Electronic Supplementary Information

Enantioselective monofluoromethylation of aldehydes with 2-fluoro-1,3-benzodithiole-1,1,3,3-tetraoxide catalyzed by a bifunctional cinchona alkaloid-derived thiourea-titanium complex

Hai Ma^a, Kohei Matsuzaki^a, Yu-Dong Yang,^a Etsuko Tokunaga,^a Daisuke Nakane,^a Tomohiro Ozawa^a Hideki Masuda,^a and Norio Shibata^{*a}

^aDepartment of Frontier Materials, Graduate School of Engineering, Nagoya Institute

of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

E-mail: nozshiba@nitech.ac.jp

1 General information:

All reactions were performed in oven- and flame-dried glassware under a positive pressure of nitrogen. Solvents were transferred *via* syringe and were introduced into the reaction vessels through a rubber septum. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica gel 60N spherical neutral size 63-210 μm. The ¹H NMR (300 MHz) and ¹⁹F NMR (282 MHz) spectra were recorded on a Varian Mercury 300. ¹³C NMR (150.9 MHz) spectra was recorded on a BRUKER 600 UltraShieldTR. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃, (CH₃)₂CO or CH₂Cl₂. HPLC analyses were performed on a JASCO U-2080 Plus and SHIMADZU LC-2010AHT using 4.6 x 250 mm CHIRALPAK IA, IB, IC and IF column. Mass spectra were recorded on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer

2 Preparation of chiral thiourea catalysts:

Chiral thiourea catalysts I–III were known compounds, IV-VIII were synthesized by known method.¹

1-((1*R*,2*S*)-1-hydroxy-2,3-dihydro-1H-inden-2-yl)-3-((1*S*)-(6-methoxyquinolin-4-y l)((5*R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (IV)

white solid, mp 157–160 °C, $[\alpha]_D^{25}$ –121.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.38 (s, 1H), 7.94 (d, *J* = 9.0 Hz, 1H), 7.73 (s, 1H), 7.27-7.30 (m, 3H),

6.89-7.12 (m, 3H), 5.62-5.73 (m, 2H), 4.97 (t, J = 9.6 Hz, 2H), 4.63 (s, 1H), 4.32 (d, J = 7.8 Hz, 1H), 3.96 (s, 3H), 3.43 (d, J = 8.4 Hz, 2H), 3.05-3.20 (m, 3H), 2.71-2.85 (m, 2H), 2.56 (s, 1H), 2.27 (s, 1H), 1.89 (d, J = 11.1 Hz, 1H), 1.57-1.65 (m, 2H), 1.26-1.34 (m, 2H), 1.01-1.18 (m, 2H), 0.80-0.87 (m, 1H); ¹³C NMR (150.9 MHz, CD₃OD) δ 159.8, 159.7, 148.3, 145.2, 142.4, 141.4, 131.2, 128.8, 126.1, 125.3, 123.9, 115.1, 74.0, 56.6, 56.5, 49.7, 42.8, 40.6, 40.5, 34.75, 28.8, 28.5, 26.9, 26.7, 26.1; HRMS (ESI) found: m/z 515.2498 [M+H]⁺; calcd. for C₃₀H₃₄N₄O₂S+H 515.2481; **IR** (KBr): v 3435, 2903, 1626, 1574, 1509, 1474, 1242, 1089, 826, 743 cm⁻¹.

1-((*S*)-1-hydroxy-3-methylbutan-2-yl)-3-((1*S*)-(6-methoxyquinolin-4-yl)((5*R*)-5-vi nylquinuclidin-2-yl)methyl)thiourea

white solid, mp 135–137 °C, $[\alpha]_D^{25}$ –146.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.74 (d, *J* = 7.8 Hz, 1H), 8.03 (d, *J* = 9.3 Hz, 1H), 7.27-7.42 (m, 3H), 5.67-5.74 (m, 1H), 5.00 (t, *J* = 9.3 Hz, 2H), 4.25 (d, *J* = 7.8 Hz, 1H), 3.92 (s, 3H), 3.38-3.74 (m, 3H), 3.16-3.28 (m, 2H), 2.63-2.83 (m, 3H), 2.34 (s, 1H), 1.92 (d, *J* = 9.6 Hz, 2H), 1.56-1.68 (m, 6H), 1.26-1.41 (m, 2H), 1.04-1.20 (m, 2H), 0.72-0.97 (m, 3H); ¹³C NMR (150.9 MHz, CD₃OD) δ 159.8, 159.6, 148.2, 145.1, 142.4, 131.1, 130.1, 123.7, 115.0, 104.1, 62.1, 56.6, 56.5, 49.7, 42.5, 40.6, 34.7, 30.0, 29.8, 28.8, 28.5, 26.7, 26.0, 19.7, 18.8; HRMS (ESI) found: m/z 469.2664 [M+H]⁺; calcd. for C₂₆H₃₆N₄O₂S+H 469.2637; **IR** (KBr): v 3326, 2903, 2851, 1624, 1574, 1541, 1508, 1242, 1228, 919 cm⁻¹.

