Electronic Supporting Information for

Suzuki-Miyaura Cross-coupling of Bulky Anthracenyl Carboxylates by Using Pincer Nickel N-Heterocyclic Carbene Complexes: An Efficient Protocol to Access Fluorescent Anthracene Derivatives

MizhiXu, Xingbao Li, Zheming Sun and Tao Tu*

Department of Chemistry, Fudan University, 220 Handan Road, 200433, Shanghai (China), Fax: (+86) 21-65102412, E-mail: <u>taotu@fudan.edu.cn</u>

Contents

- 1. General.
- 2. General procedure for Ni-catalyzed C-O activation and Suzuki cross-coupling reactions.
- 3. Optimization of reaction conditions.
- 4. Synthesis of 5-(anthracen-9-yl)-1-methyl-1*H*-indole.
- 5. Analytical data of the coupling products.
- 6. NMR spectra of the coupling products.
- 7. References.

1. General.

Reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents. All commercial reagents were used directly without further purification, unless otherwise stated. The carboxylates were prepared according to literature.^{S1} The nickel(II)-pincer complex was prepared according to our reported method.⁵² Toluene, benzene, 1,4-dioxane, tetrahydrofuran (THF) and 1,2-dimethoxyethane (DME) were distilled from sodium/benzophenone prior to use. Acetonitrile and tert-butanol(t-BuOH) were distilled from anhydrous calcium chloride prior to use. Dry N,N-dimethylformamide (DMF) was purchased from Alfa Aesar, stored over 4 Å molecular sieves, and handled under N₂. $K_3PO_4H_2O$ was purchased from Alfa Aesar. PCy_3 and PPh_3 are used as purchased without special treatment. All reaction vials (50 mL) were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The chemical shifts (δ) for ¹H NMR spectra are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra are referenced to the carbon signal of CDCl₃ (77.0 ppm). The following abbreviations are used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, dd = doublet of doublets, dt = doublet of triplets, q = quartet. GC-MS spectra were recorded on Agilent echnologies 1890A GC system and 5975C inert MSD with Triple-Axis Detector. ESI-MS spectra were recorded on a BrukermicrOTOF II instrument. Fluorescence spectra were recorded on Horiba Scientific Fluoromax-4 Spectrofluorometer.

2. General procedure for Ni-catalyzed C-O activation and Suzuki cross-coupling reactions.

Under a nitrogen atmosphere, to a 50 mL Schlenk tube the base (2.25mmol), catalytic amount of nickel(II)-pincer complex (**1**, **2** or NiBr₂) and additive PCy₃ (or PPh₃), anthracen-9-yl carboxylates (0.5 mmol), (hetero)-aryl boronic acid (2 mmol) and solvent were added. The reaction mixture was heated to 100 °C or 120 °C under stirring and monitored by TLC analysis. After the full conversion of the carboxylates, the reaction mixture was allowed to cool to room temperature. A small amount of silica gel was added and the solvent was removed *in vacuo*. The mixture was ready for purification by flash chromatography to yield the products.

3. Optimization of reaction conditions.^a

$\left \right\rangle$	·OPiv + PhB(O	H) ₂ $\frac{1, PCy_3}{base, solvent}$	$\bigcirc \bigcirc$
3			4
Entry	Base	Solvent	Yield/% ^b
1	$K_2HPO_43H_2O$	Toluene (1.5 mL)	6
2	КОАс	Toluene (1.5 mL)	No reaction
3	KF	Toluene (1.5 mL)	trace
4	<i>t</i> -BuOK	Toluene (1.5 mL)	13
5	K_2CO_3	Toluene (1.5 mL)	35
6	Cs_2CO_3	Toluene (1.5 mL)	5
7	Na_2CO_3	Toluene (1.5 mL)	4
8	NEt ₃	Toluene (1.5 mL)	trace
9	DBU	Toluene (1.5 mL)	trace
10	$K_3PO_4H_2O$	Benzene (1.5 mL)	90
11	$K_3PO_4H_2O$	Dioxane (1.5 mL)	11
12	$K_3PO_4H_2O$	DME (1.5 mL)	42
13	$K_3PO_4H_2O$	<i>t</i> -BuOH (1.5 mL)	69
14	$K_3PO_4H_2O$	CH₃CN (1.5 mL)	5
15	$K_3PO_4H_2O$	DMF (1.5 mL)	3
16	$K_3PO_4H_2O$	Toluene (1.5 mL)	70 ^c
17	$K_3PO_4H_2O$	Toluene (3 mL)	93 ^c
18	$K_3PO_4H_2O$	Toluene (3 mL)	61 ^d
19	$K_3PO_4H_2O$	Toluene (3 mL)	94 [°]
20	$K_3PO_4H_2O$	Toluene (3 mL)	91 ^f
21	K_3PO_4	Toluene (3 mL)	93 ^g
22	$K_3PO_4H_2O$	Toluene (3 mL)	4 ^h
23	K ₃ PO ₄ [·] H ₂ O	Toluene (3 mL)	No reaction ⁱ

