.3, 133.6, 132.1, 129.4, 122.2, 63.9, 38.0; MS (ESI) m/e 239.0 (M⁺+H); HRMS (ESI) for C₁₁H₁₁O₄S (M⁺+H): 239.0373, Found: 239.0378.

Reference:

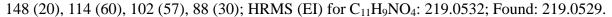

- [1] Wang, F.; Luo, T.; Hu, J. B.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. K. S. Olah, G. A. *Angew. Chem., Int. Ed.* **2011**, *50*, 7153-7157.
- [2] Cheng, Z.-L.; Chen, Q.-Y. Chin. J. Chem. 2006, 24, 1219-1224.
- [3] Peng, C.; Wang, Y.; Wang, J. D. J. Am. Chem. Soc. 2008, 130, 1566-1567.

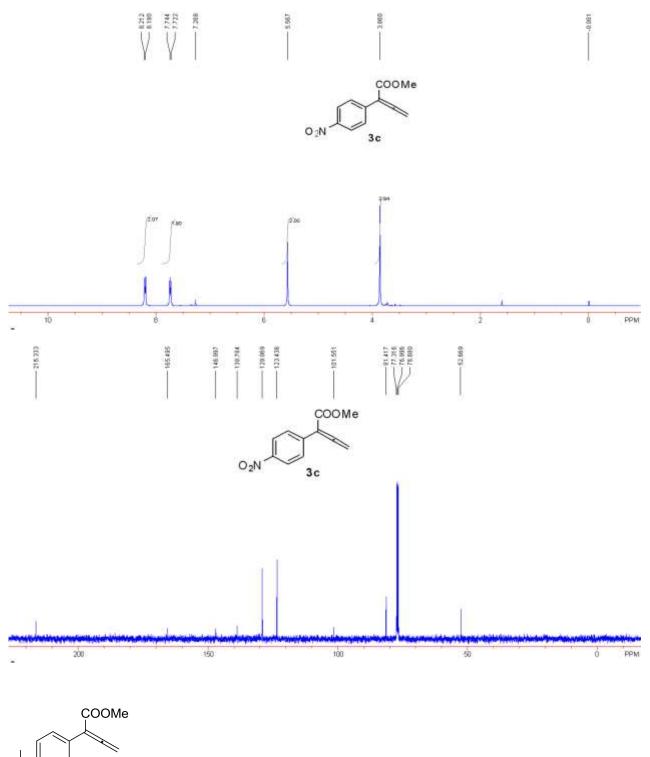

- [4] Nishikado, H.; Nakatsuji, H.; Ueno, K.; Nagase, R.; Tanabe, Y. Synlett 2010, 2087-2092.
- [5] Poeylaunt-Palena, A. A.; Testero, S. A.; Mata, E. G. Chem. Commun. 2011, 47, 1565-1467.

General Procedure for the Preparation of 3 from the Reaction of 2a with MeOH Using 3a as an Example in the Presence of DABCO

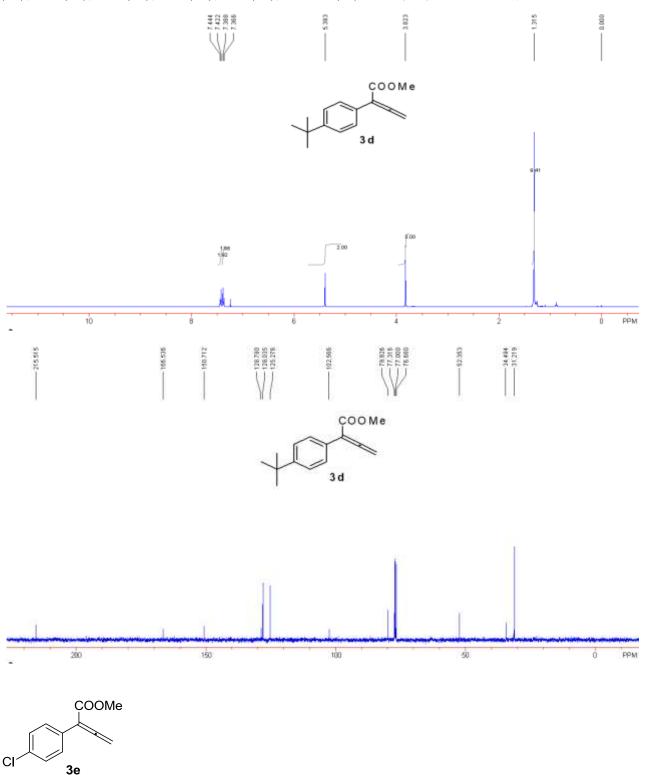

To a mixture of 2a (0.20 mmol, 46 mg), MeOH (10.0 mmol), DABCO (0.04 mmol, 5.0 mg) and 50 mg 4Å MS was added 2.0 mL of THF at room temperature (25 °C) under argon. The reaction solution was monitored by TLC. After the reaction was completed, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/16) to give the target product 3a.

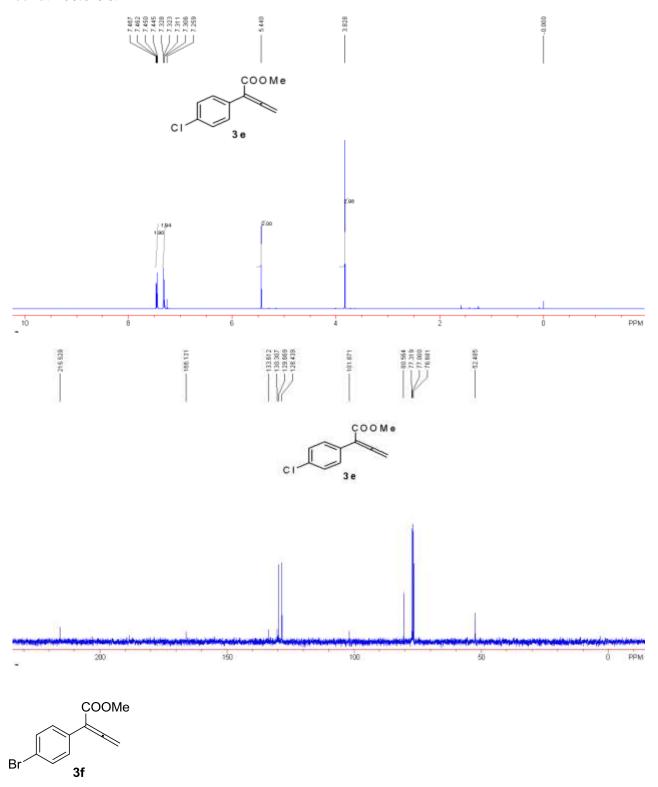
methyl 2-phenylbuta-2,3-dienoate 3a: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3a (33 mg, 95% yield). A yellow oil. This is a known compound. ^{[2] 1}H NMR (400 MHz, CDCl₃, TMS): δ 7.50 (2H, d, J = 7.2 Hz), 7.37-7.33 (2H, m), 7.29 (1H, d, J = 7.2 Hz), 5.42 (2H, s), 3.83 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.6, 166.4, 131.9, 128.4, 128.3, 127.7, 102.8, 80.1, 52.4.



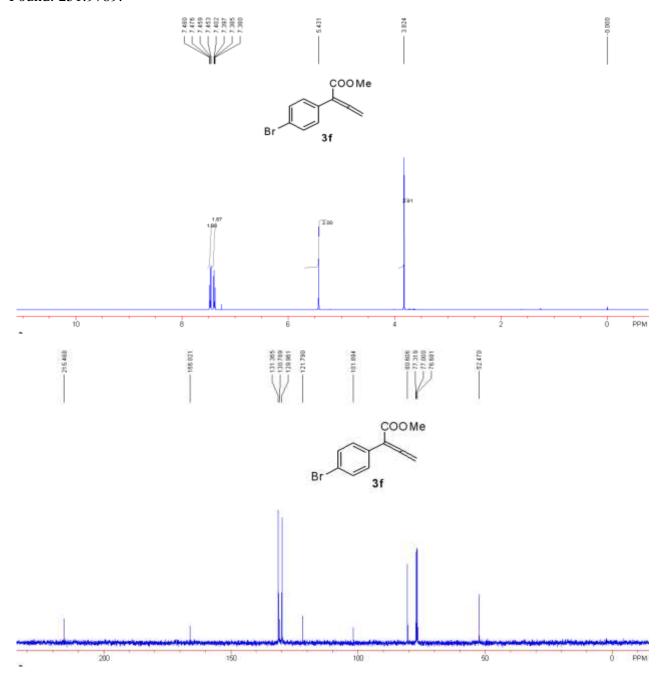

methyl 2-(4-methoxyphenyl)buta-2,3-dienoate 3b: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **3b** (38 mg, 93% yield). A white solid. m.p. for **3b** = 72-73 °C; IR (CH₂Cl₂): ν 2962, 1717, 1607, 1511, 1257, 1085, 1011, 859, 792 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.43 (2H, d, J = 8.8 Hz), 6.89 (2H, d, J = 8.8 Hz), 5.40 (2H, s), 3.83 (3H, s), 3.82 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.3, 166.7, 159.1, 129.6, 123.9, 113.7, 102.3, 80.0, 55.2, 52.4; MS (%) m/e 204 (96), 189 (4), 175 (9), 145 (92), 133 (100), 102 (47), 76 (19), 63 (8); HRMS (EI) for C₁₂H₁₂O₃: 204.0786; Found: 204.0787.