1-((1*S*,2*R*)-2-hydroxy-1,2-diphenylethyl)-3-((1*S*)-(6-methoxyquinolin-4-yl)((5*R*)-5 -vinylquinuclidin-2-yl)methyl)thiourea

white solid, mp 120–122 °C, $[\alpha]_D^{25}$ –47.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.60 (d, *J* = 3.6 Hz, 1H), 7.96 (d, *J* = 9.3 Hz, 1H), 7.26-6.90 (m, 13H), 5.59-5.65 (m, 1H), 5.26 (s, 1H), 4.94 (t, *J* = 6.3 Hz, 2H), 4.75 (d, *J* = 6.3 Hz, 1H), 4.32 (d, *J* = 7.8 Hz, 1H), 4.15 (d, *J* = 6.3 Hz, 1H), 3.95 (s, 3H), 3.45 (s, 1H), 2.42-2.59 (m, 2H), 1.55-1.60 (m, 5H), 1.24-1.36 (m, 2H), 1.04-1.13 (m, 2H), 0.84-0.87 (m, 1H); ¹³C NMR (150.9 MHz, CD₃OD) δ 183.2, 159.8, 159.5, 148.2, 145.0, 142.8, 142.4, 131.1, 129.6, 129.0 (d, *J* = 7.5 Hz), 128.6 (d, *J* = 21.1 Hz), 128.1, 127.5, 123.7, 115.1, 104.2, 79.0, 76.2, 65.1, 62.7, 61.8, 56.8, 56.6, 40.6, 34.7, 28.7, 28.4, 27.0, 26.7, 26.0; **HRMS** (ESI) found: m/z 579.2790 [M+H]⁺; calcd. for C₃₅H₃₈N₄O₂S+H 579.2794; **IR** (KBr): v 3327, 3061, 2929, 2851, 1568, 1515, 1498, 1453, 1028, 704 cm⁻¹.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1*S*)-(6-hydroxyquinolin-4-yl)((5*R*)-5-vinylq uinuclidin-2-yl)methyl)thiourea

brown solid, mp 170–172 °C, $[\alpha]_D^{25}$ –85.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CD₃OD) δ 8.62 (d, *J* = 4.5 Hz, 1H), 8.13 (s, 2H), 7.92 (d, *J* = 9.0 Hz, 2H), 7.60 (s, 1H), 7.51 (d, *J* = 4.8 Hz, 1H), 7.38 (d, *J* = 9.3 Hz, 1H), 6.19 (d, *J* = 10.8 Hz, 1H), 5.75-5.87 (m, 1H), 4.94-5.04 (m, 3H), 3.42 (m, 1H), 2.77-2.80 (m, 3H), 2.35 (s, 1H), 1.64-1.77 (m, 4H), 1.31-1.37 (m, 2H), 0.96-1.03 (m, 2H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ

-63.0 (s, 6F); ¹³C NMR (150.9 MHz, CD₃OD) δ 182.3, 157.7, 147.5, 144.2, 143.0, 142.4, 132.7 (q, J = 33.2 Hz), 131.21, 130.5, 124.7 (q, J = 271.6 Hz), 123.6, 123.3, 117.7, 115.0, 106.9, 56.5, 42.5, 28.7, 28.4, 26.3; **HRMS** (ESI) found: m/z 581.1803 [M+H]⁺; calcd. for C₂₈H₂₆F₆N₄O₂S+H 581.1810; **IR** (KBr): v 2954, 1715, 1515, 1472, 1383, 1278, 1179, 1133, 850, 681 cm⁻¹.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1*R*)-(6-hydroxyquinolin-4-yl)((5*R*)-5-vinyl quinuclidin-2-yl)methyl)thiourea

