Supporting Information for:

Acid-Base Responsive Switching Between " $3+1$ " and "2+2" Platinum Complexes

Dhassida Sooksawat, ${ }^{a}$ Sarah J. Pike, ${ }^{a}$ Alexandra M. Z. Slawin, ${ }^{b}$ Paul J. Lusby* ${ }^{*}$

${ }^{\text {a }}$ EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK
${ }^{\mathrm{b}}$ EaStCHEM School of Chemistry, University of St. Andrews, Purdie Building, St.Andrews, Fife, KY16 9ST, UKE-mail: Paul.Lusby@ed.ac.uk

1. General experimental information S2
2. Synthetic details and characterisation data S3
3. Ligand exchange experiments S10
General procedure and ${ }^{1} \mathrm{H}$ NMR spectra of acyclic cyclometallated Pt complex ligand exchange experiments S10
Discussion of variation in acid quantity required to induce complete " $3+1$ " to " $2+2$ " switching S12
Procedure and ${ }^{1} \mathrm{H}$ NMR spectra of macrocyclic cyclometallated Pt complex ligand exchange experiment S14
4. Crystal data and structure refinement S15
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of all new compounds and complexes S32
6. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$ and trans-[$\left.\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{\mathbf{3}}\right)\right] \mathrm{OTs}$ and justification for absolute assignment of trans- $\left[\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$ S42
7. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] O T s$,
$\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{CSA}$ and $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}+$ TRISPHAT S43
8. References S44

General Experimental Information

Unless stated otherwise, all reagents and solvents were purchased from commercial sources and used without further purification. $\mathrm{H}_{2} \mathbf{L}^{1{ }^{1}},{ }^{1}\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMSO})\right],{ }^{2}\left[\mathbf{L}^{1} \operatorname{Pt}(\mathrm{DMAP})\right],{ }^{3}\left[\mathbf{L}^{1} \operatorname{Pt}(\mathrm{py})\right],{ }^{3}$ 1,1'-propane-2,2-diylbis[4-(4-bromobutoxy)benzene] ${ }^{4}$ and 2-phenylethylazide ${ }^{5}$ were prepared according to literature procedures. All reactions, unless stated otherwise, were carried out under a nitrogen atmosphere. Column chromatography was carried out on silica using Kiesegel C69 (Merck, Germany) as the stationary phase and TLC was performed on precoated silica 60 gel plates (0.20 mm thick, $60 \mathrm{~F}_{254}$. Merck, Germany) and observed under UV light. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded as stated on either a Bruker AV 500 or AV 400 instrument at a constant temperature of 298 K . Chemical shifts are reported in parts per million. Coupling constants (J) are reported in hertz (Hz) and are reported as observed. Where more than one J value is given per chemical shift, the first refers to coupling through three bonds, the second refers to coupling through four bonds, etc.. Standard abbreviations indicating multiplicity were used as follows: $\mathrm{m}=$ multiplet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{s}=$ singlet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{br}=$ broad. The presence of ${ }^{195} \mathrm{Pt}$ satellites is indicated by a subscripted satellite following the multiplicity abbreviation (the magnitude of this splitting is indicated using ${ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{H}\right)$, for a typical 3-bond coupling to platinum). Other abbreviations used in the Supporting Information, include; DMAP $=$ 4-dimethylaminopyridine; $\mathrm{DMF}=$ dimethylformamide; $\mathrm{DMSO}=$ dimethylsulfoxide; EDTA $=$ ethylenediamine tetraacetic acid; 3,5-lut $=3,5-$ lutidine; $\mathrm{P}_{1}-{ }^{\mathrm{t}} \mathrm{Bu}=$ tert-butylaminotris(dimethylamino) phosphazene; $\mathrm{py}=$ pyridine, $\mathrm{rt}=$ room temperature; TBAF $=$ tetrabutylammonium fluoride; $\mathrm{TCE}=1,1,2,2$-tetrachloroethane; THF $=$ tetrahydrofuran; $\mathrm{TLC}=$ thin layer chromatography; $\mathrm{TsOH}=p$-toluenesulfonic acid. All melting points (m.p.) were determined using Sanyo Gallenkamp apparatus. FAB and ESI mass spectrometry was carried out by the services at the University of Edinburgh.

Synthetic Details and Characterisation Data

[$\left.\mathbf{L}^{1} \operatorname{Pt}(3,5-\mathrm{lut})\right]$

To a yellow solution of $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMSO})\right](0.093 \mathrm{~g}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 3,5-lutidine ($0.040 \mathrm{~g}, 0.37 \mathrm{mmol}$), which resulted in a darkening of the solution to orange. The reaction was stirred for 18 h at rt and the excess solvent was removed under reduced pressure. Purification of the crude product using column chromatography (1:1:0.01; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane: NEt_{3}) gave the compound as an orange solid ($0.052 \mathrm{~g}, 53 \%$). Bright orange crystals suitable for X-ray crystallography were grown via slow diffusion of diisopropyl ether into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the desired complex. m.p. $205-210{ }^{\circ} \mathrm{C}\left(\right.$ dec.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $8.68\left(\mathrm{~s}_{\text {satellite }},{ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{H}\right)=45.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{a}\right), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{A}\right), 7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{b}\right), 7.45\left(\mathrm{dd}, J=7.6,0.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{C}\right), 7.29-7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{B}\right), 7.20-$ $7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{F}\right), 7.07-7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{D}\right), 6.95-6.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{E}\right), 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{c}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 173.1, 168.6, 151.4, 149.8, 139.9, 138.4, 136.4, 133.7, 130.9, 124.3, 123.9, 114.8, 18.5; LRESI-MS: $m / z=532[M H]^{+}$; HRESI-MS: $m / z=531.12649[M]^{+}$ (calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{195} \mathrm{Pt}$, 531.12687).

$\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$
To a solution of $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMSO})\right](0.50 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $5,5^{\prime}$ -dimethyl-2,2'-bipyridyl.TsOH $(0.37 \mathrm{~g}, 10.0 \mathrm{mmol})$ and the reaction mixture stirred at rt for 5 minutes. After this time, the solution was concentrated to $\sim 3 \mathrm{~mL}$ under reduced pressure and upon the slow addition of hexane, the desired product precipitated from solution as a bright
yellow solid. The crude solid was filtered off and collected. Crystals suitable for X-ray crystallography were grown via slow diffusion of diisopropyl ether into a saturated chloroform solution $(0.48 \mathrm{~g}, 78 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) ; \delta=9.28\left(\mathrm{~s}_{\text {satellite }},{ }^{3} J\left({ }^{195} \mathrm{Pt}\right.\right.$ $\left.\mathrm{H})=35.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{k}\right), 8.46\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{h}\right), 8.34\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{H}\right), 8.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{g}\right), 8.20-8.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{A+i}\right), 7.96\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{G}\right), 7.77-7.68\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{B+J+f+S}\right)$, $7.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{d}\right), 7.44\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{E}\right), 7.34\left(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{F}\right), 7.32-7.19$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{D+C+I}\right), 7.11\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{T}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{j}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{U}\right), 2.21(\mathrm{~s}, 3 \mathrm{H}$, H_{e}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); 168.0, 160.5, 155.9, 152.8, 151.7, 148.8, 147.8, 145.8, $142.2,141.8,140.5,140.4,139.1,138.8,138.0,136.9,132.5,131.5,130.2,129.8,128.9$, 128.5, 126.5, 125.7, 125.3, 125.0, 124.7, 123.4, 118.6, 21.5, 19.4, 18.9; LRESI-MS: $m / z=$ 611 [M-OTs] ${ }^{+}$; HRESI-MS: $m / z=611.17716$ (calc. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3}{ }^{195} \mathrm{Pt}, 611.17690$).