methyl 2-(4-nitrophenyl)buta-2,3-dienoate 3c: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **3c** (41 mg, 94% yield). A yellow solid. m.p. for **3c** = 92-93 °C; IR (CH₂Cl₂): v 2960, 2925, 1953, 1721, 1594, 1515, 1343, 1294, 1093, 1023, 854, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.20 (2H, d, J = 8.8 Hz), 7.73 (2H, d, J = 8.8 Hz), 5.57 (2H, s), 3.86 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 216.3, 165.5, 147.0, 138.8, 129.1, 123.4, 101.6, 81.4, 52.7; MS (%) m/e 219 (100), 202 (10), 189 (11), 160 (22),

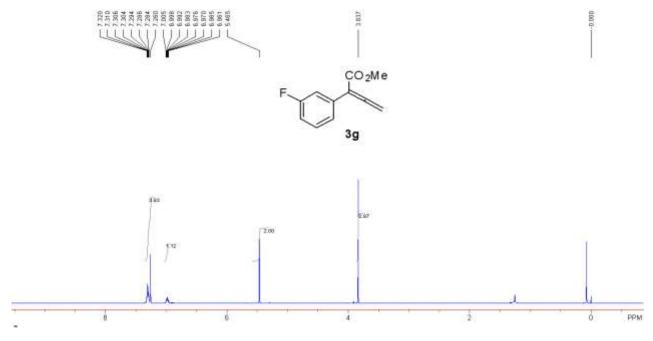

3d

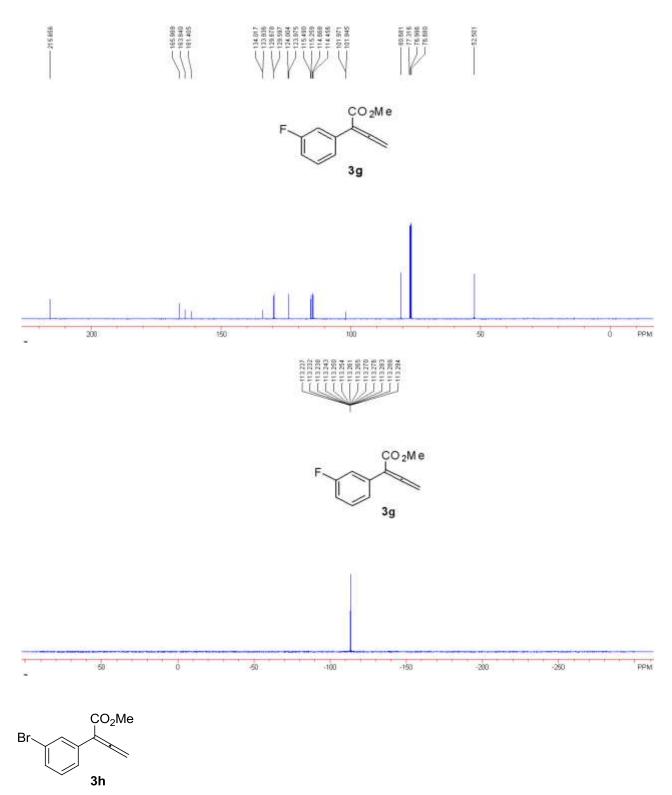

methyl 2-(4-tert-butylphenyl)buta-2,3-dienoate 3d: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3d (42 mg, 91% yield). A yellow oil. IR (CH₂Cl₂): v 2962, 2868, 1720, 1512, 1434, 1363, 1263, 1149, 1108, 1014, 906, 798 cm⁻¹; 1 H NMR (400 MHz, CDCl₃, TMS): δ 7.43 (2H, d, J = 8.8 Hz), 7.38 (2H, d, J = 8.8

Hz), 5.39 (2H, s), 3.82 (3H, s), 1.32 (9H, s); 13 C NMR (CDCl₃, 100 MHz): δ 215.5, 166.5, 150.7, 128.8, 128.0, 125.3, 102.6, 79.9, 52.4, 34.5, 31.2; MS (%) m/e 230 (41), 215 (100), 183 (11), 173 (14), 155 (21), 141 (19), 128 (16), 115 (21); HRMS (EI) for $C_{15}H_{18}O_2$: 230.1307; Found: 230.1311.

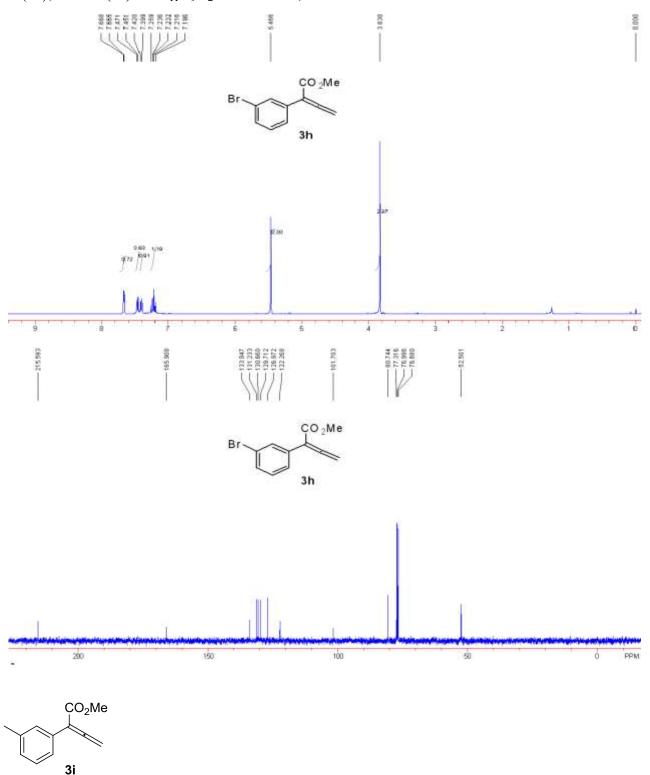

methyl 2-(4-chlorophenyl)buta-2,3-dienoate 3e: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3e (40 mg, 96% yield). A yellow oil. IR (CH₂Cl₂): v 2951, 1954, 1924, 1717, 1490, 1434, 1398, 1240, 1140, 1093, 1027,

1012, 904, 852, 830, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.46 (2H, dd, $J_I = 6.8$ Hz, $J_2 = 2.0$ Hz), 7.32 (2H, dd, $J_I = 6.8$ Hz, $J_2 = 2.0$ Hz), 5.44 (2H, s), 3.83 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.5, 166.1, 133.6, 130.3, 129.7, 128.4, 101.9, 80.6, 52.5; MS (%) m/e 208 (78), 179 (7), 165 (8), 149 (100), 145 (7), 137 (54), 114 (43), 102 (9); HRMS (EI) for C₁₁H₉O₂Cl: 208.0291; Found: 208.0296.

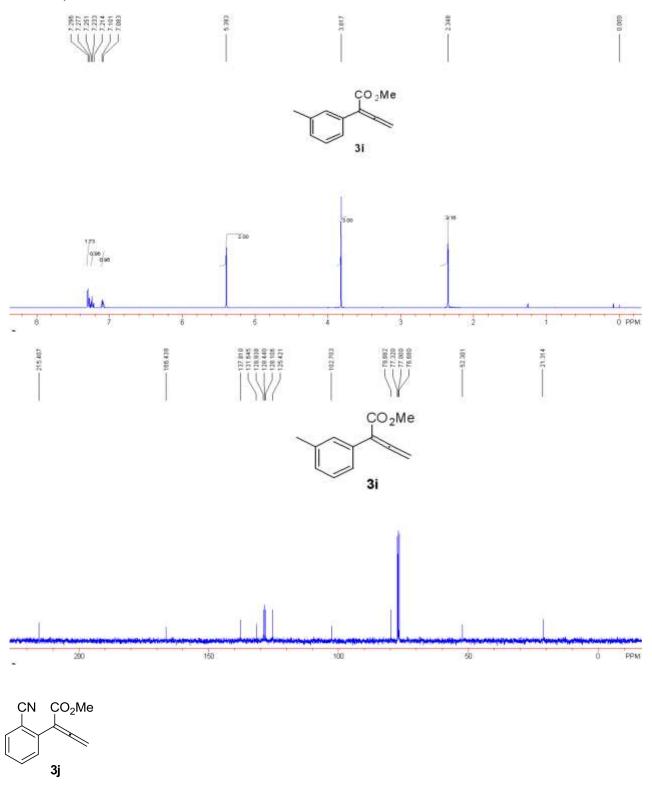



methyl 2-(4-bromophenyl)buta-2,3-dienoate 3f: Following the general procedure, the mixture was S56