brown solid, mp 155–157 °C, $[\alpha]_D^{25}$ +40.7 (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.80 (dd, J = 4.5 Hz, J = 55.5 Hz, 1H), 8.15-8.23 (m, 1H), 8.01 (d, J = 7.2 Hz, 3H), 7.46-7.58 (m, 3H), 5.88-5.93 (m, 1H), 5.35-5.39 (m, 3H), 3.77-3.80 (m, 1H), 3.60 (s, 1H), 3.17-3.29 (m, 3H), 2.62 (s, 1H), 2.37-2.41 (m, 1H), 2.05-2.17 (m, 2H), 1.79-1.91 (m, 3H), 1.52 (s, 1H), 1.24-1.28 (m, 1H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –63.0 (s, 6F); ¹³C NMR (150.9 MHz, CDCl₃) δ 180.5, 169.5, 150.1, 149.2, 146.9, 146.7, 137.4, 131.8 (q, J = 19.6 Hz), 125.2, 123.2 (q, J = 273.1 Hz), 118.1, 60.6, 49.0, 46.5, 26.6, 24.5, 24.0, 21.3; HRMS (ESI) found: m/z 581.1807 [M+H]⁺; calcd. for C₂₈H₂₆F₆N₄O₂S+H 581.1810; IR (KBr): v 3235, 3044, 1761, 1619, 1547, 1513, 1472, 1383, 1278, 681 cm⁻¹.

3 General procedure for the enantioselective addition of monofluoromethylation of aldehydes:

To a solution of catalyst **VII** (0.01 mmol) and FBDT (0.1 mmol) in toluene (1 mL) was added $Ti(O^{-i}Pr)_4$ (0.23 mmol) under N₂. Then the corresponding aldehydes **1** (0.15 mmol or 0.5 mmol) were added to the mixture. The resulting mixture was stirred at room temperature until the reaction completed (detected by TLC). Purification by column chromatography on silica gel (*n*-hexane / ethyl acetate =8:1–2:1) afforded the product **2**.

2a, 2b, 2c, 2d, 2i and 2k are known compounds.²

(*R*)-2-fluoro-2-(hydroxy(phenyl)methyl)benzodithiole-1,1,3,3-tetraoxide (2a) 28.7 mg, white solid, 84% yield, 91% ee, $[\alpha]_D^{25}$ –92.8 (*c* 0.5, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.05 (dd, *J* = 3.9 Hz, *J* = 26.7 Hz, 1H), 6.31 (d, *J* = 3.9 Hz, 1H), 7.45-7.47 (m, 3H), 7.68-7.69 (m, 2H), 8.18-8.33 (m, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –165.9 (d, *J* = 27.6 Hz, 1F); HPLC (DAICEL Chiralpak IA, *n*-hexane / *i*-PrOH (IPA) = 70:30, 1.0 mL / min, 254 nm) t_R (major) = 21.4 min, t_R (minor) = 15.2 min.

(*R*)-2-fluoro-2-(hydroxy(p-tolyl)methyl)benzodithiole-1,1,3,3-tetraoxide (2b) 29.6 mg, white solid, 83% yield, 60% ee, $[\alpha]_D^{25}$ –37.2 (*c* 0.5, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 2.36 (s, 3H), 5.99 (d, *J* = 27.0 Hz, 1H), 6.20 (d, *J* = 6.0 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 27.0 Hz, 2H), 8.15-8.31 (m, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –166.0 (d, *J* = 26.8 Hz, 1F); HPLC (DAICEL Chiralpak IA, *n*-hexane / *i*-PrOH (IPA) = 70:30, 1.0 mL / min, 254 nm) t_R (major) = 26.3 min, t_R (minor) = 18.5 min.

(*R*)-2-((4-bromophenyl)(hydroxy)methyl)-2-fluorobenzodithiole-1,1,3,3-tetraoxid e(2c)

34.1 mg, white solid, 81% yield, 56% ee, $[\alpha]_D^{25}$ –72.6 (*c* 1.0, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.04 (dd, *J* = 6.6 Hz, *J* = 26.4 Hz, 1H), 6.47 (d, *J* = 6.6 Hz, 1H), 7.61-7.68 (m, 4H), 8.16-8.33 (m, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –166.1 (d, *J* = 26.8 Hz, 1F); HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 90:10, 1.0 mL / min, 254 nm) t_R (major) = 25.5 min, t_R (minor) = 18.7 min.

