1,4-Metal migration at a Cp*Rh(III) complex

Yousuke Ikeda, Koichi Takano, Shintaro Kodama and Youichi Ishii* Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Table of Contents

General Considerations.	S2		
Synthesis of [Cp*Rh{o-C ₆ H ₄ C(Me)=CHPh}(PPh ₃)][BAr ^F ₄] (2a).	S2		
Synthesis of [Cp*Rh{o-C ₆ H ₄ C(Et)=CHEt}(PPh ₃)][BAr ^F ₄] (2b).			
Synthesis of [Cp*Rh{o-C ₆ H ₄ C(Ph)=CHPh}(PPh ₃)][BAr ^F ₄] (2c).	S3		
Synthesis of [Cp*Rh{o-C ₆ H ₄ C(Me)=CHPh}(PMe ₃)][BAr ^F ₄] (5a).			
Synthesis of [Cp*Rh{o-C ₆ H ₄ C(Et)=CHEt}(PMe ₃)][BAr ^F ₄] (5b).	S3		
Synthesis of [Cp*Rh{ <i>o</i> -C ₆ H ₄ C(Ph)=CHPh}(PMe ₃)]·0.5C ₂ H ₄ Cl ₂ (5c·0.5C ₂ H ₄ Cl ₂).	S4		
Synthesis of [Cp*Rh{C(COC ₆ H ₄ Me- <i>p</i>)=CPh ₂ }(PPh ₃)][BAr ^F ₄] (6).	S4		
Synthesis of [Cp*RhCl(Me)(PPh ₃)]·0.5CH ₂ Cl ₂ (7·0.5CH ₂ Cl ₂).			
Reaction of 7·0.5CH ₂ Cl ₂ with NaBAr ^F ₄ and PhC≡CPh	S 5		
Observation of 3c	S6		
Figure S1. Full ¹ H NMR spectrum of a mixture of 2c and 3c.	S6		
Kinetic Experiment.	S7		
Figure S2. Plot of $ln [3c]/[3c_0]$ versus time for the coversion of 3c to 2c at 25 °C.	S7		
Figure S3. Plot of $ln [3c-d_5]/[3c-d_5]$ versus time for the coversion of $3c-d_5$ to $2c-d_5$ at	25 °C.		
	S8		
X-ray Diffraction Studies.	S8		
Table S1. X-ray Crystallographic Data for 2a, 5a, and 6.	S9		
Figure S4. ORTEP drawing of 5a.	S10		
Figure S5. ORTEP drawing of 6.	S10		
References	S11		

General Considerations. All manipulations were carried out under an argon atmosphere by using standard Schlenk techniques unless otherwise stated. 1,2-Dichloroethane (C₂H₄Cl₂) was dried and distilled over P₄O₁₀, degassed and stored under an argon atomosphere. The other solvents (anhydrous grade) were purchased from Sigma-Aldrich and purged with argon before use. 1-phenyl-1-propyne, 3-hexyne, diphenylacetylene and MeMgCl (3M in THF) were purchased from Sigma-Aldrich and used as received. [Cp*RhCl(Ph)(PPh₃)] (1),¹ [Cp*RhCl(Ph)(PMe₃)] (4),¹ [Cp*RhCl₂(PPh₃)],¹ NaBAr^F₄·2H₂O² and 1-(4-tolyl)-3-phenyl-2-propyn-1-one³ were synthesized according to the literature. ¹H (500 MHz), ¹³C{¹H} (126 MHz), and ³¹P{¹H} (202 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer. Chemical shifts are reported in δ , referenced to residual ¹H and ¹³C signals of deuterated solvents as internal standards or to the ³¹P signal of PPh₃ (δ –5.65) as an external standard. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer by using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by ¹H NMR spectroscopy.