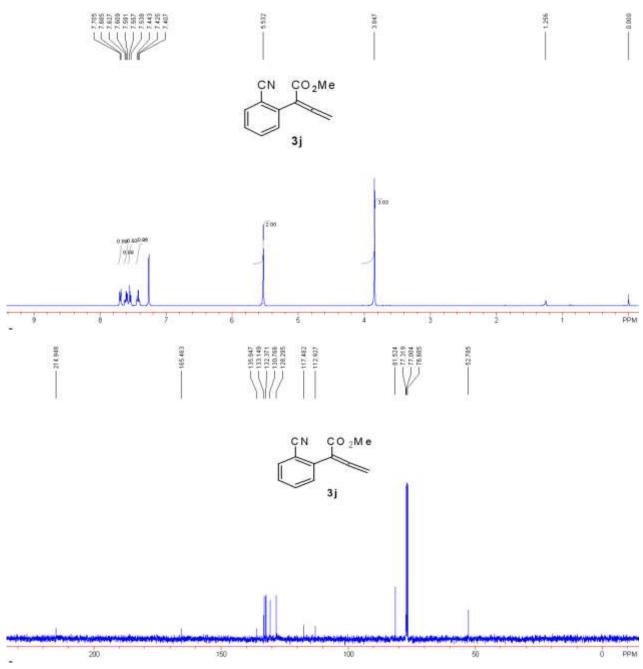
purified by column chromatography using silica gel to give the target product **3f** (42 mg, 83% yield). A yellow oil. IR (CH₂Cl₂): v 2961, 2854, 1957, 1921, 1720, 1487, 1434, 1398, 1260, 1145, 1096, 1019, 1010, 904, 797 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.47 (2H, dd, $J_I = 6.8$ Hz, $J_2 = 2.0$ Hz), 7.32 (2H, dd, $J_I = 6.8$ Hz, $J_2 = 2.0$ Hz), 5.43 (2H, s), 3.82 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.5, 166.0, 131.4, 130.8, 130.0, 121.8, 101.9, 80.6, 52.5; MS (%) m/e 251 (16), 195 (95), 183 (67), 145 (17), 128 (20), 114 (100), 102 (27), 88 (41), 75 (15); HRMS (EI) for C₁₁H₉O₂Br: 251.9786; Found: 251.9789.


methyl 2-(3-fluorophenyl)buta-2,3-dienoate 3g: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3g (52 mg, 90% yield). A yellow oil. IR (CH₂Cl₂): v 2953, 2256, 1955, 1717, 1613, 1585, 1486, 1435, 1277, 1248, 1130, 1036, 905, 853, 790 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.32-7.26 (4H, m), 7.00-6.96 (1H, m), 5.47 (2H, s), 3.84 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.7, 166.0, 163.8, 161.4, 134.0 (d, $J_{C-F} = 8.1$ Hz), 129.6 (d, $J_{C-F} = 8.1$ Hz), 124.0 (d, $J_{C-F} = 2.9$ Hz), 115.4 (d, $J_{C-F} = 23.1$ Hz), 114.7 (d, $J_{C-F} = 21.2$ Hz), 102.0 (d, $J_{C-F} = 2.6$ Hz), 80.7, 52.5; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -113.2-113.3 (m); MS (%) m/e 192 (54), 177 (4), 163 (5), 146 (9), 133 (100), 121 (26), 107 (22), 83 (18), 59 (30); HRMS (EI) for C₁₁H₉O₂F: 192.0587; Found: 192.0585.

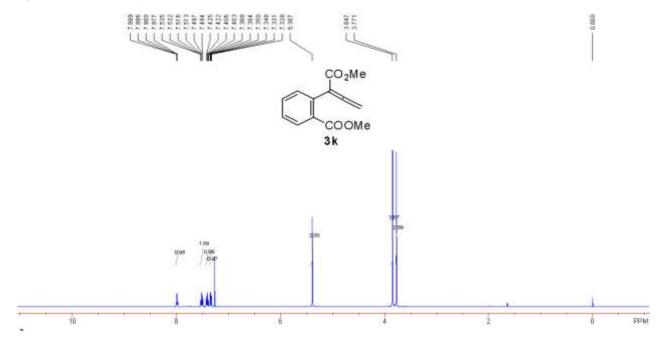
methyl 2-(3-bromophenyl)buta-2,3-dienoate 3h: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **3h** (45 mg, 89% yield). A yellow oil. IR (CH₂Cl₂): v 2952, 2924, 2853, 1954, 1923, 1719, 1591, 1560, 1473, 1433, 1261, 1146, 1075, 918, 852, 789 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.67 (1H, d, J = 1.2 Hz), 7.46 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 8.4 Hz), 7.26-7.20 (1H, m), 5.47 (2H, s), 3.83 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.6, 165.9, 133.9, 131.2, 130.7, 129.7, 127.0, 122.3, 101.7, 80.7, 52.5;


MS (%) m/e 251 (13), 195 (72), 183 (24), 153 (18), 128 (30), 117 (48), 114 (100), 102 (29), 88 (43), 43 (82); HRMS (EI) for C₁₁H₉O₂Br: 251.9786; Found: 251.9788.

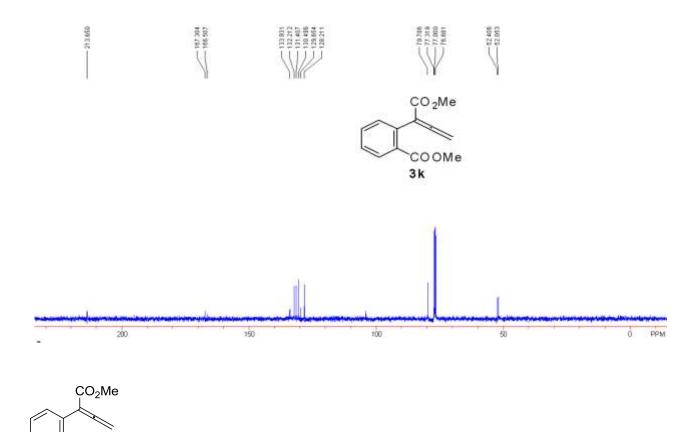
methyl 2-m-tolylbuta-2,3-dienoate 3i: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3i (34 mg, 90% yield). A yellow oil. IR (CH₂Cl₂): v 2961, 1953, 1924, 1720, 1605, 1487, 1434, 1258, 1137, 1090, 1017, 855, 794 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.29 (2H, d, J = 7.6 Hz), 7.23 (1H, t, J = 7.6 Hz),

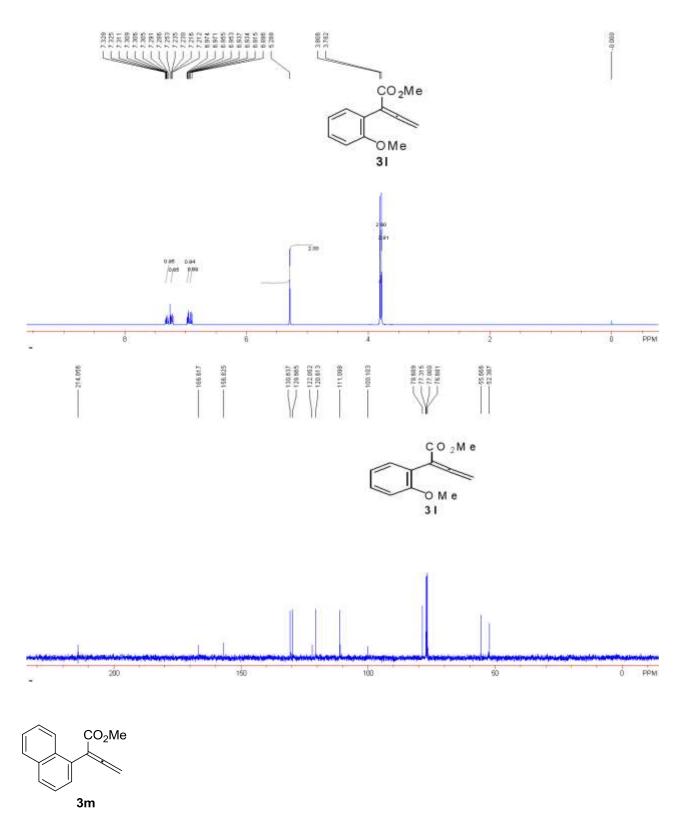

S60

7.09 (1H, d, J = 7.2 Hz), 5.39 (2H, s), 3.82 (3H, s), 2.35 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 215.4, 166.4, 137.8, 131.6, 128.9, 128.4, 128.1, 125.4, 102.7, 80.0, 52.3, 21.3; MS (%) m/e 188 (57), 173 (11), 159 (7), 145 (11), 129 (81), 117 (41), 102 (21), 58 (32), 43 (100); HRMS (EI) for $C_{12}H_{12}O_2$: 188.0837; Found: 188.0835.