(*R*)-2-fluoro-2-(hydroxy(4-nitrophenyl)methyl)benzodithiole-1,1,3,3-tetraoxide (2d)

35.2 mg, white solid, 91% yield, 60% ee, $[\alpha]_D^{25}$ –39.2 (*c* 0.5, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.25 (d, *J* = 25.8 Hz, 1H), 6.78 (s, 1H) 7.99 (d, *J* = 7.8 Hz, 2H), 8.20-8.34 (m, 3H), 8.35-8.38 (m, 3H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –165.6 (d, *J* = 25.9 Hz, 1F); HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 90:10, 1.0 mL / min, 254 nm) t_R (major) = 50.1 min, t_R (minor) = 41.6 min.

(*R*)-2-fluoro-2-(hydroxy(3-nitrophenyl)methyl)benzodithiole-1,1,3,3-tetraoxide (2e)

34.4 mg, white solid, mp 188–190 °C, 89% yield, 96% ee, $[\alpha]_D^{25}$ –19.6 (*c* 0.3, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.27 (dd, *J* = 4.8 Hz, *J* = 26.1 Hz, 1H), 6.78 (d, *J* = 6.3 Hz, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 8.12-8.24 (m, 4H), 8.33-8.37 (m, 2H), 8.57 (s, 1H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –165.8 (d, *J* = 24.8 Hz, 1F); ¹³C

NMR (150.9 MHz, (CD₃)₂SO) δ 147.6, 137.4, 137.3, 137.1 (d, *J* = 3.0 Hz), 135.2, 135.0, 133.7, 130.2, 124.5, 124.1, 123.9, 123.2, 105.0 (d, *J* = 274.6 Hz), 67.7 (d, *J* = 16.6 Hz); **HRMS** (ESI) found: m/z 409.9777 [M+Na]⁺; calcd. for C₁₄H₁₀FNO₇S₂+Na 409.9780; **IR** (KBr): v 3510, 3089, 1525, 1360, 1189, 1162, 1137, 1105, 588, 519 cm⁻¹; **HPLC** (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 85:15, 1.0 mL / min, 254 nm) t_R (major) = 28.0 min, t_R (minor) = 19.6 min.

(*R*)-4-((2-fluoro-1,1,3,3-tetraoxidobenzodithiol-2-yl)(hydroxy)methyl)benzonitrile (2f)

32.0 mg, white solid, mp 192–194 °C, 87% yield, 67% ee, $[\alpha]_D^{25}$ –16.2 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.18 (dd, *J* = 3.6 Hz, *J* = 2.61 Hz, 1H), 6.67 (d, *J* = 3.6 Hz, 1H), 7.90-7.94 (m, 4H), 8.21-8.27 (m, 3H), 8.33-8.35 (m, 1H);; ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –165.7 (d, *J* = 26.8 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 140.9, 137.7, 137.5, 136.8, 135.5, 133.1 (d, *J* = 1.5 Hz), 124.6, 124.3, 118.9, 114.1, 106.1 (d, *J* = 276.1 Hz), 69.5 (d, *J* = 16.6 Hz); HRMS (ESI) found: m/z 389.9878 [M+Na]⁺; calcd. for C₁₅H₁₀FNO₅S₂+Na 389.9882; IR (KBr): v 3388, 3081, 3010, 2236, 1705, 1445, 1364, 1188, 1052, 775 cm⁻¹; HPLC (DAICEL Chiralpak ID, *n*-hexane / *i*-PrOH (IPA) = 70:30, 1.0 mL / min, 254 nm) t_R (major) = 20.7 min, t_R (minor) = 15.4 min.

(*R*)-3-((2-fluoro-1,1,3,3-tetraoxidobenzodithiol-2-yl)(hydroxy)methyl)benzonitrile (2g)

32.3 mg, white solid, mp 225–227 °C, 88% yield, 80% ee, $[\alpha]_D^{25}$ –20.1 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.16 (dd, *J* = 6.6 Hz, *J* = 26.1 Hz, 1H),

6.65 (d, J = 6.3 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.85-7.91 (m, 1H), 8.03 (d, J = 10.2 Hz, 1H), 8.20-8.34 (m, 4H); ¹⁹**F NMR** (282 MHz, (CD₃)₂CO) δ –165.9 (d, J = 25.7 Hz, 1F); ¹³**C NMR** (150.9 MHz, (CD₃)₂SO) δ 137.4, 137.1, 136.5, 135.0, 133.7, 133.5, 133.4, 132.2, 129.9, 124.1, 123.9, 118.4, 111.4, 105.0 (d, J = 274.6 Hz), 67.7 (d, J = 16.6 Hz); **HRMS** (ESI) found: m/z 389.9880 [M+Na]⁺; calcd. for C₁₅H₁₀FNO₅S₂+Na 389.9882; **IR** (KBr): v 3367, 3086, 2244, 1444, 1361, 1190, 1163, 1137, 772, 693 cm⁻¹; **HPLC** (DAICEL Chiralpak IF, *n*-hexane / *i*-PrOH (IPA) = 60:40, 1.0 mL / min, 254 nm) t_R (major) = 26.9 min, t_R (minor) = 10.7 min.