2,6-(bis-4-hydroxyphenyl)pyridine
Adapted from a procedure by Aucagne et al. ${ }^{6}$ Isopropanol (50 mL) was purged with nitrogen for 5 minutes then potassium tert-butoxide ($2.24 \mathrm{~g}, 20 \mathrm{mmol}$), PEPPSI-IPr ($0.27 \mathrm{~g}, 5 \mathrm{~mol} \%$), 4-hydroxyphenylboronic acid ($2.43 \mathrm{~g}, 17.6 \mathrm{mmol}$) and 2,6-dibromopyridine ($1.89 \mathrm{~g}, 8$ $\mathrm{mmol})$ were added and the reaction flask was resealed and purged with nitrogen. The reaction mixture was stirred at rt for 48 h , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, concentrated under reduced pressure, then purified by column chromatography $\left(0-30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) providing the desired product as a pale yellow solid ($1.53 \mathrm{~g}, 73 \%$). m.p. $222-226{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); 7.97 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{H}_{C}\right), 7.77\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.59\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{B}\right), 6.90\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{D}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); 160.0, 158.1, 138.8, 132.3, 129.4, 118.2, 116.4; LR-FABMS (3-NOBA matrix): $m / z=263[M]^{+} ;$HR-FABMS (3-NOBA matrix); $m / z=263.09510$ (calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}, 263.09518$).

$\mathrm{H}_{2} \mathbf{L}^{2}$
To a stirred mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(19.68 \mathrm{~g}, 60 \mathrm{mmol})$ and 2,6-(bis-4-hydroxyphenyl)pyridine $(0.27 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 600 mL of degassed DMF at $65^{\circ} \mathrm{C}$ was added dropwise, using a pressure equalising funnel, over a period of 24 h a solution of 1,1'-propane-2,2-diylbis[4-(4bromobutoxy)benzene] ($0.51 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 200 mL of degassed DMF. When addition was complete, the reaction was stirred at $65^{\circ} \mathrm{C}$ for a further 30 h . After this time, the reaction mixture was cooled to rt , the solvent removed under reduced pressure, and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, and the aqueous phase extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue purified by column chromatography $\left(25-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: Petroleum ether) to give a colourless solid as the product $(0.70 \mathrm{~g}, 80 \%) \mathrm{m} . \mathrm{p} .203-206{ }^{\circ} \mathrm{C} ; \quad{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; 8.01\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{C}\right), 7.73\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{B}\right), 7.16\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{J}\right), 6.99\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}^{2}, \mathrm{H}_{D}\right), 6.82\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}^{2}, \mathrm{H}_{I}\right)$, $4.24\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{E}\right), 4.01\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{H}\right), 2.05-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{F}\right), 1.98-1.92$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{G}\right), 1.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{K}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 159.5,156.8,156.5,143.1$, $137.4,132.5,128.4,127.8,117.0,115.2,113.8,67.8,67.3,41.8,31.3,25.8,25.5$; LRFABMS (3-NOBA matrix) $m / z=600[\mathrm{MH}]^{+}$; HR-FABMS (3-NOBA matrix) $m / z=$ 600.31179 (calc. for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{NO}_{4} 600.31084$)

$\left[\mathbf{L}^{2} \operatorname{Pt}(\mathrm{DMSO})\right]$

To a solution of $\mathrm{H}_{2} \mathbf{L}^{2}(0.24 \mathrm{~g}, 0.40 \mathrm{mmol})$ in acetic acid $(12 \mathrm{~mL})$ was added $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](0.17$ $\mathrm{g}, 0.40 \mathrm{mmol})$ and tetrabutylammonium chloride $(0.13 \mathrm{~g}, 0.40 \mathrm{mmol})$. The mixture was heated at $125{ }^{\circ} \mathrm{C}$ for 2 days over which time the suspension turned green-yellow with some unconsumed red Pt salt. The entire solids were filtered off and then washed with water (5 mL) to remove the red starting Pt salt. The resultant green-yellow precipitate was washed with acetone (5 mL) and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The green-yellow solid was then dissolved in hot DMSO $(6 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.57 \mathrm{~g}, 4.1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ were added. The mixture was heated to $90^{\circ} \mathrm{C}$ for 2 h . Upon the addition of more water $(10 \mathrm{~mL})$ the product precipitated as a bright yellow solid. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and crystallization from $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the product as a bright yellow solid. ($0.28 \mathrm{~g}, 80 \%$). m.p. $>270{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.48\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.36\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{C}\right)$, $7.34\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{E}\right), 7.14\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{G}\right), 7.05\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{B}\right), 6.84$ $\left(\mathrm{d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{F}\right), 6.58\left(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{D}\right), 4.17\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{H}\right), 4.07$ $\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{I}\right), 3.14\left(\mathrm{~s}, 6 \mathrm{H},{ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{H}\right)=25.4 \mathrm{~Hz}, \mathrm{H}_{M}\right), 2.02-1.90\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{J+K}\right)$, $1.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{L}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 168.4,166.5,160.7,157.1,143.3,142.5$, $141.0,127.8,126.1,121.5,114.2,113.2,112.0,68.01,67.99,48.0,41.7,31.1,26.5,26.0$; LR-ESIMS $m / z=871[M H]^{+} ;$HR-ESIMS $m / z=871.27380$ (calc. for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{NO}_{5}{ }^{195} \mathrm{Pt}^{32} \mathrm{~S}$ 871.27391).