^a The reactions were carried out with **3** (0.5 mmol), PhB(OH)₂ (4.0 equiv.), **1** (0.5 mol%), PCy₃ (2mol%), base (4.5 equiv.) in solvent (1.5 mL) at 100 °C for 6h; ^b Isolated yield; ^c 1 mol% PCy₃; ^d Reaction for 1h; ^e 2 mol% **1** and 8 mol% PCy₃, 24h; ^f 5 mol% **1** and 20 mol% PCy₃, 24h; ^g 0.5 mol% NiCl₂(PCy₃)₂ instead of **1** and PCy₃, 24h; ^h 2 mol% Zn instead of PCy₃, 24h; ⁱ PhBpin instead of PhB(OH)₂, no PCy₃ used, 24h.

4. Synthesis of 5-(anthracen-9-yl)-1-methyl-1H-indole.

Methyl-1*H*-indol-5-ylboronic acid was synthesized by a literature method.^{S3} The cross-coupling of anthracen-9-yl pivalate with 1-methyl-1*H*-indol-5-ylboronic acid was carried

out according to our general procedure with catalyst **1**, and a 7% yield was obtained for product **13** after 24 hours.

5. Analytical data of the coupling products (Data of all compounds match those in previously reported references).

4:^{S4 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.51 (s, 1H), 8.05 (d, *J* = 8.8 Hz, 2H), 7.67 (dd, *J* = 8.8 Hz, 0.8 Hz, 2H), 7.62-7.50 (m, 3H), 7.50-7.40 (m, 4H), 7.35 (m, 2H); GC-MS: m/z = 254.3 [M]⁺.

5a:^{S5 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.49 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.50-7.29 (m, 8H), 2.53 (s, 3H); GC-MS: *m/z* = 268.3 [M]⁺, 252.3.

5b:^{S6 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.49 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.51-7.41 (m, 3H), 7.40-7.30 (m, 3H), 7.27-7.20 (m, 2H), 2.47 (s, 3H); GC-MS: m/z = 268.3 [M]⁺, 252.3.

5c:^{S7 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.50 (s, 1H), 8.06 (d, *J* = 8.4 Hz, 2H), 7.53-7.41 (m, 6H), 7.41-7.30 (m, 3H), 7.28-7.23 (m, 1H), 1.86 (s, 3H); GC-MS: *m/z* = 268.3 [M]⁺, 252.3.

6:^{S8 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.48 (s, 1H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.70 (dd, *J* = 8.8 Hz, 0.4 Hz, 2H), 7.50-7.41 (m, 2H), 7.39-7.31 (m, 2H), 7.16 (s, 1H), 7.05 (s, 2H), 2.43 (s, 6H); GC-MS: *m/z* = 282.3 [M]⁺, 267.3, 252.3.

7:^{S9 1}H NMR (400 MHz, $CDCl_3$, 298 K): δ = 8.48 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.58 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 7.49-7.42 (m, 2H), 7.39-7.31 (m, 4H), 1.47 (s, 9H); GC-MS: m/z = 310.1 [M]⁺, 295.1, 279.1, 265.0, 252.1.

8:^{S10 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.48 (s, 1H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.71 (dd, *J* = 8.8 Hz, 0.8 Hz, 2H), 7.49-7.42 (m, 2H), 7.39-7.31 (m, 4H), 7.12 (d, *J* = 8.8 Hz, 2H), 3.96 (s, 3H); GC-MS: m/z = 284.3 [M]⁺, 269.3, 253.3.

9:^{S11 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.51 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.63 (dd, *J* = 8.8 Hz, 0.4 Hz, 2H), 7.50-7.43 (m, 2H), 7.43-7.33 (m, 4H), 7.28 (t, *J* = 8.8 Hz, 2H); ¹⁹F NMR (400 MHz, CDCl₃, 298 K): δ = -114.8; GC-MS: m/z = 272.3 [M]⁺.

10:^{S12 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.54 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.61-7.53 (m, 4H), 7.51-7.44 (m, 2H), 7.41-7.34 (m, 2H); ¹⁹F NMR (400 MHz, CDCl₃, 298 K): δ = -62.1; GC-MS: *m/z* = 322.3 [M]⁺, 252.3.