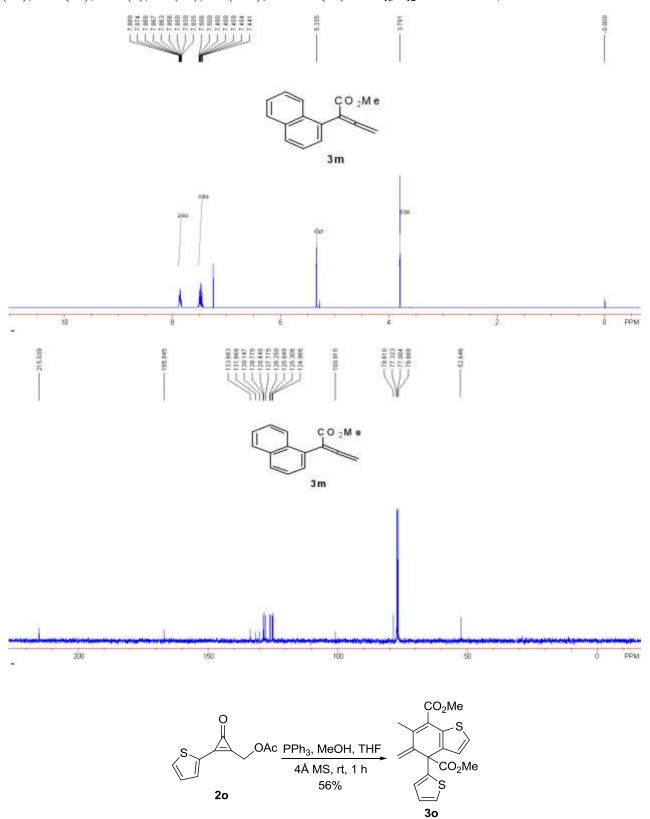


methyl 2-(2-cyanophenyl)buta-2,3-dienoate 3j: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3j (36 mg, 90% yield).


A white solid. m.p. for 3j = 95-96 °C. IR (CH₂Cl₂): v 2962, 2224, 1960, 1715, 1434, 1259, 1089, 1016, 908, 863, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.70 (1H, d, J = 8.0 Hz), 7.61 (1H, t, J = 7.2 Hz), 7.55 (1H, d, J = 7.6 Hz), 7.42 (1H, t, J = 7.2 Hz), 5.53 (2H, s), 3.85 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 214.9, 165.5, 136.0, 133.5, 132.4, 130.8, 128.3, 117.5, 112.9, 81.5, 52.8; MS (%) m/e 199 (55), 184 (4), 170 (12), 154 (19), 140 (100), 128 (22), 113 (44), 63 (17); HRMS (EI) for C₁₂H₉NO₂: 199.0633; Found: 199.0636.

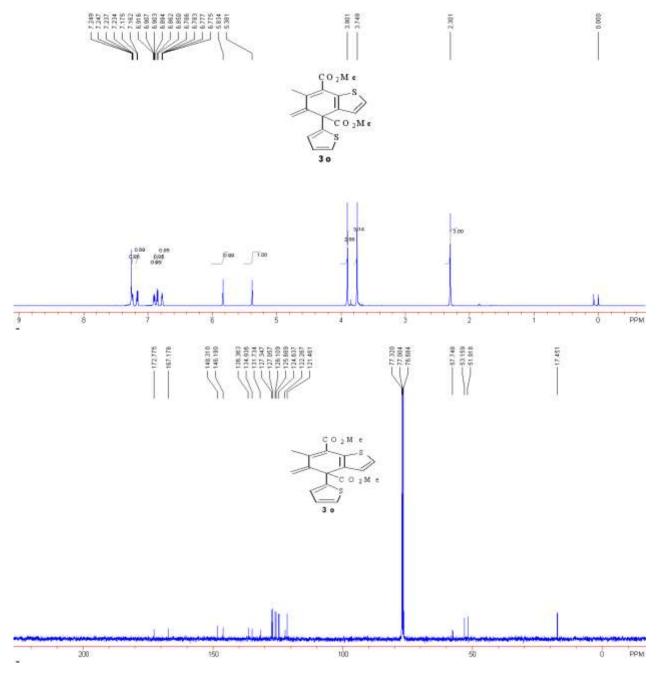

methyl 2-(1-methoxy-1-oxobuta-2,3-dien-2-yl)benzoate 3k: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3k (25 mg, 54% yield). A white solid. m.p. for 3k = 87-88 °C. IR (CH₂Cl₂): v 2962, 1720, 1434, 1262, 1084, 1016, 860, 796, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.99 (1H, dd, J_I = 7.6 Hz, J_2 = 1.2 Hz), 7.51 (1H, dt, J_I = 7.6 Hz, J_2 = 1.2 Hz), 7.40 (1H, dt, J_I = 7.6 Hz, J_2 = 1.2 Hz), 7.34 (1H, dd, J_I = 7.6 Hz, J_2 = 1.2 Hz), 5.39 (2H, s), 3.85 (3H, s), 3.77 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 213.7, 167.3, 166.5, 133.9, 132.2, 131.4, 130.5, 129.7, 128.2, 79.8, 52.4, 52.0; MS (%) m/e 232 (100), 217 (41), 201 (35), 173 (33), 161 (41), 143 (57), 129 (64), 115 (59), 102 (58), 88 (28); HRMS (EI) for C₁₃H₁₂O₄: 232.0736; Found: 232.0736.

`ОМе **3I**



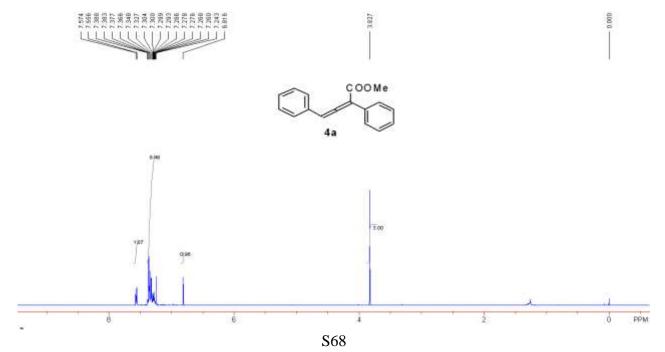
methyl 2-(2-methoxyphenyl)buta-2,3-dienoate 3l: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3l (38 mg, 93% yield). A yellow oil. IR (CH₂Cl₂): ν 2961, 1963, 1718, 1597, 1494, 1463, 1434, 1258, 1144, 1104, 1017, 905, 799, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.33-7.29 (1H, m), 7.22 (1H, dd, J_I = 7.6 Hz, J_2 = 2.0 Hz), 6.95 (1H, dt, J_I = 7.6 Hz, J_2 = 1.2 Hz), 6.91 (1H, d, J_I = 7.6 Hz), 5.29 (2H, s), 3.81 (3H, s), 3.78 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 214.1, 166.6, 156.8, 130.6, 129.7, 122.1, 120.6, 111.1, 100.1, 78.7, 55.7, 52.4; MS (%) m/e 204 (17), 189 (100), 172 (11), 159 (23), 145 (12), 115 (53), 102 (18), 91 (25); HRMS (EI) for C₁₂H₁₂O₃: 204.0786; Found: 204.0784.

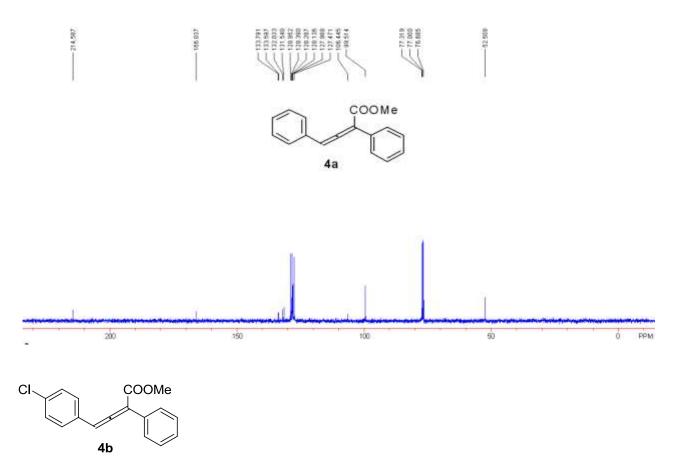
methyl 2-(naphthalen-1-yl)buta-2,3-dienoate 3m: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 3m (35 mg, 78% yield). A yellow oil. IR (CH₂Cl₂): ν 2962, 1967, 1732, 1580, 1477, 1434, 1259, 1088, 1017, 864, 796 cm⁻¹; 1 H NMR (400 MHz, CDCl₃, TMS): δ 7.88-7.84 (3H, m), 7.51-7.44 (4H, m), 5.34 (2H, s), 3.79 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 215.0, 166.8, 133.7, 131.7, 130.1, 128.8, 128.4, 127.8,


126.3, 125.8, 125.3, 125.0, 100.9, 78.6, 52.6; MS (%) m/e 224 (15), 209 (9), 192 (25), 165 (86), 163 (27), 153 (11), 139 (8), 58 (32), 43 (100); HRMS (EI) for C₁₅H₁₂O: 224.0837; Found: 224.0839.