[$\left.\mathbf{L}^{2} \operatorname{Pt}(3,5-\mathrm{lut})\right]$
To a yellow solution of $\left[\mathbf{L}^{2} \mathrm{Pt}(\mathrm{DMSO})\right](0.032 \mathrm{~g}, 0.037 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 3,5-lutidine ($0.004 \mathrm{~g}, 0.037 \mathrm{mmol}$), which resulted in a darkening of the solution to orange. The reaction was stirred at $40{ }^{\circ} \mathrm{C}$ overnight and the excess solvent was removed under reduced pressure. The crude residue was purified by $\mathrm{Et}_{2} \mathrm{O}$ diffusion into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, yielding the product as bright orange crystals ($0.012 \mathrm{~g}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) ; \delta 8.45\left(\mathrm{~s}_{\text {satellite }}, 2 \mathrm{H},{ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{H}\right)=43.4 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.43\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.36$ $\left(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{C}\right), 7.18\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{I}\right), 7.03\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{B}\right), 6.72(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{b}\right), 6.65\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{H}\right), 6.54\left(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{D}\right), 6.41\left(\mathrm{~d}_{\text {satellite }}, J=\right.$ $\left.2.5 \mathrm{~Hz}, 2 \mathrm{H},{ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{H}\right)=27.3 \mathrm{~Hz}, \mathrm{H}_{E}\right), 3.98\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{F}\right), 3.78(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, H_{G}), 1.88-1.78 (m, 14H, $\left.\mathrm{H}_{J, K, c}\right), 1.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{L}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta 175.3$, $167.5,160.8,157.0,150.7,143.2,141.8,139.2,137.9,135.4,127.5,125.4,117.2,114.3$, 112.4, 111.6, 67.9 ,67.4, 41.2, 29.9, 25.7, 25.4, 17.5; LR-FABMS (3-NOBA matrix) $m / z=$ $900[\mathrm{MH}]^{+} ;$HR-FABMS (3-NOBA matrix) $m / z=900.33538$ (calc. for $\mathrm{C}_{47} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{195} \mathrm{Pt}$ 900.33346).

2-tert-butyldimethylsilylethynyl-5-bromopyridine
To a suspension of 5-bromo-2-iodopyridine ($0.85 \mathrm{~g}, 3 \mathrm{mmol}$), $\mathrm{CuI}(0.06 \mathrm{~g}, 10 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.10 \mathrm{~g}, 5 \mathrm{~mol} \%)$ in dry THF $(20 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was charged tert-butyldimethylsilylacetylene ($0.58 \mathrm{~mL}, 3 \mathrm{mmol}$). The colour changed from yellow to dark brown. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before being warmed to rt and then left stirring overnight. A white precipitate formed and the solution had turned yellow. The mixture was filtered through celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated
under reduced pressure. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and dried over MgSO_{4}. Following filtration and removal of the solvent under reduced pressure, the residue was purified by column chromatography $\left(0-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ to give a colourless solid ($0.73 \mathrm{~g}, 82 \%$). m.p. $89-92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.63$ $\left(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.77\left(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{B}\right), 7.34(\mathrm{dd}, \mathrm{J}=8.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{C}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{E}\right), 0.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{D}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 151.2, 141.6, 138.9, 128.6, 120.4, 103.5, 95.1, 26.3, 16.8, -4.7; LRESI-MS: $m / z=296[M H]^{+} ;$HRESI-MS: $m / z=$ 296.046565 (calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NSiBr} 296.04647$)

2-ethynyl-5-bromopyridine
To a solution of 2-tert-butyldimethylsilylethynyl-5-bromopyridine ($0.15 \mathrm{~g}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}$) was added TBAF (1 M in THF, $0.5 \mathrm{~mL}, 0.50 \mathrm{mmol}$), which resulted in the colourless solution turning yellow. The solution was stirred at rt for 3 h and then the solvent was removed under reduced pressure. The residue was purified by column chromatography ($0-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane) to get the product as an off white solid ($0.07 \mathrm{~g}, 78 \%$). m.p. 80-83 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\left.\delta 8.65\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), c\right), 3.22\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{D}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 151.3, 140.6, 138.9, 128.4, 120.8, 81.8, 78.5; LRESI-MS: $m / z=$ 182 [MH] ${ }^{+}$; HRESI-MS: $m / z=181.960374$ (calc. for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NBr} 181.95999$)

L^{3}

To a colourless solution of 2-ethynyl-5-bromopyridine ($0.018 \mathrm{~g}, 0.10 \mathrm{mmol}$) and 2 phenylethylazide $(0.025 \mathrm{~g}, 0.10 \mathrm{mmol})$ in TCE $(10 \mathrm{~mL})$ was added $\left.\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right)_{4} \mathrm{PF}_{6}(0.042$ $\mathrm{g}, 0.11 \mathrm{mmol})$. The resultant yellow solution was then stirred at rt for 1 h before being heated at $70^{\circ} \mathrm{C}$ for 18 h . After cooling to rt , the mixture was filtered through celite and washed with TCE. The filtrate was concentrated under reduced pressure. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 0.1 M Sodium EDTA, dried over MgSO_{4}. The product
was obtained as a colourless solid following purification by from column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(0.018 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.60\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{c}\right), 8.06$ $\left(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{e}\right), 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{f}\right), 7.89\left(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{d}\right), 7.33-7.28(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{j}\right), 7.26-7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{k}\right), 7.15\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{i}\right), 4.65\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right) 3.27$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{h}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 150.6,148.8,147.4,139.7,136.9$, 129.1, $128.8,127.4,122.5,121.5,119.6,52.0,36.8$; LR-FABMS (3-NOBA matrix) $m / z=$ $329[\mathrm{MH}]^{+}$; HR-FABMS (3-NOBA matrix) $m / z=329.03933$ (calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{4}$ 329.03964)

trans- $\left[\mathbf{L}^{2} \mathbf{P t}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$
To a yellow solution of $\left[\mathbf{L}^{2} \mathrm{Pt}(\right.$ DMSO $\left.)\right](0.012 \mathrm{~g}, 0.013 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathbf{L}^{3}(0.004 \mathrm{~g}, 0.013 \mathrm{mmol})$ and $\mathrm{TsOH}(0.002 \mathrm{~g}, 0.013 \mathrm{mmol})$, which resulted in a changing of the solution to greenish yellow. The solution was stirred at rt for 1 h and the excess solvent was removed under reduced pressure. The yellow solid was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}(0.005 \mathrm{~g}, 34 \%)$. For the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY assisted assignment of trans-[$\left.\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$, see pages S42 and S43. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta 9.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{f}\right), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{e}\right), 8.00\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A}\right), 7.97\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{E}\right), 7.95(\mathrm{ddd}, J=8.4,2.1$, $\left.0.9,1 \mathrm{H}, \mathrm{H}_{d}\right), 7.88\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{c}\right), 7.71\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{W}\right), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{B}\right), 7.57-7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{J+C}\right), 7.30-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{j}\right), 7.24-7.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{k+i}\right), 7.14-7.07$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{X+N /}\right), 7.04\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{O / N}\right), 6.80\left(\mathrm{dd}, J=8.5,2.4,1 \mathrm{H}, \mathrm{H}_{D}\right), 6.75-6.69(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}_{M+P}\right), 4.61-4.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{g^{\prime}}\right), 4.52-4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{g^{\prime}}\right), 4.42-4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{F}\right), 4.19-$ $4.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{F^{\prime \prime}+G}\right), 4.04-3.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{H+I}\right), 3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{h}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{Y}\right), 2.20-1.93$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{H}_{Q+R+S^{\prime}}\right), 1.92-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{S^{\prime}}\right), 1.82-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{T}\right), 1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{U / V}\right), 1.57(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{H}_{V / U}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta 168.0,161.2,159.8,159.3,157.4,157.3,150.0$, $149.9,146.1,143.8,143.5,142.8,140.0,139.6,139.2,136.8,130.4,129.4,129.3,129.0$, 128.6, 128.21, 128.19, 127.7, 126.4, 126.1, 123.7, 122.1, 120.6, 119.0, 116.8, 114.4, 114.3,

Ligand Exchange Experiments

(i) Acyclic Cyclometallated Pt Complexes

a) $R=H, R^{\prime}=H$

$\xrightarrow{\mathrm{TsOH}}$

b) $R=M e, R^{\prime}=H$
c) $R=H, R^{\prime}=\mathrm{NMe}_{2}$

Scheme S1. Acid-Base responsive switching between " $3+1$ " and " $2+2$ " cyclometallated Pt complexes.