[Cp*Rh{*o*-C₆H₄C(Me)=CHPh}(PPh₃)][BAr^F₄] (2a). A mixture of [Cp*RhCl(Ph)(PPh₃)] (1; 45.5 mg, 0.074 mmol), NaBAr^F₄·2H₂O (76.9 mg, 0.083 mmol) and 1-phenyl-1-propyne (50 µl, 47.0 mg, 0.405 mmol, 5 equiv) in C₂H₄Cl₂ (2 mL) was stirred at 25 °C for few minutes. The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with C₂H₄Cl₂. The combined filtrate was concentrated in vacuo and layered with hexane to give 2a (86.6 mg, 0.056 mmol, 76% yield) as dark red crystals. ³¹P{¹H} NMR (CDCl₃): δ 35.5 (d, *J*_{RhP} = 161 Hz, PPh₃). ¹H NMR (CDCl₃): δ 7.71–6.74 (m, 36H, Ar), 2.33 (s, 3H, CH₃), 1.10 (d, *J* = 2.3 Hz, 15H, Cp*), 1.06 (t, *J*_{RhH} = ²*J*_{PH} = 10.3 Hz, 1H, C=C*H*Ph). Selected ¹³C{¹H} NMR data (CDCl₃): δ 166.7 (s, *o*-C₆H₄C(Me)=C), 97.5 (dd, *J* = 6.1, 3.0 Hz, C=CHPh), 21.0 (s, CH₃), 9.06 (s, CH₃ of Cp*). Anal. Calcd for C₇₅H₅₅BF₂₄PRh (2a): C, 57.86; H, 3.56. Found: C, 57.58; H, 3.44.

 $[Cp*Rh{o-C_6H_4C(Et)=CHEt}(PPh_3)][BAr^F_4] (2b).$ This compound was synthesized from 1 (26.3 mg, 0.043 mmmol), NaBAr^F_4·2H_2O (42.3 mg, 0.046 mmol) and 3-hexyne (25 µl, 0.225 mmol) by a

procedure similar to that for the synthesis of **2a** except that Et₂O/hexane was used as the solvent for recystallization. Dark red crystals (50.6 mg, 0.033 mmol, 77% yield). ³¹P{¹H} NMR (CDCl₃): δ 37.0 (d, $J_{RhP} = 159$ Hz, PPh₃). ¹H NMR (CDCl₃): δ 7.70–6.62 (m, 31H, Ar), 2.66–2.61 (m, 2H, C=CHC*H*₂CH₃ and *o*-C₆H₄C(*CH*₂CH₃)=C), 2.52–2.48 (m, 1H, *o*-C₆H₄C(*CH*₂CH₃)=C), 1.81–1.77 (m, 1H, C=CH*CH*₂), 1.26 (d, *J* = 1.7 Hz, 15H, Cp*), 1.15 (t, *J* = 7.4 Hz, 3H, *o*-C₆H₄C(CH₂CH₃)=C), 0.34 (t, *J* = 7.4 Hz, 3H, C=CHCH₂CH₃), -0.34 (m, 1H, C=CHCH₂CH₃). Selected ¹³C{¹H} NMR data (CDCl₃): δ 171.8 (s, *o*-C₆H₄C(CH₂CH₃)=C), 98.4 (m, C=CHCH₂CH₃), 25.9 (s, *o*-C₆H₄C(CH₂CH₃)=C), 23.9 (s, C=CHCH₂CH₃), 13.8 (s, *o*-C₆H₄C(CH₂CH₃)=C), 13.6 (s, C=CHCH₂CH₃), 9.15 (s, CH₃ of Cp*). Anal. Calcd for C₇₂H₅₇BF₂₄PRh (**2b**): C, 56.79; H, 3.77. Found: C, 56.51; H, 3.60.