(*R*)-2-fluoro-2-(hydroxy(4-(trifluoromethyl)phenyl)methyl)benzodithiole-1,1,3,3-t etraoxide (2h)

34.9 mg, white solid, mp 138–140 °C, 85% yield, 67% ee, $[\alpha]_D^{25}$ –41.3 (*c* 0.3, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.15 (dd, *J* = 3.3 Hz, *J* = 25.8 Hz, 1H), 6.58 (d, *J* = 3.3 Hz, 1H), 7.85 (dd, *J* = 7.8 Hz, *J* = 26.7 Hz, 4H), 8.16-8.32 (m, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –60.6 (s, 3F), –163.2 (d, *J* = 25.7 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 140.3, 137.7, 137.5, 137.0, 135.6, 131.8 (q, *J* = 31.7 Hz), 130.4 (d, *J* = 1.5 Hz), 126.2, 126.0, 125.2 (q, *J* = 250.5 Hz), 124.6, 106.3 (d, *J* = 276.1 Hz), 69.6 (d, *J* = 16.6 Hz); HRMS (ESI) found: m/z 432.9798 [M+Na]⁺; calcd. for C₁₅H₁₀F₄O₅S₂+Na 432.9803; IR (KBr): v 3497, 3214, 3084, 1702, 1445, 1363, 1324, 1265, 1188, 692 cm⁻¹; HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 80:20, 1.0 mL / min, 254 nm) t_R (major) = 6.6 min, t_R (minor) = 5.8 min.

(*R*)-2-fluoro-2-(hydroxy(naphthalen-2-yl)methyl)benzodithiole-1,1,3,3-tetraoxide (2i) 32.1 mg, white solid, 82% yield, 42% ee, $[\alpha]_D^{25}$ –50.1 (*c* 0.5, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.24 (dd, *J* = 6.3 Hz, *J* = 26.7 Hz, 1H), 6.49 (d, *J* = 6.6 Hz, 1H), 7.56-7.60 (m, 2H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.95-8.02 (m, 3H), 8.14-8.31 (m, 4H), 8.32 (d, *J* = 7.2 Hz, 1H); ¹⁹F NMR (282MHz, (CD₃)₂CO) δ –165.6 (d, *J* = 26.8 Hz, 1F); **HPLC** (DAICEL Chiralpak IC, hexane / *i*PrOH (IPA) = 85:15, 1.0 mL / min, 254 nm) t_R (major) = 25.8 min, t_R (minor) = 19.0 min.

(*S*)-2-fluoro-2-(hydroxy(pyridin-3-yl)methyl)benzodithiole-1,1,3,3-tetraoxide (2j) 26.8 mg, white solid, mp 178–180 °C, 78% yield, 60% ee, $[\alpha]_D^{25}$ +11.3 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 6.16 (dd, *J* = 6.6 Hz, *J* = 25.8 Hz, 1H), 6.28 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 6.3 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.93 (t, *J* = 7.8 Hz, 1H), 8.19-8.31 (m, 4H), 8.66 (d, *J* = 4.2 Hz, 1H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –164.7 (d, *J* = 26.8 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂SO) δ 155.0, 148.7, 137.3, 137.0, 134.9, 134.5, 124.3, 123.9, 123.8, 123.0, 105.9 (d, *J* = 276.1 Hz), 70.2 (d, *J* = 18.1 Hz); HRMS (ESI) found: m/z 365.9877 [M+Na]⁺; calcd. for C₁₃H₁₀FNO₅S₂+Na 365.9882; IR (KBr): v 3151, 2824, 1597, 1573, 1482, 1436, 1362, 1188, 1163, 761, 553 cm⁻¹; HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 70:30, 1.0 mL / min, 254 nm) t_R (major) = 25.5 min, t_R (minor) = 40.6 min.