General procedure

To a solution of $\left[\mathbf{L}^{1} \mathrm{Pt}\left(\mathrm{PyR}_{2} \mathrm{R}^{\prime}\right)\right](4.0 \mu \mathrm{~mol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$ at 298 K was added dmbipy ($4.0 \mu \mathrm{~mol}$). The subsequent addition TsOH in $97: 3 \mathrm{CD}_{2} \mathrm{Cl}_{2}: \mathrm{CD}_{3} \mathrm{OD}$ (5.2, 9.6 and $10.8 \mu \mathrm{~mol}$ of TsOH for the experiments with $\left[\mathbf{L}^{\mathbf{1}} \mathrm{Pt}(\mathrm{py})\right],\left[\mathbf{L}^{\mathbf{1}} \mathrm{Pt}(3,5-\mathrm{lut})\right]$ and $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$, respectively), followed by agitation for 1 minute, caused the solution to lighten. A ${ }^{1} \mathrm{H}$ NMR spectrum was then recorded immediately, confirming quantitative conversion to [$\mathrm{HL}{ }^{1} \mathrm{Pt}($ dmbipy $\left.)\right] O T \mathrm{O}$. $\mathrm{P}_{1}{ }^{-} \mathrm{Bu}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(20 \mu \mathrm{~mol})$ was added directly to the NMR tube and the solution agitated for one minute. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at regular intervals until no further change was observed. The backward reaction of " $2+2$ " to " $3+1$ " complex was complete in 1.5 h for $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{py})\right]$ and 2 h for $\left[\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{lut})\right]$ and $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$.

Figure S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{py})\right]$; b) $\left[\mathbf{L}^{1} \operatorname{Pt}(\mathrm{py})\right]+5,5^{\prime}$-dimethyl-2,2'-bipyridine; c) $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{py})\right]+5,5^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine, 5 minutes after the addition of 1.3 eq. TsOH ; d) 1.5 h after the subsequent addition of 5 eq. P_{1-} ${ }^{t} \mathrm{Bu}$; e) Authentic [$\left.\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$ (containing $3 \% \quad \mathrm{CD}_{3} \mathrm{OD}$). The assignments correspond to the lettering shown in Scheme S1 (page S10).

\qquad

Figure S2. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) [$\left.\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{lut})\right]$; b) $\left[\mathbf{L}^{1} \operatorname{Pt}(3,5-\mathrm{lut})\right]+5,5$ '-dimethyl-2,2'-bipyridine; c) $\left[\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{lut})\right]+5,5^{\prime}$-dimethyl-2,2'bipyridine, 5 minutes after the addition of 2.4 eq. $\mathrm{TsOH} ; \mathrm{d}) 2 \mathrm{~h}$ after the subsequent addition of 5 eq. $\mathrm{P}_{1}{ }^{-}{ }^{-} \mathrm{Bu}$; e) Authentic $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$ (containing $3 \% \mathrm{CD}_{3} \mathrm{OD}$). The assignments correspond to the lettering shown in Scheme S1 (page S10).

Figure S3. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) [$\left.\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$; b) $\left[\mathbf{L}^{1} \operatorname{Pt}(\mathrm{DMAP})\right]+5,5^{\prime}$-dimethyl-2,2'-bipyridine; c) $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]+5,5^{\prime}$-dimethyl-2,2'bipyridine, 5 minutes after the addition of 2.7 eq. $\mathrm{TsOH} ; \mathrm{d}) 2 \mathrm{~h}$ after the subsequent addition of 5 eq. $\mathrm{P}_{1}-^{t} \mathrm{Bu}$; e) Authentic $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$ (containing $3 \% \mathrm{CD}_{3} \mathrm{OD}$). The assignments correspond to the lettering shown in Scheme S1 (page S10).

Acyclic ligand exchange experiments: Variation in acid quantity required to induce complete " $3+1$ " to " $2+2$ " switching.

In all the acyclic ligand exchange experiments, the minimum quantity of TsOH required to switch " $3+1$ " to " $2+2$ " complex was determined using titration-type experiments. When the monodentate ligand is pyridine, only a slight excess (1.3 eq.) was required, however, for 3,5lut and DMAP, more equivalents were needed to induce complete switching. For example, Figure S4 shows a selection of the NMR spectra for the $\left[\mathrm{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$-dmbipy exchange experiment as a function of TsOH equivalents added.

Figure S4. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) $\left[\mathbf{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$ and dmbipy with a) 1.2 ; b) 1.8 and c) 2.7 eq. TsOH .

With a slight excess of TsOH (Figure S4a) both the " $3+1$ " and " $2+2$ " complexes are present, as well as "free" dmbipy and DMAP (protonated to various degrees), however, additional intermediate species can also be observed. For instance, the signal at 6.05 ppm is indicative of the protonated DMAP complex (the " $2+1+1$ " species) [$\mathrm{HL}{ }^{1} \mathrm{Pt}$ (DMAP)OTs]. ${ }^{3}$ As the equivalents of TsOH (figures S 4 b and c) are increased we observe a reduction in both the " $3+1$ " complex, $\left[\mathrm{L}^{1} \mathrm{Pt}(\mathrm{DMAP})\right]$, and the intermediate $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{DMAP}) \mathrm{OTs}\right]$ and an increase in $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] O T s$. We attribute the difference in the amount of acid required to two principle effects. Firstly, liberated DMAP is significantly more basic than py (pKa of DMAP- $\mathrm{H}^{+}=9.2, \mathrm{py}-\mathrm{H}^{+}=5.21$) such that free DMAP can cause the re-cyclometallation of the " $2+2$ " complex. A further unpublished observation that supports this is that " $3+1$ " complexes can be protonated by py- H^{+}but not by DMAP- H^{+}. The second effect is that DMAP is also a better ligand in comparison to py. In particular, the observation of [$\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{DMAP}) \mathrm{OTs}$] suggests that the chelate effect of dmbipy is not sufficient to fully displace the strongly coordinating monodenate DMAP. The use of excess acid almost certainly shifts the equilibrium towards the " $2+2$ " complex, $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$, through protonation of the liberated DMAP. Similar, but less pronounced, effects were observed for the exchange of $\left[\mathbf{L}^{1} \operatorname{Pt}(3,5-\mathrm{lut})\right]$.

(ii)Macrocyclic Cyclometallated Pt Complexes

3,5-lut
Scheme S2. Acid-Base responsive switching between " $3+1$ " and " $2+2$ " macrocyclic cyclometallated Pt complexes.