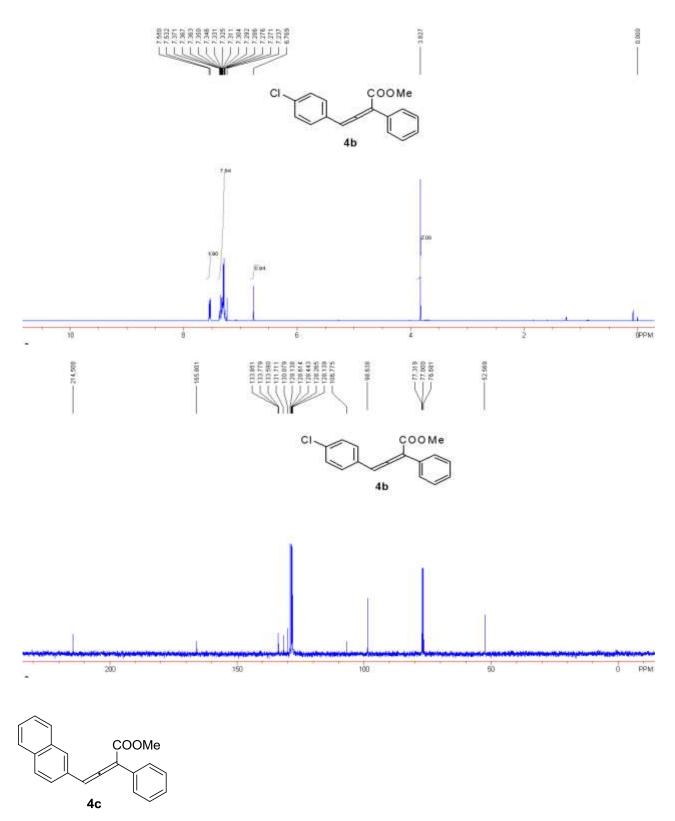
dimethyl

6-methyl-5-methylene-4-(thiophen-2-yl)-4,5-dihydrobenzo[b]thiophene-4,7-dicarboxylate

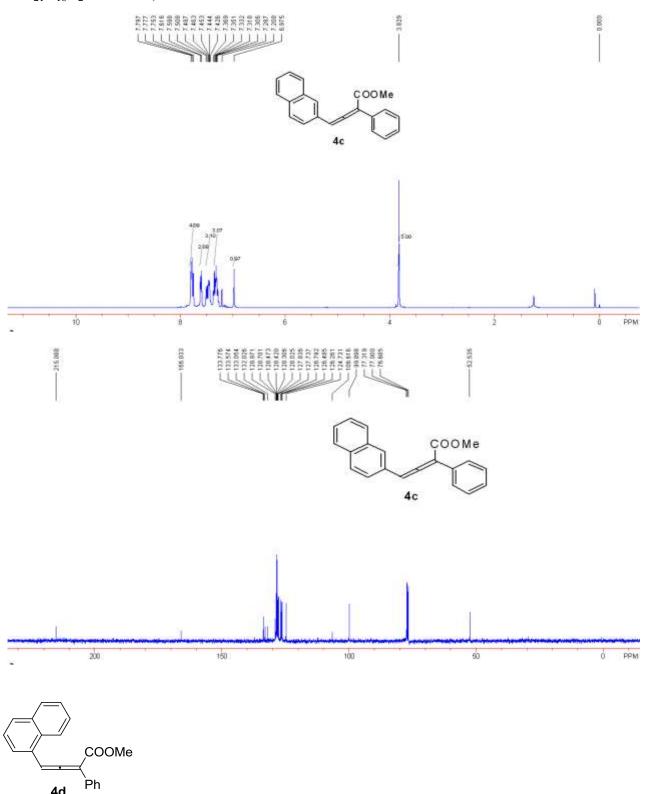

Following the general procedure, but the catalyst was switched to PPh₃. After the starting material was consumed, the resulting mixture was purified by column chromatography using silica gel to give the target product **3o** (20 mg, 56% yield). A white solid. m.p. for **3o** = 147-148 °C. IR (CH₂Cl₂): v 2960, 1731, 1434, 1338, 1260, 1210, 1095, 1066, 1015, 839, 795 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.24 (1H, dd, $J_I = 5.2$ Hz, $J_2 = 0.8$ Hz), 7.17 (1H, d, J = 5.2 Hz), 6.91 (1H, dd, $J_I = 5.2$ Hz, $J_2 = 3.6$ Hz), 6.86 (1H, d, J = 4.8 Hz), 6.78 (1H, dd, $J_I = 3.6$ Hz, $J_2 = 0.8$ Hz), 5.83 (1H, s), 5.38 (1H, s), 3.90 (3H, s), 3.75 (3H, s), 2.30(3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 167.2, 148.3, 146.2, 136.4, 134.9, 131.7, 127.3, 127.1, 126.1, 125.7, 124.6, 122.3, 121.5, 57.7, 53.2, 51.9, 17.5; MS (ESI) m/e 378.1 (M⁺+NH₄); HRMS (ESI) for C₁₈H₂₀NO₄S₂ (M⁺+NH₄): 378.0828, Found: 378.0833.



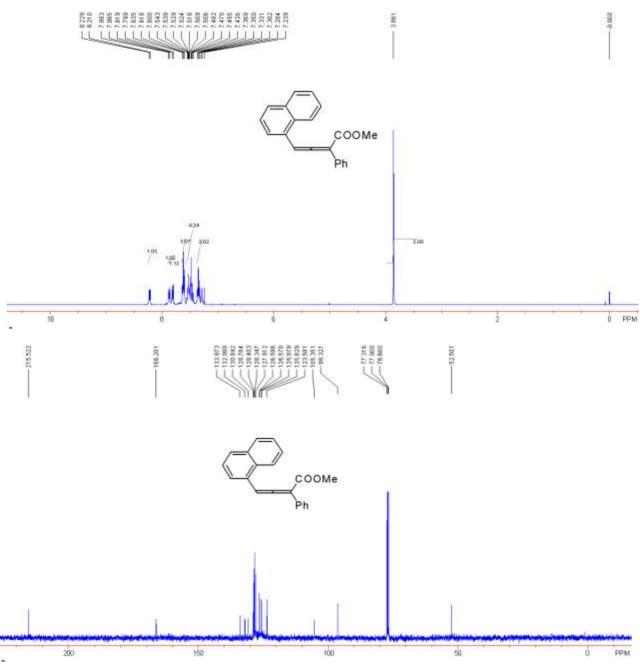
General Procedure for the Preparation of 4 from the Reaction of 2p with MeOH Using 4a as an Example in the Presence of PPh₃

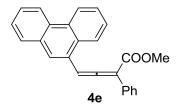

To a mixture of 2p (0.20 mmol, 56 mg), MeOH (10.0 mmol), PPh₃ (0.02 mmol, 5.2 mg) and 50 mg 4Å MS was added 2.0 mL of THF at room temperature (25 °C) under argon. The reaction solution was monitored by TLC. After the reaction was completed, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/16) to give the target product 4a.

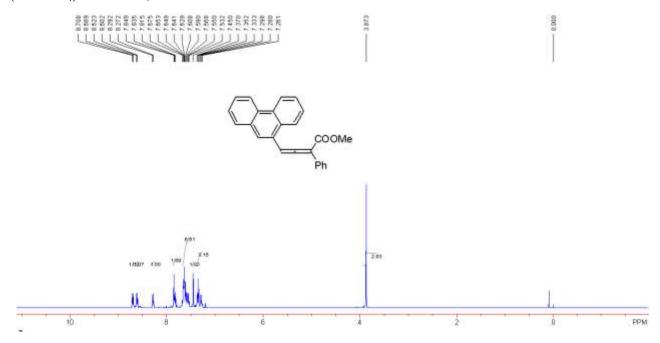
methyl 2,4-diphenylbuta-2,3-dienoate 4a: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4a** (46 mg, 92% yield). A yellow oil. IR (CH₂Cl₂): v 2961, 2926, 1720, 1598, 1493, 1466, 1434, 1260, 1216, 1092, 1018, 998, 798 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.57 (2H, d, J = 7.2 Hz), 7.39-7.24 (8H, m), 6.82 (1H, s), 3.83 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 214.6, 166.0, 133.8, 133.6, 132.0, 131.5, 129.0, 128.4, 128.3, 128.1, 128.0, 127.5, 106.4, 99.5, 52.5; MS (%) m/e 250 (51), 235 (13), 207 (14), 191 (100), 179 (10), 165 (13), 105 (23); HRMS (EI) for C₁₇H₁₄O₂: 250.0994; Found: 250.0995.