(*R*)-2-(cyclohexyl(hydroxy)methyl)-2-fluorobenzodithiole-1,1,3,3-tetraoxide (2k) 29.9 mg, white solid, 86% yield, 44% ee, $[\alpha]_D^{25}$ –10.5 (*c* 0.5, (CH₃)₂CO), ¹H NMR (300 MHz, (CD₃)₂CO) δ 1.20-1.37 (m, 4H), 1.14-2.05 (m, 7H), 4.81 (d, *J* = 31.8 Hz, 1H), 5.62 (brs, 1H), 8.25 (d, *J* = 14.7 Hz, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –163.0 (d, *J* = 30.7 Hz, 1F); HPLC (DAICEL Chiralpak IC, hexane / *i*PrOH (IPA) = 85:15, 1.0 mL / min, 254 nm) t_R (major) = 11.1 min, t_R (minor) = 8.8 min.

(*R*)-2-(cyclopropyl(hydroxy)methyl)-2-fluorobenzodithiole1,1,3,3-tetraoxide (2l) 24.2 mg, white solid, mp 165–168 °C, 79% yield, 37% ee, $[\alpha]_D^{25}$ –18.6 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 0.69-0.75 (m, 4H), 1.38-1.40 (m, 1H), 4.31 (tt, *J* = 7.8 Hz, 15.9 Hz, 1H), 5.73 (d, *J* = 7.5 Hz, 1H), 8.23 (d, *J* = 13.5 Hz, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –164.7 (d, *J* = 26.8 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 137.5, 137.2, 135.8, 124.4, 124.2, 122.1 107.3 (q, *J* = 271.6 Hz), 72.0 (q, *J* = 18.1 Hz), 12.7 (q, *J* = 4.5 Hz), 4.6, 3.6; HRMS (ESI) found: m/z 328.9933 [M+Na]⁺; calcd. for C₁₁H₁₁FO₅S₂+Na 328.9933; IR (KBr): v 3463, 3376, 3087, 3014, 1442, 1358, 1264, 1191, 768, 576 cm⁻¹; HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 85:15, 1.0 mL / min, 254 nm) t_R (major) = 21.2 min, t_R (minor) = 19.5 min.

(*S*)-2-fluoro-2-(1-hydroxy-2-methylpropyl)benzodithiole-1,1,3,3-tetraoxide (2m) 22.5 mg, white solid, mp 140–142 °C, 73% yield, 32% ee, $[\alpha]_D^{25}$ +7.3 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 1.14-1.18 (m, 6H), 2.05-2.38 (m, 1H), 4.86 (dd, *J* = 8.4 Hz, 21.9 Hz, 1H), 5.65 (d, *J* = 8.4 Hz, 1H), 8.22-8.28 (m, 4H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –164.7 (d, *J* = 30.7 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 137.6, 137.3, 173.2, 135.5, 124.5, 12.3, 108.0 (q, *J* = 276.1 Hz), 70.8 (q, *J* = 18.1 Hz), 31.3, 21.3, 15.8 (q, *J* = 6.0 Hz); HRMS (ESI) found: m/z 331.0086 [M+Na]⁺; calcd. for C₁₁H₁₃FO₅S₂+Na 331.0086; IR (KBr): v 3471, 2983, 1443, 1359, 1344, 1192, 1160, 1124, 769, 554 cm⁻¹; HPLC (DAICEL Chiralpak IC, *n*-hexane / *i*-PrOH (IPA) = 85:15, 1.0 mL / min, 254 nm) t_R (major) = 9.8 min, t_R (minor) = 8.7 min.

4 A large-scale addition, Further transformation, and X-ray analysis:

To a solution of catalyst **VII** (0.05 mmol) and FBDT (0.5 mmol) in toluene (5 mL) was added $Ti(O^{-i}Pr)_4$ (1.15 mmol) under N₂. Then the corresponding 3-nitrobenzaldehyde (0.75mmol) was added to the mixture. The resulting mixture was stirred at room temperature until the reaction completed (detected by TLC). The reaction system was concentrated under reduced pressure and purification by column chromatography on silica gel (*n*-hexane / ethyl acetate =8:1–1.5:1) afforded the product **2e** as white soild (172.4 mg, 89% yield and 96% ee).