Procedure

To a solution of $\left[\mathbf{L}^{2} \operatorname{Pt}(3,5-\mathrm{lut})\right](1.7 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$ at 298 K was added $\mathbf{L}^{3}(0.62 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$. The subsequent addition TsOH in $97: 3 \mathrm{CD}_{2} \mathrm{Cl}_{2}: \mathrm{CD}_{3} \mathrm{OD}(3.2 \mu \mathrm{~mol})$ followed by agitation for 1 minute, caused the solution to lighten. A ${ }^{1} \mathrm{H}$ NMR spectrum was then recorded immediately, confirming complete conversion to $\left[\mathrm{HL}{ }^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$. $\mathrm{P}_{1-1}{ }^{t} \mathrm{Bu}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(9.5 \mu \mathrm{~mol})$ was added directly to the NMR tube and the solution agitated for one minute. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at regular intervals until no further change was observed, indicating that at 298 K , the backward reaction of macrocyclic " $2+2$ " to " $3+1$ " complex is complete after 48 h .

Figure S5. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) [$\left.\mathbf{L}^{2} \mathrm{Pt}(3,5-\mathrm{lut})\right]$; b) $\left.\left[\mathbf{L}^{2} \operatorname{Pt}(3,5-\mathrm{lut})\right]+\mathbf{L}^{3} ; \mathrm{c}\right)\left[\mathbf{L}^{2} \operatorname{Pt}(3,5-\mathrm{lut})\right]+\mathbf{L}^{\mathbf{3}}, 5$ minutes after the addition of 1.7 eq. $\left.\mathrm{TsOH} ; \mathrm{d}\right)$ 48 h after the subsequent addition of 5 eq. $\mathrm{P}_{1}{ }^{t} \mathrm{Bu}$; e) Authentic $\left[\mathrm{HL}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$. The assignments correspond to the lettering shown on pages S7 and S9. The assignments correspond to the lettering shown in Scheme S2 (page 14).

Crystal data and structure refinement for [L1Pt(3,5-Lut)], HL1Pt(dmbipy)]OTs, and [L2Pt(3,5-Lut)].

Structural data was collected using Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn $724+$ detector mounted at the window of an $F R-E+$ SuperBright molybdenum rotating anode generator with VHF Varimax optics ($70 \mu \mathrm{~m}$ focus). Cell determination and data collection employed CrystalClear-SM Expert 2.0
rll (Rigaku, 2011). The structures were solved using SHELXL97 (Sheldrick, G.M. (2008).
Acta Cryst. A64, 112-122).
CCDC 956076-956078 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S6. X-ray crystal structure of $\left[\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$. The carbon atoms of CNC are shown in blue, Lut carbon in orange, platinum in pink, nitrogen in pale blue.

Table S1. Crystal data and structure refinement for $\left[\mathbf{L}^{1} \operatorname{Pt}(3,5-L u t)\right]$.

Identification code	[L1Pt(3,5-lut)]
Empirical formula	C24 H20 N2 Pt
Formula weight	531.51
Temperature	93(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$a=7.402(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=18.424(5) \AA \quad \beta=90.431(10)^{\circ}$.
	$\mathrm{c}=13.588(4) \AA \quad \gamma=90^{\circ}$.
Volume	1853.1(10) \AA^{3}
Z	4
Density (calculated)	$1.905 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$7.583 \mathrm{~mm}^{-1}$
F(000)	1024
Crystal size	$0.10 \times 0.10 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	1.86 to 25.33°
Index ranges	$-7<=\mathrm{h}<=8,-18<=\mathrm{k}<=22,-16<=1<=16$
Reflections collected	11348
Independent reflections	3343 [$\mathrm{R}(\mathrm{int})=0.0525]$
Completeness to theta $=25.00^{\circ}$	99.1\%
Absorption correction	Multiscan
Max. and min. transmission	1.000 and 0.579
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3343 / 0 / 246
Goodness-of-fit on F^{2}	1.064
Final R indices [$1>2$ sigma(I] $]$	$\mathrm{R} 1=0.0302, \mathrm{wR} 2=0.0684$
R indices (all data)	$\mathrm{R} 1=0.0414, \mathrm{wR} 2=0.0756$
Largest diff. peak and hole	1.467 and -2.092 e. A $^{-3}$

Table S2. Selected Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for $\left[\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{lut})\right]$.

$\mathrm{C}(13)-\mathrm{C}(18)$	$1.383(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.427(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.398(6)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.384(6)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.382(6)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.389(6)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500
$\mathrm{~N}(19)-\mathrm{C}(20)$	$1.354(5)$
$\mathrm{N}(19)-\mathrm{C}(24)$	$1.359(6)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.381(6)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.401(6)$
$\mathrm{C}(21)-\mathrm{C}(25)$	$1.507(6)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.380(7)$
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.387(6)$
$\mathrm{C}(23)-\mathrm{C}(26)$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	$0.9896(6)$
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9500
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	

$\mathrm{N}(8)-\operatorname{Pt}(1)-\mathrm{N}(19)$	$178.70(15)$
$\mathrm{N}(8)-\operatorname{Pt}(1)-\mathrm{C}(1)$	$81.25(16)$
$\mathrm{N}(19)-\operatorname{Pt}(1)-\mathrm{C}(1)$	$98.60(16)$
$\mathrm{N}(8)-\operatorname{Pt}(1)-\mathrm{C}(14)$	$80.80(15)$
$\mathrm{N}(19)-\operatorname{Pt}(1)-\mathrm{C}(14)$	$99.33(15)$
$\mathrm{C}(1)-\operatorname{Pt}(1)-\mathrm{C}(14)$	$162.02(17)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.7(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\operatorname{Pt}(1)$	$133.2(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\operatorname{Pt}(1)$	$111.1(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.7(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$121.9(4)$

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	116.4(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.8(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.9(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.1
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.1(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.9
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	122.7(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	118.6
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	118.6
$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	118.6(4)
$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	112.9(4)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(2)$	128.5(4)
$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{C}(7)$	122.6(4)
$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{Pt}(1)$	119.1(3)
$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{Pt}(1)$	118.2(3)
$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.9(4)
$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(13)$	112.6(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)$	128.5(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.0(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.0
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.0
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.9(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.1
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	119.9(4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.1
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.1
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	122.8(4)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(9)$	121.4(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(9)$	115.8(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	114.8(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{Pt}(1)$	133.7(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Pt}(1)$	111.5(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	123.0(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	118.5

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	118.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.0(4)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.0
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.9(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.1
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.1
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	119.4(4)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	120.3
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	120.3
$\mathrm{C}(20)-\mathrm{N}(19)-\mathrm{C}(24)$	116.5(4)
$\mathrm{C}(20)-\mathrm{N}(19)-\mathrm{Pt}(1)$	121.3(3)
$\mathrm{C}(24)-\mathrm{N}(19)-\mathrm{Pt}(1)$	122.1(3)
$\mathrm{N}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	124.3(4)
$\mathrm{N}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	117.8
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	117.8
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	117.1(4)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(25)$	121.3(4)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	121.7(4)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.6(4)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.7
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.7
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	117.8(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(26)$	121.7(4)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(26)$	120.5(4)
$\mathrm{N}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	123.6(4)
$\mathrm{N}(19)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	118.2
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	118.2
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
H(25B)-C(25)-H(25C)	109.5
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5

Figure S7. X-ray crystal structure of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs} .2 \mathrm{CHCl}_{3}$. The carbon atoms of CNC are shown in blue, dmbpy in dark green and OTs carbon in dark grey, platinum in pink, nitrogen in pale blue, sulfur in yellow, oxygen in red and chlorine in purple.