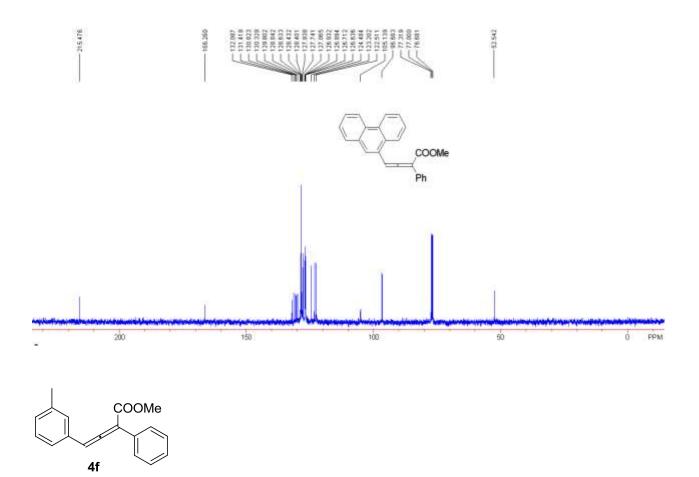


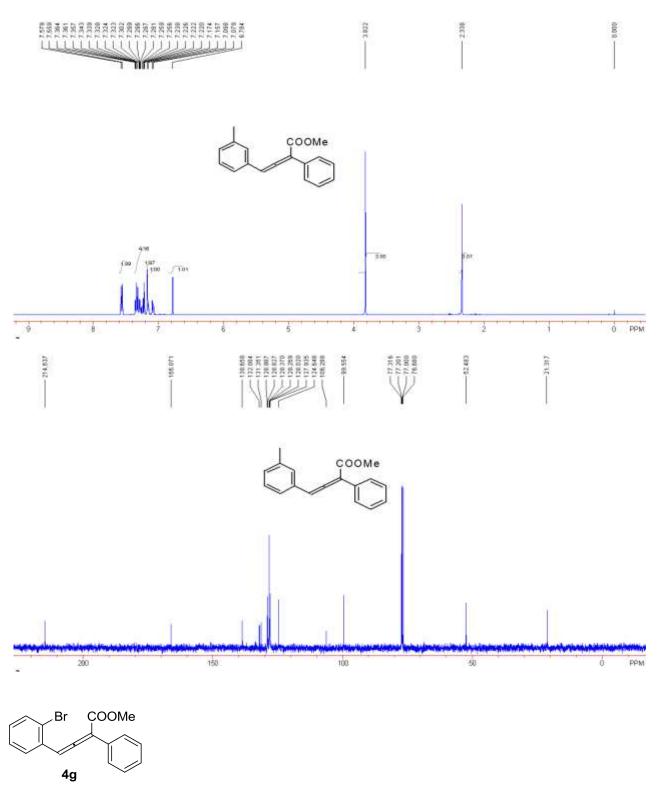
methyl 4-(4-chlorophenyl)-2-phenylbuta-2,3-dienoate 4b: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4b** (53 mg, 93% yield). A white solid. m.p. for **4b** = 120-122 °C. IR (CH₂Cl₂): v 2961, 1930, 1720, 1489, 1433, 1259, 1214, 1088, 1013, 845, 795 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.54 (2H, d, J = 7.2 Hz), 7.37-7.24 (7H, m), 6.77 (1H, s), 3.83 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 214.5, 165.8, 133.9, 133.8, 133.6, 131.7, 130.1, 129.1, 128.6, 128.4, 128.3, 128.1, 106.8, 98.6, 52.6; MS (%) m/e 284 (38), 269 (12), 249 (27), 241 (8), 225 (100), 189 (59), 178 (10), 163 (10), 139 (23). 94 (12); HRMS (EI) for C₁₇H₁₃ClO₂: 284.0604; Found: 284.0606.


methyl 4-(naphthalen-2-yl)-2-phenylbuta-2,3-dienoate 4c: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 4c (52mg, 87% yield). A white solid. m.p. for 4c = 93-95 °C. IR (CH₂Cl₂): ν 3056, 2963, 1932, 1719, 1493, 1434, 1217, 1134, 1118, 1018, 896, 862, 781, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.80-7.53 (4H, m), 7.61 (2H, d, J = 7.2 Hz), 7.51-7.43 (3H, m), 7.37-7.29 (3H, m), 6.98 (1H, s), 3.83

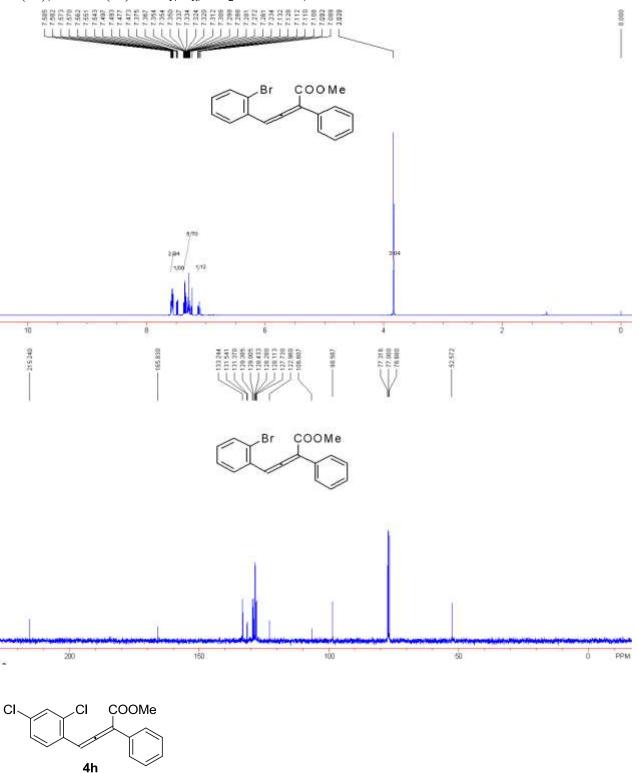

(3H, s); ^{13}C NMR (CDCl₃, 100 MHz): δ 215.1, 166.0, 133.8, 133.6, 133.1, 132.0, 129.0, 128.7, 128.5, 128.4, 128.3, 128.0, 127.8, 127.7, 126.8, 126.5, 126.3, 124.7, 106.6, 99.9, 52.5; MS (%) m/e 300 (71), 285 (15), 262 (53), 257 (21), 241 (100), 229 (17), 183 (58), 155 (22). 115 (25); HRMS (EI) for $C_{21}H_{16}O_2$: 300.1150; Found: 300.1154.


methyl 4-(naphthalen-1-yl)-2-phenylbuta-2,3-dienoate 4d: Following the general procedure, the

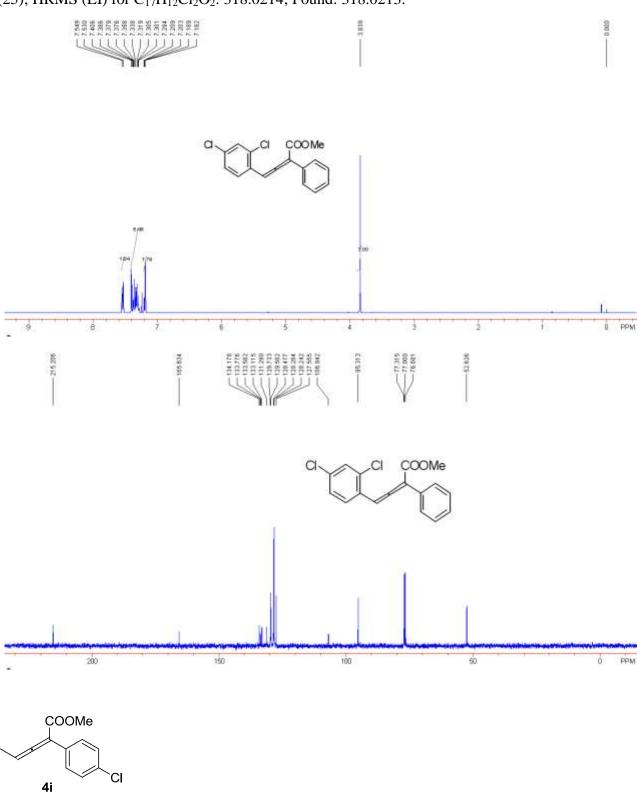

mixture was purified by column chromatography using silica gel to give the target product **4d** (48 mg, 80% yield). A yellow oil. IR (CH₂Cl₂): v 3055, 2950, 1931, 1719, 1493, 1433, 1263, 1217, 1133, 1089, 1017, 897, 862, 799, 779 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.22 (1H, d, J = 7.6 Hz), 7.87 (1H, d, J = 7.2 Hz), 7.81 (1H, d, J = 8.0 Hz), 7.62 (3H, t, J = 7.2 Hz), 7.54-7.44 (4H, m), 7.37-7.24 (3H, m), 3.87 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.5, 166.2, 134.0, 132.1, 130.8, 128.8, 128.4, 128.3, 127.9, 126.6, 126.57, 126.0, 125.6, 123.6, 105.4, 96.3, 52.5; MS (ESI) m/e 318.1 (M⁺+NH₄); HRMS (ESI) for C₂₁H₂₀NO₂ (M⁺+NH₄): 318.1489, Found: 318.1496.