[Cp*Rh{o-C₆H₄C(Ph)=CHPh}(PPh₃)][BAr^F₄] (2c). This compound was synthesized from 1 (33.3 mg, 0.054 mmol), NaBAr^F₄·2H₂O (58.0 mg, 0.063 mmol) and diphenylacetylene (25.0 mg, 0.140 mmol) by a procedure similar to that for the synthesis of **2a** except that the reaction was performed for 5 h and Et₂O/hexane was used as the solvent for recystallization. Dark red crystals (66.8 mg, 0.041 mmol, 76% yield). ³¹P{¹H} NMR (CDCl₃): δ 36.4 (d, *J*_{RhP} = 161 Hz, PPh₃). ¹H NMR (CDCl₃): δ 7.71–6.44 (m, 41H, Ar), 1.16 (d, *J* = 2.3 Hz, 15H, Cp*), 0.72 (t, *J*_{RhH} = ²*J*_{PH} = 10.3 Hz, 1H, C=CHPh). Selected ¹³C{¹H} NMR data (CDCl₃): δ 167.1 (s, *o*-C₆H₄C(Ph)=C), 100.0 (dd, *J* = 6.6, 2.5 Hz, C=CHPh), 9.04 (s, CH₃ of Cp*). Anal. Calcd for C₈₀H₅₇BF₂₄PRh (**2c**): C, 59.35; H, 3.55. Found: C, 58.98; H, 3.44.

[Cp*Rh{*o*-C₆H₄C(Me)=CHPh}(PMe₃)][BAr^F₄] (5a). This compound was synthesized from 4 (23.3 mg, 0.055 mmmol), NaBAr^F₄·2H₂O (62.4 mg, 0.068 mmol) and 1-phenyl-1-propyne (30 μl, 0.243 mmol) by a procedure similar to that for the synthesis of **2a**. Dark red crystals (67.1 mg, 0.049 mmol, 90% yield). ³¹P{¹H} NMR (CDCl₃): δ -2.57 (d, *J*_{RhP} = 156 Hz, PMe₃). ¹H NMR (CDCl₃): δ 7.71 (br, 8H, BAr^F₄), 7.55–7.53 (m, 5H, Ar and BAr^F₄), 7.45–7.20 (m, 8H, Ar), 2.45 (s, 3H, CH₃), 1.37 (d, *J* = 10.3 Hz, 9H, P(CH₃)₃), 1.35 (d, *J* = 2.3 Hz, 15H, Cp*), 0.87 (t, *J*_{RhH} = ²*J*_{PH} = 10.3 Hz, 1H, C=CHPh). Selected ¹³C{¹H} NMR data (CDCl₃): δ 167.4 (s, *o*-C₆H₄C(CH₃)=C), 95.3 (br, C=CHPh),

21.5 (s, *o*-C₆H₄C(*C*H₃)=C), 15.7 (d, *J*_{CP}= 33.6 Hz, P(*C*H₃)₃), 9.44 (s, CH₃ of Cp*). Anal. Calcd for C₆₀H₄₉BF₂₄PRh (**5a**): C, 52.58; H, 3.60. Found: C, 52.58; H, 3.35.

[Cp*Rh{o-C₆H₄C(Et)=CHEt}(PMe₃)][BAr^F₄] (5b). This compound was synthesized from 4 (24.0 mg, 0.056 mmmol), NaBAr^F₄·2H₂O (57.0 mg, 0.062 mmol) and 3-hexyne (32 µl, 0.288 mmol) by a procedure similar to that for the synthesis of **2a**. Red crystals (59.3 mg, 0.044 mmol, 79% yield). ³¹P{¹H} NMR (CDCl₃): δ 3.62 (d, ²*J*_{RhP} = 147 Hz, PMe₃). ¹H NMR (CDCl₃): δ 7.71 (br, 8H, BAr^F₄), 7.54 (br, 4H, BAr^F₄), 7.14–7.04 (m, 4H, Ar), 2.64, 2.31 (m, 1H each, *o*-C₆H₄C(CH₂CH₃)=C), 2.15 (m, 1H, C=CHCH₂CH₃), 1.94 (m, 1H, C=CHCH₂CH₃), 1.76 (m, 1H, C=CHCH₂CH₃), 1.56 (d, *J* = 2.9 Hz, 15H, Cp*), 1.30 (t, *J* = 8.0 Hz, 3H, *o*-C₆H₄C(CH₂CH₃)=C), 1.27 (d, J = 9.7 Hz, P(CH₃)₃), 1.02 (t, *J* = 7.4 Hz, 3H, C=CHCH₂CH₃). Selected ¹³C{¹H} NMR data (CDCl₃): δ 90.0 (br, C=CHCH₂CH₃), 26.8 (s, *o*-C₆H₄C(CH₂CH₃)=C), 22.9 (s, C=CHCH₂CH₃), 15.3 (d, *J*_{CP}= 34.8 Hz, P(CH₃)₃), 15.2 (s, *o*-C₆H₄C(CH₂CH₃)=C), 14.2 (s, C=CHCH₂CH₃), 9.52 (s, CH₃ of Cp*). Anal. Calcd for C₅₇H₅₁BF₂₄PRh (**5b**): C, 51.22; H, 3.85. Found: C, 51.23; H, 3.67.