Table S3. Crystal data and structure refinement for [$\left.\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs} .2 \mathrm{CHCl}_{3}$.

Identification code	[HL1Pt(dibipy)]
Empirical formula	C38 H33 Cl6 N3 O3 Pt S
Formula weight	1019.52
Temperature	93(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=16.521(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=14.330(3) \AA \quad \beta=115.215(5)^{\circ}$.
	$\mathrm{c}=17.844(4) \AA \quad \gamma=90^{\circ}$.
Volume	3821.8(14) \AA^{3}
Z	4
Density (calculated)	$1.772 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.188 \mathrm{~mm}^{-1}$
F(000)	2008
Crystal size	$0.10 \times 0.06 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	2.30 to 25.36°
Index ranges	$-18<=\mathrm{h}<=19,-13<=\mathrm{k}<=17,-20<=\mathrm{l}<=21$
Reflections collected	23501
Independent reflections	$6874[\mathrm{R}(\mathrm{int})=0.0535]$

Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
98.6 \%

Multiscan
1.0000 and 0.725

Full-matrix least-squares on F^{2}
6874 / 6 / 472
1.116
$\mathrm{R} 1=0.0606, \mathrm{wR} 2=0.1515$
$\mathrm{R} 1=0.0696, \mathrm{wR} 2=0.1583$
2.479 and -2.569 e. \AA^{-3}

Table S4. Selected Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs} .2 \mathrm{CHCl}_{3}$.

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$1.997(9)$
$\mathrm{Pt}(1)-\mathrm{N}(19)$	$2.027(7)$
$\mathrm{Pt}(1)-\mathrm{N}(8)$	$2.063(7)$
$\mathrm{Pt}(1)-\mathrm{N}(27)$	$2.137(7)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.383(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.426(12)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.398(12)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.463(12)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.397(13)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.403(13)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.384(13)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9500
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.378(12)$

$\mathrm{C}(7)-\mathrm{N}(8)$	1.375(11)
$\mathrm{N}(8)-\mathrm{C}(9)$	1.384(12)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.397(13)
$\mathrm{C}(9)-\mathrm{C}(13)$	1.467(14)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.372(13)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	1.379(13)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500
$\mathrm{C}(13)-\mathrm{C}(18)$	1.393 (13)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.420 (13)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.365(15)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9500
$\mathrm{C}(15)-\mathrm{C}(16)$	1.359(16)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.414(15)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500
$\mathrm{C}(17)-\mathrm{C}(18)$	1.389(14)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500
$\mathrm{N}(19)$-C(24)	1.350(11)
$\mathrm{N}(19)-\mathrm{C}(20)$	1.361(11)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.394(12)
$\mathrm{C}(20)$-C(26)	1.467(12)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.382(13)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.386(13)$
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	1.367(12)
$\mathrm{C}(23)-\mathrm{C}(25)$	$1.526(13)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{N}(27)$	1.369(11)
$\mathrm{C}(26)-\mathrm{C}(31)$	1.383(12)
$\mathrm{N}(27)$-C(28)	1.332(11)
$\mathrm{C}(28)$-C(29)	1.392(12)
C(28)-H(28A)	0.9500

$\mathrm{C}(29)-\mathrm{C}(30)$	1.391(13)
$\mathrm{C}(29)-\mathrm{C}(32)$	1.504(13)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.391(13)
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9500
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9500
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9800
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9800
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{N}(19)$	98.2(3)
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{N}(8)$	79.6(3)
$\mathrm{N}(19)-\mathrm{Pt}(1)-\mathrm{N}(8)$	174.3(3)
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{N}(27)$	174.6(3)
$\mathrm{N}(19)-\mathrm{Pt}(1)-\mathrm{N}(27)$	77.6(3)
$\mathrm{N}(8)-\mathrm{Pt}(1)-\mathrm{N}(27)$	104.3(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	117.2(8)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pt}(1)$	131.8(7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}(1)$	110.9(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.0(8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	124.1(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	114.4(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.7(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.2
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.2
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.1(8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.5(9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	121.8(9)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.1
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.1
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{N}(8)$	121.5(8)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(2)$	124.9(8)
$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	113.4(7)
$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}(9)$	118.1(8)
$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{Pt}(1)$	110.9(6)
$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{Pt}(1)$	130.6(6)

$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.4(9)
$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(13)$	119.7(8)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)$	120.8(8)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.9(9)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.6
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.1(8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.5
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	119.7(8)
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.2
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	118.3(9)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(9)$	122.2(9)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(9)$	119.6(9)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.8(10)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	120.1
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	120.1
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.9(10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	119.0
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	119.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.0(10)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.0
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.0
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	118.6(10)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.7
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.7
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	121.3(9)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.3
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.3
$\mathrm{C}(24)-\mathrm{N}(19)-\mathrm{C}(20)$	117.7(8)
$\mathrm{C}(24)-\mathrm{N}(19)-\mathrm{Pt}(1)$	125.7(6)
$\mathrm{C}(20)-\mathrm{N}(19)-\mathrm{Pt}(1)$	116.6(6)
$\mathrm{N}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120.9(8)
$\mathrm{N}(19)-\mathrm{C}(20)-\mathrm{C}(26)$	115.1(8)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(26)$	123.2(8)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	119.9(8)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.0
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.0

$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.0(8)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	120.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	120.5
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	118.4(9)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	120.7(9)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(25)$	120.9(8)
$\mathrm{N}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	124.1(8)
$\mathrm{N}(19)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	118.0
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	117.9
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{N}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	120.9(8)
$\mathrm{N}(27)-\mathrm{C}(26)-\mathrm{C}(20)$	114.3(8)
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(20)$	124.6(8)
$\mathrm{C}(28)-\mathrm{N}(27)-\mathrm{C}(26)$	118.7(7)
$\mathrm{C}(28)-\mathrm{N}(27)-\mathrm{Pt}(1)$	128.9(6)
$\mathrm{C}(26)-\mathrm{N}(27)-\mathrm{Pt}(1)$	112.2(6)
$\mathrm{N}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	123.5(8)
$\mathrm{N}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	118.2
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	118.2
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	117.2(8)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(32)$	121.5(8)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(32)$	121.2(8)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	119.8(8)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	120.1
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	120.1
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(30)$	119.3(8)
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	120.3
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	120.3
$\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	109.5
$\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5
$\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5
$\mathrm{H}(32 \mathrm{~B})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5

Figure S8. X-ray crystal structure of $\left[\mathbf{L}^{2} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$. The carbon atoms of a macrocycle are shown in blue, Lut in orange, platinum in pink, nitrogen in pale blue, and oxygen in red.