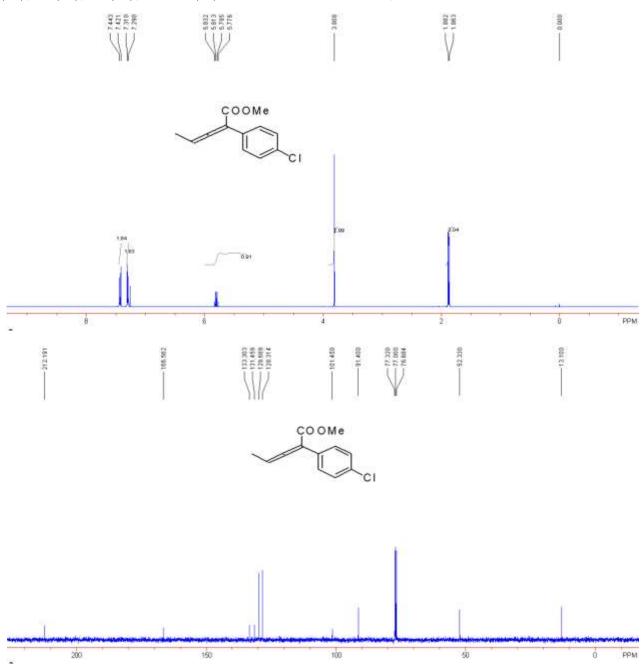
methyl 4-(phenanthren-9-yl)-2-phenylbuta-2,3-dienoate 4e: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 4e (50 mg, 95% yield). A yellow solid. m.p. for 4e = 89-92 °C. IR (CH₂Cl₂): v 2962, 1721, 1449, 1259, 1088, 1016, 864, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.70 (1H, d, J = 7.6 Hz), 8.61 (1H, d, J = 8.4 Hz), 8.28 (1H, d, J = 8.0 Hz), 7.85-7.82 (2H, m), 7.68-7.55 (6H, m), 7.45 (1H, s), 7.37-7.26 (3H, m), 3.87 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.5, 166.3, 132.1, 131.4, 130.8, 130.3, 129.8, 128.8, 128.6, 128.43, 128.40, 127.9, 127.7, 127.1, 126.93, 126.89, 126.7, 126.6, 124.5, 123.2, 122.5, 105.1, 96.7, 52.5; MS (ESI) m/e 368.2 (M⁺+NH₄); HRMS (ESI) for C₂₅H₂₂NO₂ (M⁺+NH₄): 368.1645, Found: 368.1649.

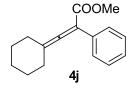


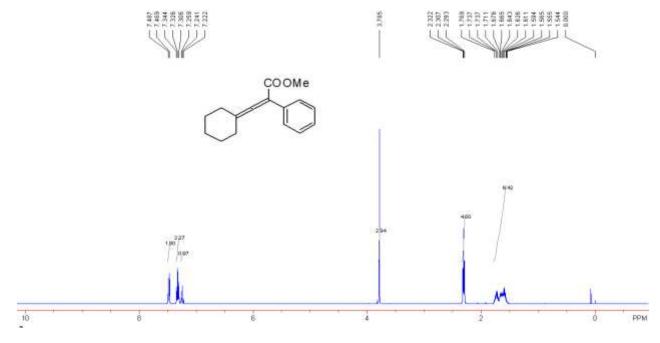
methyl 2-phenyl-4-m-tolylbuta-2,3-dienoate 4f: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4f** (46 mg, 87% yield). A yellow oil. IR (CH₂Cl₂): ν 2962, 1731, 1600, 1490, 1432, 1260, 1230, 1090, 1017, 798 cm⁻¹; 1 H NMR (400 MHz, CDCl₃, TMS): δ 7.57 (2H, d, J = 8.0 Hz), 7.36-7.22 (4H, m), 7.17 (2H, d, J = 6.4 Hz), 7.09 (1H, d, J = 7.6 Hz), 6.78 (1H, s), 3.82 (3H, s), 2.34 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 214.6, 166.0, 138.7, 132.1, 131.4, 129.0, 128.8, 128.4, 128.3, 128.0, 127.9, 124.6, 106.3, 99.6, 52.5, 21.3; MS (%) m/e 264 (55), 249 (30), 221 (19), 205 (100), 189 (36), 178 (16), 165 (6), 119 (24); HRMS (EI) for C₁₈H₁₆O₂: 264.1150; Found: 264.1147.

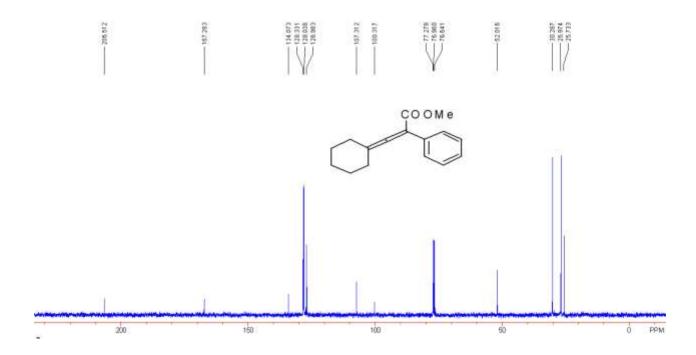

methyl 4-(3-bromophenyl)-2-phenylbuta-2,3-dienoate 4g: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4g** (60 mg, 91% yield). A yellow oil. IR (CH₂Cl₂): v 2950, 1932, 1719, 1493, 1473, 1435, 1265, 1215, 1038, 1019, 908, 797, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.59-7.54 (3H, m), 7.49 (1H, dd, J_I = 8.0 Hz, J_2 = 2.0 Hz), 7.38-7.23 (5H, m), 7.13-7.09 (1H, m), 3.84 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 215.2, 165.8, 133.2, 131.5, 131.4, 129.4, 129.0, 128.4, 128.3, 128.1, 127.7, 123.0, 106.6,

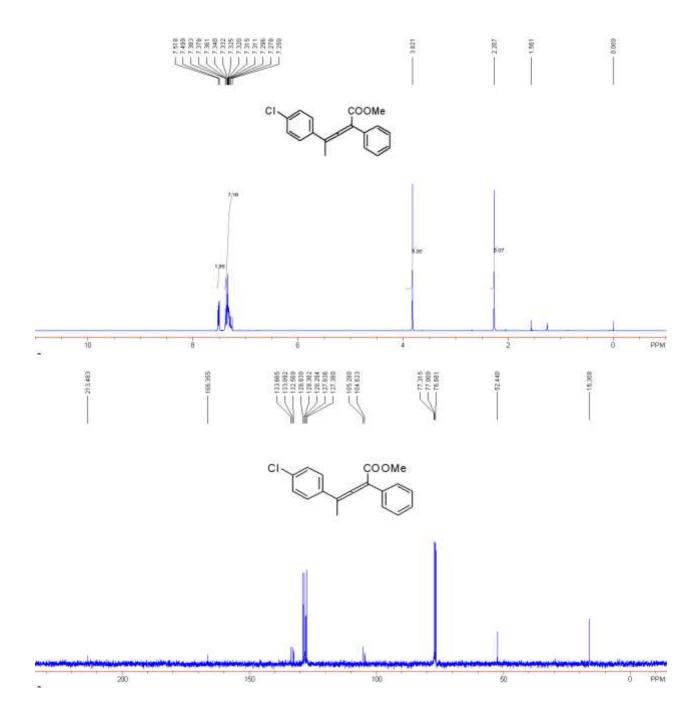
98.6, 52.6; MS (%) m/e 328 (11), 313 (6), 269 (41), 249 (89), 234 (22), 206 (6), 189 (100), 163 (14), 94 (14); HRMS (EI) for C₁₇H₁₃BrO₂: 328.0099; Found: 328.0101.


methyl 4-(2,4-dichlorophenyl)-2-phenylbuta-2,3-dienoate 4h: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 4h (53mg, 83% yield). A yellow oil. IR (CH₂Cl₂): ν 2961, 1935, 1726, 1582, 1467, 1433, 1261, 1097, 1016, 864, 797, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.54 (2H, d, J = 7.6 Hz), 7.41-7.30


(5H, m), 7.21-7.18 (2H, m), 3.84 (3H, s); 13 C NMR (CDCl₃, 100 MHz): δ 215.2, 165.6, 134.2, 133.8, 133.6, 133.1, 131.3, 129.7, 129.6, 128.5, 128.3, 128.2, 127.6, 106.9, 95.3, 52.6; MS (%) m/e 318 (40), 303 (15), 283 (53), 277 (31), 259 (100), 248 (17), 223 (22), 205 (22), 189 (64), 183 (17), 173 (25); HRMS (EI) for $C_{17}H_{12}Cl_2O_2$: 318.0214; Found: 318.0213.