[Cp*Rh{*o*-C₆H₄C(Ph)=CHPh}(PMe₃)][BAr^F₄]·0.5C₂H₄Cl₂ (5c·0.5C₂H₄Cl₂). This compound was synthesized from **4** (23.2 mg, 0.054 mmmol), NaBAr^F₄·2H₂O (60.2 mg, 0.065 mmol) and diphenylacetylene (48.5 mg, 0.272 mmol) by a procedure similar to that of **2a**. Dark red crystals (74.3 mg, 0.050 mmol, 92% yield). ³¹P{¹H} NMR (CDCl₃): δ –2.99 (d, *J*_{RhP} = 156 Hz, PMe₃). ¹H NMR (CDCl₃): δ 7.72 (br, 8H, BAr^F₄), 7.54 (br, 4H, BAr^F₄), 7.45–6.80 (m, 14H, Ar), 1.50 (d, *J* = 10.3 Hz, 9H, P(CH₃)₃), 1.34 (d, *J* = 2.3 Hz, 15H, Cp*), 0.38 (t, *J*_{RhH} = ²*J*_{PH} = 11.2 Hz, 1H, C=C*H*Ph). Selected ¹³C{¹H} NMR data (CDCl₃): δ 168.8 (s, *o*-C₆H₄C(Ph)=C), 97.2 (dd, *J* = 7.2, 2.4 Hz, C=CHPh), 15.7 (d, *J*_{CP}= 33.6 Hz, P(CH₃)₃), 9.49 (s, CH₃ of Cp*). Anal. Calcd for C₆₆H₅₃BClF₂₄PRh (**5c·0.5C₂H₄Cl₂**): C, 53.48; H, 3.60. Found: C, 53.84; H, 3.46.

 $[Cp*Rh{C(COC_6H_4Me-p)=CPh_2}(PPh_3)][BAr^F_4] (6). A mixture of [Cp*RhCl(Ph)(PPh_3)] (1; 26.6 mg, 0.043 mmol), NaBAr^F_4·2H_2O (45.0 mg, 0.049 mmol) and 1-(4-tolyl)-3-phenyl-2-propyn-1-one (40.0 mg, 0.182 mmol) in C_2H_4Cl_2 (2 mL) was stirred at 25 °C for few minutes. The resulting red suspension was filtered through a plug of Celite, and the plug was$

rinsed with C₂H₄Cl₂. The combined filtrate was dried in vacuo, and the residue was recrystallized from toluene/hexanes to give **6** (59.6 mg, 0.036 mmol, 83% yield) as red crystals. ³¹P{¹H} NMR (CDCl₃): δ 38.1 (d, ²*J*_{RhP} = 161 Hz, PPh₃). ¹H NMR (CDCl₃): δ 7.70–6.52 (m, 41H, Ar), 2.18 (s, 3H, Me), 1.17 (d, *J* = 2.9 Hz, 15H, Cp*). Selected ¹³C{¹H} NMR data (CDCl₃): δ 208.1 (s, C=O), 21.4 (s, CH₃), 8.95 (s, CH₃ of Cp*). IR (cm⁻¹): 1608 (m, *v*_{C=O}). Anal. Calcd for C₈₂H₅₉BF₂₄OPRh (**6**): C, 59.29; H, 3.58. Found: C, 59.17; H, 3.47.