Table S5. Crystal data and structure refinement for $\left[\mathbf{L}^{2} \operatorname{Pt}(3,5-L u t)\right]$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
[L2Pt(3,5-lut)]
C47 H48 N2 O4 Pt
900.00

93(2) K
$0.71075 \AA$
Triclinic
P-1 (\#2)
$a=10.3265(10) \AA \quad \alpha=110.841(6)^{\circ}$
$\mathrm{b}=13.6884(13) \AA$
$\beta=107.420(5)^{\circ}$
$\mathrm{c}=15.3966(12) \AA$
$\gamma=95.035(5)^{\circ}$
1894.1(3) \AA^{3}

2
$1.578 \mathrm{~g} / \mathrm{cm}^{3}$
$3.7379 \mathrm{~mm}^{-1}$
908.00
$0.10 \times 0.03 \times 0.03 \mathrm{~mm}^{3}$
2.38 to 25.35°
$-12<=\mathrm{h}<=12,-16<=\mathrm{k}<=16,-18<=\mathrm{l}<=18$
18722
$6861[\mathrm{R}(\mathrm{int})=0.0261]$
98.5\%

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

Multiscan

0.894 and 0.760

Full-matrix least-squares on F^{2}
6861/ 0 / 487
1.199
$\mathrm{R} 1=0.0234$
$\mathrm{wR} 2=0.0771$
1.050 and -1.030 e. \AA^{-3}

Table S6. Selected Bond lengths $[\AA]$, angles $\left[{ }^{\circ}\right]$ and torsion angles $\left[{ }^{\circ}\right]$ for $\left[\mathbf{L}^{2} \operatorname{Pt}(3,5-\mathrm{Lut})\right]$.

$\mathrm{Pt}(1)-\mathrm{N}(8)$	$1.956(4)$
$\mathrm{Pt}(1)-\mathrm{C}(14)$	$2.046(6)$
$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.063(6)$
$\mathrm{Pt}(1)-\mathrm{N}(46)$	$2.010(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.401(8)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.405(7)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.39(1)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.393(8)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.382(7)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.39(1)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.473(7)$
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.381(8)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.385(8)$

$\mathrm{C}(11)-\mathrm{C}(10)$	1.40(1)
$\mathrm{C}(10)-\mathrm{C}(9)$	1.382(8)
$\mathrm{N}(8)$-C(9)	$1.359(7)$
$\mathrm{N}(8)-\mathrm{C}(7)$	1.376 (9)
$\mathrm{C}(9)-\mathrm{C}(13)$	1.468(9)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.417(6)
$\mathrm{C}(13)-\mathrm{C}(18)$	1.401 (
$\mathrm{C}(18)-\mathrm{C}(17)$	1.38(1)
$\mathrm{C}(17)-\mathrm{C}(16)$	1.392(7)
$\mathrm{C}(16)-\mathrm{C}(15)$	1.389(8)
$\mathrm{C}(15)-\mathrm{C}(14)$	1.410(9)
$\mathrm{N}(46)-\mathrm{C}(47)$	1.354(7)
$\mathrm{N}(46)-\mathrm{C}(51)$	1.348(7)
$\mathrm{C}(51)-\mathrm{C}(50)$	1.366 (
$\mathrm{C}(50)-\mathrm{C}(49)$	1.404(8)
$\mathrm{C}(49)$ - $\mathrm{C}(48)$	1.392
C(48)-C(47)	1.379(8)
H(53B)-C(53)	0.980(5)
$\mathrm{C}(52)-\mathrm{C}(48)$	$1.506(8)$
$\mathrm{C}(16)-\mathrm{O}(19)$	1.378(8)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.524 (9)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.520(7)
$\mathrm{C}(23)-\mathrm{O}(24)$	$1.434($
$\mathrm{O}(24)-\mathrm{C}(25)$	$1.383(6)$
$\mathrm{C}(25)-\mathrm{C}(26)$	1.398 (8)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.390 (7)
$\mathrm{C}(27)-\mathrm{C}(28)$	1.389(6)
$\mathrm{C}(28)$-C(29)	1.398(8)
$\mathrm{C}(29)$-C(30)	1.393(7)
$\mathrm{C}(30)-\mathrm{C}(25)$	1.373(6)
$\mathrm{C}(28)$-C(31)	$1.538(7)$
$\mathrm{C}(31)-\mathrm{C}(32)$	1.55(1)
$\mathrm{C}(31)-\mathrm{C}(44)$	1.544(9)
$\mathrm{C}(31)-\mathrm{C}(45)$	$1.536(6)$
$\mathrm{C}(32)-\mathrm{C}(33)$	1.380 (8)
$\mathrm{C}(32)-\mathrm{C}(37)$	1.389 (9)
$\mathrm{C}(37)-\mathrm{C}(36)$	1.39(1)
$\mathrm{C}(36)-\mathrm{C}(35)$	$1.386(8)$
$\mathrm{C}(35)-\mathrm{C}(34)$	1.387(9)
$\mathrm{C}(34)-\mathrm{C}(33)$	1.40(1)
$\mathrm{C}(35)-\mathrm{O}(38)$	1.377(8)

$\mathrm{O}(38)-\mathrm{C}(39)$	$1.438(8)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.511(9)$
$\mathrm{C}(40)-\mathrm{C}(41)$	$1.525(9)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.514(9)$
$\mathrm{O}(43)-\mathrm{C}(5)$	$1.391(6)$
$\mathrm{O}(43)-\mathrm{C}(42)$	$1.450(6)$
$\mathrm{C}(28)-\mathrm{C}(52)$	$4.105(8)$
$\mathrm{C}(52)-\mathrm{C}(25)$	$3.783(9)$
$\mathrm{C}(53)-\mathrm{C}(32)$	$4.755(7)$
$\mathrm{C}(35)-\mathrm{C}(53)$	$3.600(6)$
$\mathrm{C}(48)-\mathrm{C}(27)$	$4.507(9)$
$\mathrm{C}(48)-\mathrm{C}(26)$	$4.39(1)$
$\mathrm{C}(48)-\mathrm{C}(30)$	$4.546(9)$
$\mathrm{C}(48)-\mathrm{C}(29)$	$4.893(6)$
$\mathrm{C}(53)-\mathrm{C}(37)$	$4.392(6)$
$\mathrm{C}(36)-\mathrm{C}(53)$	$4.054(7)$
$\mathrm{C}(33)-\mathrm{C}(53)$	$3.402(6)$
$\mathrm{C}(34)-\mathrm{C}(53)$	$1.499(9)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.437(7)$
$\mathrm{C}(20)-\mathrm{O}(19)$	