To a solution of **2e** (0.39mmol, 150 mg) in CH₂Cl₂ (10 mL) was directly dropped a mixture of 4-bromobenzoyl chloride (103.1mg, 0.47 mmol, 1.2 equiv) and Et₃N (108.6 μ L, 0.78 mmol, 2.0 equiv) in CH₂Cl₂ (5 mL) at 0 °C, then stirring was maintained overnight at room temperature. The resulting mixture was poured into water and extracted with ethyl acetate. The organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to afford the product **4**. Recrystallization of this product from acetone/*n*-hexane furnished acicular crystal.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

(*R*)-(2-fluoro-1,1,3,3-tetraoxidobenzodithiol-2-yl)(3-nitrophenyl)methyl-4-bromo benzoate (4)

white solid, mp 240–242 °C, 99% ee, $[\alpha]_D^{25}$ –9.3 (*c* 0.2, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 7.29 (d, *J* = 25.2 Hz, 1H), 7.82-7.90 (m, 2H), 8.11 (d, *J* = 7.8 Hz, 2H), 8.23-8.42 (m, 7H), 8.60 (s, 1H); ¹⁹F NMR (282 MHz, (CD₃)₂CO) δ –161.5 (d, *J* = 25.7 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 163.9, 149.4, 138.4, 138.2, 136.1, 135.8, 135.3, 133.2, 132.8, 131.6, 130.7, 128.0, 126.4, 125.1, 124.9, 124.6, 104.5 (d, *J* = 276.1 Hz), 70.9 (d, *J* = 16.6 Hz); HRMS (ESI) found: m/z 591.9148 [M+Na]⁺; calcd. for C₂₁H₁₃BrFO₈S₂+Na 591.9150; IR (KBr): v 3091, 2982, 1741, 1590, 1536, 1364, 1164, 1089, 1011, 586 cm⁻¹; HPLC (DAICEL Chiralpak IA, *n*-hexane / *i*-PrOH (IPA) = 60:40, 1.0 mL / min, 254 nm) t_R (major) = 32.8 min, t_R (minor) = 21.4 min.

5 Procedure for the desulfonylation of 1,2-Adducts 2c:

To a solution of 1,2-adduct (30.0 mg, 0.07 mmol) in MeOH (3.0 mL), SmI_2 in THF (4.2 ml, 0.42mmol) was added at -70 °C under nitrogen atmosphere and warmed to -40 °C. After the starting material was completely consumed, the reaction mixture was quenched with saturated NH₄Cl solution and saturated Na₂S₂O₄ solution. The aqueous layer was extracted with ethyl acetate. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was

purified by silica gel chromatography eluting with ethyl acetate in hexane (1:4) to give **3c** as colorless oil.

(R)-1-(4-bromophenyl)-2-fluoroethanol (3c)

11.2 mg, colorless oil, 73%, 80% ee, $[\alpha]_D^{25}$ –10.5 (*c* 0.5, (CH₃)₂CO); ¹H NMR (300 MHz, (CD₃)₂CO) δ 4.31-4.56 (m, 2H), 8.11 (d, *J* = 7.8 Hz, 2H), 4.96 (s, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ –221.7 (dt, *J* = 13.3 Hz, 47.1 Hz, 1F); ¹³C NMR (150.9 MHz, (CD₃)₂CO) δ 140.9 (d, *J* = 7.5 Hz), 132.0, 129.4, 121.8, 87.7 (d, *J* = 175.0 Hz), 72.2 (d, *J* = 19.6 Hz); HRMS (ESI) found: m/z 216.9669 [M–H]⁻; calcd. for C₂₁H₁₃BrFO₈S₂–H 216.9665; IR (KBr): v 3394, 2952, 1593, 1488, 1403, 1090, 1010, 896, 822, 526 cm⁻¹; HPLC (DAICEL Chiralpak IF, *n*-hexane / *i*-PrOH (IPA) = 99:1, 1.0 mL / min, 254 nm) t_R (major) = 43.4 min, t_R (minor) = 39.9 min.

5. References:

- 1 (a) H. Brunner, P. Schmidt, *Eur. J. Org. Chem.* 2000, 2119–2133; (b) W. Chen, W. Du, Y.-Z. Duan, Y. Wu, S.-Y. Yang, Y-C. Chen, *Angew. Chem. Int. Ed.*, 2007, 46, 7667–7670; (c) P. S. Mukund, I. Kennosuke, *J. Am. Chem. Soc.* 2007, 129, 8064–8065.
- 2 T. Furukawa, Y. Goto, J. Kawazoe, E. Tokunaga, S. Nakamura, Y. Yang, H. Du, A. Kakehi, M. Shiro, N. Shibata, *Angew. Chem. Int. Ed.*, **2010**, *49*, 1642–1647.