[Cp*RhCl(Me)(PPh₃)]·0.5CH₂Cl₂ (7·0.5CH₂Cl₂). The following procedure is modified from the preparation method originally reported by Blum.⁴ [Cp*RhCl₂(PPh₃)] (300 mg, 0.525 mmol) was suspended in anhydrous THF (20 mL), and the suspension was cooled to -40 °C. A THF solution of MeMgCl (0.53 mL of 3 M solution, 1.59 mmol, 3 equiv) was added dropwise to the suspension by using an airtight syringe. The reaction mixture was stirred at -40 °C for 15 min, warmed to room temperature, and stirring was continued until the suspension became an orange solution (almost 20 min). Then saturated aqueous NH₄Cl solution (0.2 mL) was added to quench unreacted Grignard reagent, and the solvent was removed in vacuo. The product was extracted with CH₂Cl₂ and filtered through a plug of Celite, and the plug was rinsed with CH₂Cl₂. Column chromatography on silica (4% THF-CH₂Cl₂) gave the desired complex as the first orange band. Recrystallization from CH_2Cl_2 /hexane afforded pure 7.0.5 CH_2Cl_2 (167.6 mg, 0.282 mmol, 54% yield) as orange needles. ¹H NMR (CDCl₃): δ 7.63–7.61 (m, 6H, Ph), 7.36–7.33 (br, 9H, Ph), 1.31 (d J = 2.3 Hz, 15H, Cp*), 0.87 $(dd, J = 6.6, 2.0 \text{ Hz}, 3H, CH_3)$. ³¹P{¹H} NMR (CDCl₃): δ 40.2 (d, $J = 165.7 \text{ Hz}, PPh_3$). ¹³C{¹H} NMR (CDCl₃): δ 134.5 (d, J = 9.6 Hz, Ph), 133.2 (d, J = 43.2 Hz, Ph), 129.9 (d, J = 2.4 Hz, Ph), 128.1 (d, J = 9.6 Hz, Ph), 99.1 (t, $J_{RhC} = {}^{2}J_{CP} = 4.2$ Hz, Cp*), 8.58 (s, CH₃ of Cp*), 1.72 (dd, J = 23.4, 15.0 Hz, CH₃). Anal. Calcd for C_{29.5}H₃₄Cl₂PRh: C, 59.71; H, 5.78. Found: C, 59.74; H, 5.63.

Reaction of 7·0.5CH₂Cl₂ with NaBAr^F₄ and PhC=CPh A mixture of 7·0.5CH₂Cl₂ (22.7 mg, 0.038 mmol), NaBAr^F₄·2H₂O (36.2 mg, 0.039 mmol) and diphenylacetylene (20.5 mg, 0.115 mmol, 3 equiv) in C₂H₄Cl₂ (2 mL) was stirred at 25 °C for 21 h. The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with C₂H₄Cl₂. The combined filtrate was

concentrated in vacuo, and the solution was added hexane to give **2a** (42.3 mg, 0.027 mmol, 71% yield) as dark red crystals.

Observation of 3c. A mixture of **1** (28.6 mg, 0.047 mmol), NaBAr^F₄·2H₂O (47.2 mg, 0.051 mmol) and diphenylacetylene (26.1 mg, 0.146 mmol, 3 equiv) in C₂H₄Cl₂ (2 mL) was stirred at 25 °C for 30 min. The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with C₂H₄Cl₂. The combined filtrate was dried in vacuo and washed with hexane (2 mL × 3). The singal of **3c** was observed from the ³¹P{¹H} and ¹H NMR spectrum of the CDCl₃ solution of the residure. When similar reaction was performed by using **1**-*d*₅, the diagnostic signal of **3c** (δ 5.31), which was attributed to the agostic ortho protons of the phenyl substituent, was not observed in ¹H NMR.