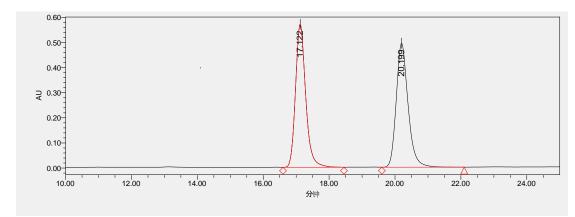

methyl 2-(4-chlorophenyl)penta-2,3-dienoate 4i: Following the general procedure, the mixture S77


was purified by column chromatography using silica gel to give the target product **4i** (40 mg, 90% yield). A yellow solid. m.p. for **4i** = 52-54 °C. IR (CH₂Cl₂): v 2961, 1946, 1717, 1491, 1434, 1371, 1281, 1260, 1220, 1144, 1091, 1012, 897, 863, 792, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.43 (2H, d, J = 8.8 Hz), 7.30 (2H, d, J = 8.0 Hz), 5.80 (1H, dd, $J_I = 14.8$ Hz, $J_Z = 7.6$ Hz), 3.81 (3H, s), 1.87 (3H, d, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 212.2, 166.6, 133.3, 131.5, 129.7, 128.3, 101.5, 91.4, 52.3, 13.1; MS (%) m/e 222 (51), 207 (15), 190 (23), 163 (57), 128 (100), 115 (17), 101 (19), 75 (21), 43 (44); HRMS (EI) for C₁₂H₁₁ClO₂: 222.0448; Found: 222.0443.

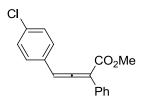


methyl 3-cyclohexylidene-2-phenylacrylate 4j: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4j** (38 mg, 79% yield). A colorless oil. IR (CH₂Cl₂): v 2931, 2854, 1949, 1713, 1492, 1434, 1264, 1224, 1192, 1165, 1092, 1040, 896, 784, 733, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.48 (2H, d, J = 7.2 Hz), 7.33 (2H, t, J = 7.2 Hz), 7.24 (1H, t, J = 7.2 Hz), 3.79 (3H, s), 2.31 (4H, t, J = 6.0 Hz), 1.77-1.54 (6H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 206.5, 167.3, 134.1, 128.3, 128.0, 127.0, 107.3, 100.3, 52.0, 30.3, 27.0, 25.7; MS (%) m/e 242 (85), 227 (11), 213 (90), 201 (10), 183 (54), 167 (17), 155 (49), 141 (100), 129 (30), 115 (80), 91 (35); HRMS (EI) for C₁₆H₁₈O₂: 242.1307; Found: 242.1303.

methyl 4-(4-chlorophenyl)-2-phenylpenta-2,3-dienoate 4k: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product **4k** (17 mg, 57% yield). A white solid. m.p. for **4k** = 108-109 °C. IR (CH₂Cl₂): ν 2962, 1925, 1718, 1488, 1434, 1260, 1196, 1171, 1091, 1015, 865, 793, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.51 (2H, d, J = 7.6 Hz), 7.38-7.25 (7H, m), 3.82 (3H, s), 2.27 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 213.5, 166.4, 133.7, 133.1, 132.6, 128.8, 128.4, 128.3, 127.8, 127.4, 105.3, 104.6, 52.4, 16.3; MS (%) m/e 298 (68), 283 (33), 239 (100), 202 (55), 189 (15), 127 (30), 101 (19), 77 (14); HRMS (EI) for C₁₈H₁₅O₂Cl: 298.0761; Found: 298.0760.


HPLC spectra:

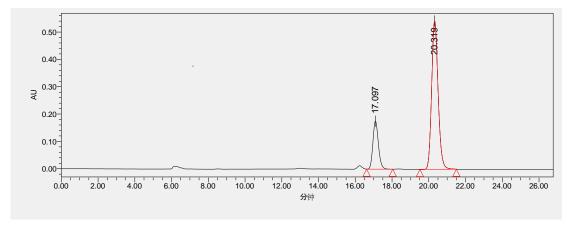
HPLC REPORT


Sample Name: zz-21-56 Date: ####

Column: AD-H Mobile Phase: hex/ipr = 95/5

Velocity (mL/min): 0.4 Detection Wavelength (nm): 230

NO	R. Time	Peak Area	Precent	Peak Height
1	17.122	12239161	48.95	570485
2	20.199	12313674	50.05	493742


Chiral HPLC report: racemate (4b)

HPLC REPORT

Sample Name: zz-21-56 Date: ####

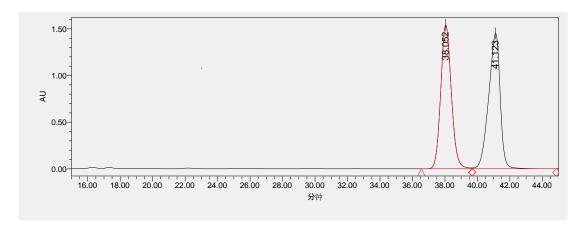
Column: AD-H Mobile Phase: hex/ipr = 95/5

Velocity (mL/min): 0.4 Detection Wavelength (nm): 230

NO	R. Time	Peak Area	Precent	Peak Height
1	17.097	3639024	21.58	175839
2	20.319	13327259	78.42	542934

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.4 mL/min; $t_{minor} = 17.097$ min, $t_{major} = 20.319$ min; ee% = 57.

(S)-methyl 4-(naphthalen-2-yl)-2-phenylbuta-2,3-dienoate 4c: Following the general procedure, the mixture was purified by column chromatography using silica gel to give the target product 4c (21 mg, 70% yield). A white solid. m.p. for 4c = 101-103 °C. $[\alpha]^{20}_D = +42.2$ (c 0.7, CH₂Cl₂). The ee of the product 4c was determined to be 71% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 98:2, 0.4 mL/min, λ = 230 nm, t (major) = 37.78 min, t (minor) = 40.49 min].


HPLC REPORT

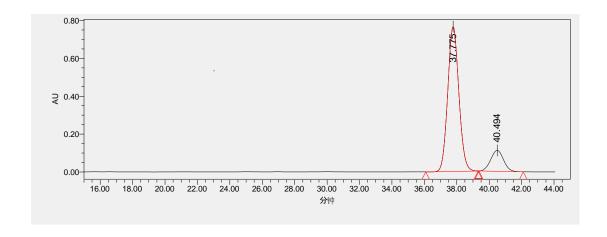
Sample Name: yyl-24-36 Date: ####

Column: AD-H Mobile Phase: hex/ipr = 98/2

Velocity (mL/min): 0.4 Detection Wavelength (nm): 230

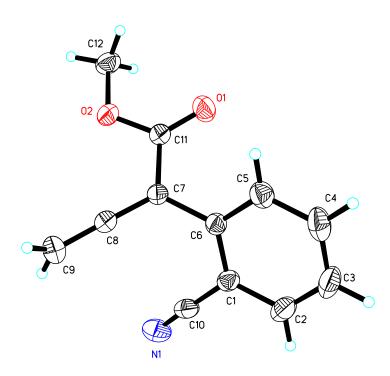
S83

NO	R. Time	Peak Area	Precent	Peak Height
1	38.052	69825084	49.47	1542056
2	41.123	71335140	50.53	1450728


Chiral HPLC report: racemate (4c)

HPLC REPORT

Sample Name: yyl-24-37 Date: ####


Column: AD-H Mobile Phase: hex/ipr = 98/2

Velocity (mL/min): 0.4 Detection Wavelength (nm): 230

NO	R. Time	Peak Area	Precent	Peak Height
1	37.775	36447261	85.70	764551
2	40.494	6080678	14.30	110686

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 98/2; Flow rate: 0.4 mL/min; $t_{minor} = 40.494$ min, $t_{major} = 37.775$ min; ee% = 71.

The crystal data of $\bf 3j$ have been deposited in CCDC with number 917097. Empirical Formula: $C_{12}H_9NO_2$; Formula Weight: 199.20; Crystal Color, Habit: colorless; Crystal Dimensions: 0.311 x 0.186 x 0.079 mm; Crystal System: Monoclinic; Lattice Parameters: a = 8.1053(9) Å, b = 14.1123(16) Å, c = 9.2252(11) Å, $\alpha = 90^{\circ}$, $\beta = 97.664(2)^{\circ}$, $\gamma = 90^{\circ}$, $V = 1045.8(2) \text{Å}^3$; Space group: $P_2(1)/n$; Z = 4; $D_{calc} = 1.265$ g/cm³; $F_{000} = 416$; Final R indices [I>2sigma(I)] R1 = 0.0475, wR2 = 0.1163.

Calculation results

Calculated at mPW1K/6-31+G(d) level