6 NMR Spectra and HPLC Charts for the Addition Adducts:

IV¹H NMR

VI¹H NMR

VIII¹³C NMR

2e¹³C NMR

2f¹³C NMR

2g¹H NMR

2g¹³C NMR

2h¹H NMR

2h¹³C NMR

2j¹³C NMR

80 70 60 50 40 30 20 10 0 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90

21¹H NMR

2l¹³C NMR

2m¹³C NMR

4¹³C NMR

3c¹³C NMR

HPLC using an IA column (*i*-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	15.192	50.568	59.546
2	22.067	49.432	40.454

HPLC using an IA column (*i*-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	15.175	4.751	7.541
2	21.350	95.249	92.459

HPLC using an IA column (*i*-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	18.508	49.981	58.964
2	26.792	50.019	41.036

HPLC using an IA column (i-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	18.458	20.233	23.283
2	26.300	79.767	76.717

HPLC using an IC column (i-PrOH/n-hexane=10/90, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	18.742	49.263	57.071
2	25.708	50.764	42.929

HPLC using an IC column (i-PrOH/n-hexane=10/90, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	18.708	21.788	28.498
2	25.467	78.212	71.502

HPLC using an IC column (i-PrOH/n-hexane=10/90, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	41.108	49.958	54.012
2	49.958	50.042	45.988

HPLC using an IC column (i-PrOH/n-hexane=10/90, flow rate 1.0 ml/min, $\lambda = 254$ nm)

1	41.608	19.794	22.745
2	50.125	80.206	77.255

HPLC using an IC column (i-PrOH/n-hexane= 15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	19.142	50.678	56.046
2	27.558	49.322	43.954

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, \u03c8 = 254 nm)

1	19.617	2.103	2.365
2	27.975	97.897	97.635

HPLC using an ID column (i-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	15.483	48.958	53.773
2	21.325	51.042	46.227

HPLC using an ID column (i-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	15.433	16.656	20.344
2	20.750	83.344	79.656

HPLC using an IF column (*i*-PrOH/n-hexane= 40/60, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	10.675	49.599	72.677
2	27.408	50.401	27.323

HPLC using an IF column (i-PrOH/n-hexane= 40/60, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	10.675	9.832	22.763
2	26.917	90.168	77.237

HPLC using an IC column (i-PrOH/n-hexane=20/80, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	5.683	49.879	55.255
2	6.458	50.121	44.745

HPLC using an IC column (i-PrOH/n-hexane=20/80, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	5.767	16.665	19.327
2	6.550	83.335	80.673

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	18.683	49.963	55.992
2	25.250	50.037	44.008

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	19.025	28.937	34.934
2	25.858	71.063	65.066

HPLC using an IC column (i-PrOH/n-hexane= 30/70, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	26.508	49.717	44.946
2	41.075	50.283	55.054

HPLC using an IC column (i-PrOH/n-hexane=30/70, flow rate 1.0 ml/min, λ = 254 nm)

1	25.542	80.262	85.454
2	40.617	19.738	14.546

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	8.083	50.261	55.287
2	10.250	49.739	44.713

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	8.758	27.977	31.567
2	11.117	72.023	68.433

HPLC using an IC column (i-PrOH/n-hexane= 15/85, flow rate 1.0 ml/min, λ = 254 nm)

Peak	tR (min)	Area (%)	Height (%)
1	19.017	49.834	51.840
2	20.667	50.166	48.160

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

Реак	tic (min)	Afea (%)	rieight (%)
1	19.542	31.478	33.544
2	21.183	68.522	66.456

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

2 9.842 50.051 47.355

HPLC using an IC column (i-PrOH/n-hexane=15/85, flow rate 1.0 ml/min, λ = 254 nm)

HPLC using an IA column (i-PrOH/n-hexane= 40/60, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	21.342	50.056	57.140
2	32.817	49.944	42.860

Peak	tR (min)	Area (%)	Height (%)
1	21.433	0.423	0.620
2	32.875	99.577	99.380

HPLC using an IF column (*i*-PrOH/n-hexane= 1/99, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	39.933	44.262	45.740
2	43.433	55.738	54.260

HPLC using an IF column (i-PrOH/n-hexane= 1/99, flow rate 1.0 ml/min, $\lambda = 254$ nm)

Peak	tR (min)	Area (%)	Height (%)
1	40.358	9.179	10.133
2	43.625	90.821	89.867

7 X-Ray report of 4:

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 956341.