11a:^{S13 1}H NMR (400 MHz, CDCl₃, 298 K): δ = 8.54 (s, 1H), 8.11-7.99 (m, 4H), 7.95-7.88 (m, 2H), 7.68 (dd, *J* = 8.8 Hz, 0.4 Hz, 2H), 7.61-7.54 (m, 3H), 7.50-7.43 (m, 2H), 7.36-7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 136.8, 136.3, 133.4, 132.7, 131.4, 130.4, 130.1, 129.5, 128.4, 128.2, 128.1, 127.9, 126.8, 126.7, 126.4, 126.2, 125.4, 125.1.

11b:^{S7 1}H NMR (400 MHz, $CDCl_3$, 298 K): δ = 8.59 (s, 1H), 8.10 (d, *J* = 8.8 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.69 (dd, *J* = 8.0 Hz, 7.2 Hz, 1H), 7.53 (dd, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.50-7.36 (m, 5H), 7.28-7.15 (m, 3H), 7.07 (d, *J* = 8.4 Hz, 1H); GC-MS: *m/z* = 304.3 [M]⁺.

12a:^{S14} ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.51 (s, 1H), 8.05-7.98 (m, 2H), 7.96-7.87 (m,

2H), 7.78-7.72 (m, 1H), 7.51-7.39 (m, 4H), 6.75-6.69 (m, 1H), 6.69-6.65 (m, 1H); GC-MS: *m/z* = 244.3[M]⁺, 215.3.

12b:^{S15} ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.58 (s, 1H), 8.05 (d, *J* = 7.6 Hz, 2H), 7.99 (d, *J* = 8.8 Hz, 2H), 7.79-7.71 (m, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.54-7.32 (m, 6H), 7.07 (s, 1H); GC-MS: m/z = 294.3 [M]⁺.

13: ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.49 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.69 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.34-7.24 (m, 3H), 7.19 (d, *J* = 2.8 Hz, 1H), 6.57 (d, *J* = 2.8 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 138.5, 136.1, 131.4, 130.8, 129.5, 129.4, 128.5, 128.2, 127.4, 126.0, 125.1, 124.9, 123.5, 108.9, 101.1, 33.0; HR-MS (ESI): m/z 308.1439 (calcd, [M+H]+); 308.1433 (found, [M+H]+).

6. NMR spectra of the coupling products.

Fluorescence spectrum for 13.

7. References.

- S1 R. E. LaPointe, P. T. Wolczanski and G. D. Van Duyne, Organometallics 1985, 4, 1810.
- S2 T. Tu, H. Mao, C. Herbert, M. Xu and K. H. Dötz, Chem. Commun. 2010, 7796.
- F. Xie, H. Zhao, D. Li, H. Chen, H. Quan, X. Shi, L. Lou and Y. Hu, J. Med. Chem. 2011, 54, 3200.
- S4 Y. Kuninobu, T. Tatsuzaki, T. Matsuki and K. Takai, J. Org. Chem. 2011, 76, 7005.
- S5 H. V. Huynh and R. Jothibasu, Eur. J. Inorg. Chem. 2009, 1926.
- S6 C. K. Bradsher and S. T. Webster, J. Am. Chem. Soc. 1957, 79, 393.
- S7 S. C. To and F. Y. Kwong, *Chem. Commun.* 2011, **47**, 5079.
- S8 F. A. Vingiello, E. Kramer, S.-G. Quo and J. Sheridan. J. Org. Chem. 1961, 26, 2669.
- S9 O. Youhei and B. Daisuke, WO 2012060374 A1, 2012.
- S10 S. Pratapan, K. Ashok, K. R. Gopidas, N. P. Rath, P. K. Das and M. V. George, J. Org. Chem. 1990, 55, 1304.
- S11 D. W. Werst, W. F. Londo, J. L. Smith and P. F. Barbara, Chem. Phys. Lett. 1985, 118, 367.
- S12 E. Masakazu and K. Sachiko, WO 2008026614 A1, 2008.
- S13 I. Kang, J.-Y. Back, R. Kim, Y.-H. Kim and S.-K. Kwon, *Dyes Pigm.* 2011, **92**, 588.
- S14 A. Etienne and R. Brisson, Compt. rend. 1948, 227, 208.
- S15 K. Inoue, H. Tsukada, Y.Tanabe, T. Shimamura and Y. Totani, *Jpn. Kokai Tokkyo Koho*, JP 2005047868 A, 2005.