Figure S1. Full ¹H NMR spectrum of a mixture of 2c and 3c (2c:3c = 0.45:1)

Kinetic Experiment. A C₂H₄Cl₂ solution (1 mL) containing **1** (16.7 mg, 0.027 mmol) NaBAr^F₄ (28.0 mg, 0.030 mmol) and ca. 3 equiv of diphenylacetylene (15.0 mg, 0.084 mmol) was transferred to an NMR tube under an atomosphere of argon. The sample was kept at 25 °C, and the reaction was monitored by means of ³¹P{¹H} NMR. Throughout the measurement, two distinct doublet signals were observed, which were assigned as complexes **2c** (δ 36.4) and **3c** (δ 33.2). The ratios of these copmlexes were determined on the basis of the relative intensities of the ³¹P{¹H} NMR signals, and the apparent first-order rate constant for the isomerisation of **3c** ($k_{\rm H} = 1.63 \times 10^{-4} \text{ s}^{-1}$) was obtained from the time-conversion plot (Figure S2). The $k_{\rm D}$ value ($k_{\rm D} = 0.50 \times 10^{-4} \text{ s}^{-1}$, Figure S3) was obtained from a similar reaction using a C₂H₄Cl₂ solution (1 mL) containing **1**-*d*₅ (17.0 mg, 0.028 mmol), NaBAr^F₄ (28.5 mg, 0.031 mmol) and ca. 3 equiv of diphenylacetylene (15.0 mg, 0.084 mmol). The rate constant ratio $k_{\rm H}/k_{\rm D}$ (25 °C) was determined to be 3.3. Primary KIE ($k_{\rm H}/k_{\rm D}$) values of 2.1–4.2 have been reported for Cp*Rh(III)-catalyzed *ortho* C–H activation of arenes.⁵

Figure S2. Plot of $ln [3c]/[3c_0]$ versus time for the coversion of 3c to 2c at 25 °C.

Figure S3. Plot of $ln [3c-d_5]/[3c-d_5]$ versus time for the coversion of $3c-d_5$ to $2c-d_5$ at 25 °C.

X-ray Diffraction Studies. Diffraction data for **2a**, **5a** and **6** were collected on a Rigaku Mercury CCD area detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å) at -150 °C. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (REQAB).⁶ All calculations were performed using the *CrystalStructure*⁷ crystallographic software package except for refinements, which were performed using SHELXL-97.⁸ The positions of the non-hydrogen atoms were determined by direct methods (SIR-2008)⁹ and subsequent Fourier syntheses (DIRDIF-99).¹⁰ All non-hydrogen atoms were refined on F_o^2 anisotropically by full-matrix least-square techniques. All hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. Details of the X-ray diffraction study are summarized in Table S1.

	2a	5a	6
CCDC	957816	957817	957818
formula	C75H55BF24PRh	$C_{60}H_{49}BF_{24}PRh$	C82H59BF24OPRh
fw	1556.91	1370.7	1661.02
crystal dimension	$0.43 \times 0.32 \times 0.30$	$0.35 \times 0.35 \times 0.20$	$0.42 \times 0.22 \times 0.17$
crystal system	monoclinic	triclinic	monoclinic
space group	$P2_1/n(#14)$	P-1 (#2)	$P2_1/n(#14)$
<i>a</i> , Å	14.906(3)	12.591(2)	13.909(3)
b, Å	25.081(5)	15.472(3)	17.236(4)
<i>c</i> , Å	18.215(3)	17.459(3)	31.046(7)
α , deg	90	65.085(5)	90
β , deg	92.956(2)	70.167(6)	91.043(3)
γ, deg	90	81.773(7)	90
$V, Å^3$	6801 (2)	2901.7(8)	7442 (3)
Ζ	4	2	4
$ ho_{ m calcd}, { m g cm}^{-3}$	1.521	1.569	1.482
<i>F</i> (000)	3144	1380	3360
μ , cm ⁻¹	3.839	4.378	3.571
transmission factors range	0.857 - 0.891	0.807 - 0.916	0.901 - 0.941
index range	$-19 \le h \le 16$	$-16 \le h \le 16$	$-17 \le h \le 18$
	$-25 \le k \le 32$	$-12 \le k \le 20$	$-22 \le k \le 14$
	$-21 \le l \le 23$	$-20 \le l \le 22$	$-39 \le l \le 40$
no. reflections total	52317	22533	56972
unique (R _{int})	15429 (0.0720)	12848 (0.0408)	17012 (0.0883)
$I > 2\sigma(I)$	10917	10542	10495
no. parameters	920	788	991
$RI (I > 2\sigma(I))^{a}$	0.0694	0.0508	0.0883
wR2 (all data) ^b	0.1796	0.1287	0.2398
GOF ^c	1.028	1.101	1.025
max diff peak / hole, e Å ⁻³	1.48/-0.85	0.90/-0.80	1.26/-0.68

Table S1. X-ray Crystallographic Data for 2a, 5a and 6.