$\mathrm{N}(46)-\mathrm{Pt}(1)-\mathrm{C}(14)$	$99.0(2)$
$\mathrm{N}(46)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$98.5(2)$
$\mathrm{Pt}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$111.9(4)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(9)$	$115.4(5)$
$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{C}(7)$	$123.1(5)$
$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{Pt}(1)$	$118.9(4)$
$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{Pt}(1)$	$118.0(4)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	$116.1(5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(43)$	$120.2(5)$
$\mathrm{C}(5)-\mathrm{O}(43)-\mathrm{C}(42)$	$114.9(4)$
$\mathrm{O}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	$113.8(5)$
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	$113.7(5)$
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{O}(38)$	$108.4(5)$
$\mathrm{C}(39)-\mathrm{O}(38)-\mathrm{C}(35)$	$117.6(4)$
$\mathrm{C}(52)-\mathrm{C}(48)-\mathrm{C}(47)$	$120.4(5)$
$\mathrm{C}(47)-\mathrm{N}(46)-\mathrm{C}(51)$	$117.4(5)$
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{H}(39 \mathrm{~B})$	$93.3(3)$
$\mathrm{C}(16)-\mathrm{O}(19)-\mathrm{C}(20)$	$117.5(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(19)$	$123.7(5)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$112.7(5)$

$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(24)$	$108.8(5)$
$\mathrm{C}(23)-\mathrm{O}(24) \mathrm{C}(25)$	$117.7(4)$
$\mathrm{O}(24)-\mathrm{C}(25) \mathrm{C}(26)$	$123.7(5)$
$\mathrm{O}(24)-\mathrm{C}(25) \mathrm{C}(30)$	$116.9(5)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(31)$	$123.2(5)$
$\mathrm{C}(37)-\mathrm{C}(32)-\mathrm{C}(31)$	$119.8(5)$
$\mathrm{C}(14)-\mathrm{Pt}(1)-\mathrm{N}(46)-\mathrm{C}(47)$	$-51.7(4)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$-1(1)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(18)$	$-1.0(9)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{N}(46)$	$-3.6(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(19)-\mathrm{C}(20)$	$-24.7(8)$
$\mathrm{C}(16)-\mathrm{O}(19)-\mathrm{C}(20)-\mathrm{H}(21 \mathrm{~B})$	$147.6(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(24)$	$82.3(5)$
$\mathrm{Pt}(1)-\mathrm{N}(46)-\mathrm{C}(51)-\mathrm{C}(1)$	$33.1(2)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(28)$	$-105.1(6)$
$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(37)$	$-61.2(4)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{O}(24)-\mathrm{C}(23)$	$-1.6(8)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{O}(38)-\mathrm{C}(39)$	$164.6(5)$
$\mathrm{O}(38)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	$177.1(5)$
$\mathrm{C}(6)-\mathrm{C}(5) \mathrm{C}(42)-\mathrm{C}(41)$	$1.0(6)$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\left[\mathbf{L}^{\mathbf{1}} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathbf{L}^{1} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 2,6-(bis-4hydroxyphenyl)pyridine.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 2,6-(bis-4-
hydroxyphenyl)pyridine.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathrm{H}_{2} \mathbf{L}^{\mathbf{2}}$.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathrm{H}_{2} \mathbf{L}^{\mathbf{2}}$.

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\left[\mathbf{L}^{\mathbf{2}} \mathrm{Pt}(\mathrm{DMSO})\right]$.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\left[\mathbf{L}^{2} \mathrm{Pt}(\mathrm{DMSO})\right]$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\left[\mathbf{L}^{\mathbf{2}} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathbf{L}^{2} \mathrm{Pt}(3,5-\mathrm{Lut})\right]$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-tert-butyldimethylsilylethynyl-5bromopyridine.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-tert-butyldimethylsilylethynyl-5bromopyridine.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-ethynyl-5-bromopyridine.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-ethynyl-5-bromopyridine.

1	1	1	1	1	1	1	,	+	1	1	1	1	1	1	1	1	1	1
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{f} 1(\mathrm{pom}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{L}^{\mathbf{3}}$.

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of \mathbf{L}^{3}.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{\mathbf{3}}\right)\right]$ OTs.

1H-1H NOESY spectra of $\left[\mathrm{HL}^{1} \mathbf{P t}(\right.$ dmbipy $\left.)\right] O T s$ and trans-[$\left[\mathrm{L}^{2} \operatorname{Pt}\left(\mathrm{~L}^{3}\right)\right] \mathrm{OTs}$ and

 justification for absolute assignment of $\operatorname{trans}-\left[\mathrm{L}^{2} \mathbf{P t}\left(\mathrm{~L}^{3}\right)\right] \mathrm{OTs}$

Figure S29. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$.

Figure S30. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\left[\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$.

The absolute assignment of trans $-\left[\mathbf{L}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right] \mathrm{OTs}$ is made on the basis of the following observations:
(i) The presence of a strong NOESY signal between H_{E} and H_{k} in the acyclic "2+2" complex, $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] O T s$ (Figure S29) and a clear lack of corresponding cross-peak between the signal at just below 10 ppm with H_{E} for $\left[\mathrm{HL}^{2} \mathrm{Pt}\left(\mathbf{L}^{3}\right)\right]$ OTs (Figure S30).
(ii) Clear NOESY cross peak between the resonance at just below 10 for $\left[\mathrm{HL}^{2} \operatorname{Pt}\left(\mathbf{L}^{3}\right)\right]$ OTs (Figure S30) and signals which can be ascribed to $\mathrm{H}_{e}, \mathrm{H}_{g}$ and H_{h} of the \mathbf{L}^{3} ligand.
(iii) The relative chemical shifts of the H_{c} and H_{f} resonances - whereas H_{f} is deshielded with respect to the same signal for free \mathbf{L}^{3} (due to Pt complexation), H_{c} is upfield shifted by ca. 05 ppm , a result of shielding by the non-coordinating phenoxy alkyl group of \mathbf{L}^{2}.

Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{HL}{ }^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$, [$\left.\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{CSA}$ and [$\mathrm{HL}^{1}{ }^{1} \mathrm{Pt}$ (dmbipy)]OTs + TRISPHAT

Figure S31. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of a) [$\left.\mathrm{HL}^{1}{ }^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}$, b) in situ generated $\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right](+) \mathrm{CSA}$ and c$)\left[\mathrm{HL}^{1} \mathrm{Pt}(\mathrm{dmbipy})\right] \mathrm{OTs}+$ TRISPHAT.

Reference:

[1] T. Bunlaksananusurn, K. Polburn, P. Knochel, Angew. Chem. Int. Ed., 2003, 42, 3941.
[2] (a) G. W. V. Cave, F. P. Fanizzi, R. J. Deeth, W. Errington, J. P. Rourke, Organometallics, 2000, 19, 1355; (b) J. D. Crowley, I. M. Steele, B. Bosnich, Inorg. Chem., 2005, 44, 2989.
[3] S. J. Pike, P. J. Lusby, Chem. Commun., 2010, 46, 8338-8340.
[4] F. Durola, J. -P. Sauvage, O. S. Wenger, Helv. Chim. Acta., 2007, 90, 1439-1446.
[5] G. Colombano, C. Travelli, U. Galli, A. Caldarelli, M.G. Chini, P. L. Canonico, G. Sorba, G. Bifulco, G. C. Tron, A. A. Genazzani, J. Med. Chem., 2010, 53, 616-623.
[6] V. Aucagne, J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, D. A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A. Viterisi, D. B. Walker, J. Am. Chem. Soc. 2007, 129, 11950-11963.