 $\frac{{}^{a}RI = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. {}^{b}wR2 = [\Sigma \{w(F_{o}^{2} - F_{c}^{2})^{2}\}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, w = 1/[\sigma^{2}F_{o}^{2} + (aP)^{2} + bP] (a \text{ and } b \text{ are constants suggested by the refinement program; } P = [max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3). {}^{c}GOF = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{obs} - N_{params})]^{1/2}.$

Figure S4. ORTEP drawing of **5a** (50% probability). Anionic part and hydrogen atoms except for H1 are omitted for clarity. Selected bond lengths (Å) and angles (deg): Rh1–P1, 2.3030(10); Rh1–C1, 2.475(5); Rh1–C9, 2.033(3); Rh1–H1, 1.753; C1–C2, 1.357(4); C1–C2–C3, 122.7(3); C1–C2–C4, 118.4(3); C3–C2–C4, 118.9(3); C2–C1–C10, 130.5(4).

Figure S5. ORTEP drawing of **6** (50% probability). Anionic part and hydrogen atoms are omitted for clarity. Selected bond length (Å) and angles (deg): Rh1–O1, 2.141(4); Rh1–C1, 2.101(6); Rh1–P1, 2.3315(16); C1–C2, 1.449(8); C1–C3, 1.350(8); O1–C2, 1.285(7); O1–Rh1–C1, 64.32(18); Rh1–O1–C2, 93.6(3); Rh1–C1–C2, 90.6(4); Rh1–C1–C3, 134.3(4); C2–C1–C3, 130.0(6); O1–C2–C1, 111.2(5), O1–C2–C16, 117.8(5); C1–C2–C16, 130.8(6).

References

- (1) (a) W. D. Jones and F. J. Feher, *Inorg. Chem.*, 1984, 23, 2376; (b) W. D. Jones and V. L. Kuykendall, *Inorg. Chem.*, 1991, 30, 2615.
- (2) (a) D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, *Inorg. Chem.*, 2001, 40, 3810; (b) D. L. Reger, C. A. Little, J. J. S. Lamba and K. J. Brown, *Inorg. Synth.*, 2004, 34, 5;
 (c) C. R. Smith, A. Zhang, D. J. Mans and T. V. BajanBabu, *Org. Synth.*, 2008, 85, 248.
- (3) S. Roy, M. P. Davydova, R. Pal K. Gilmore, G. A. Tolstikov, S. F. Vasilevsky and I. V. Alabugin, J. Org. Chem., 2011, 76, 7482.
- (4) Y. Shi, S. A. Blum, Organometallics, 2011, 30, 1776.
- (5) (a) D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326; (b)
 T.-J. Gong, B. Xiao, Z.-J. Liu, J. Wan, J. Xu, D.-F. Luo, Y. Fu and L. Liu, Org. Lett., 2011, 13,
 3235; (c) G. Song, X. Gong and X. Li, J. Org. Chem., 2011, 76, 7583; (d) C. Feng and T.-P.
 Loh, Chem. Commun., 2011, 47, 10458; (e) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012, 14, 272.
- (6) R. A. Jacobson, Private Communication to Rigaku Corp.; Rigaku Corp.; Tokyo, Japan, 1998.
- (7) CrystalStructure 4.0: Single Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2010.
- (8) G. M. Sheldrick, Acta Crystallogr., Sect A, 2008, 64, 112.
- (9) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi and R. Spagna, J. Appl. Crystallogr., 2007, 40, 609.
- (10) P. T. Beurskens, G. Beurskens, R. de Gelder, S. García-Granda, R. O. Gould, R. Israël and J. M.
 M. Smits, *The DIRDIF-99 program system*; Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.