1,4-Metal migration at a $\mathbf{C p} * \mathbf{R h}$ (III) complex
Yousuke Ikeda, Koichi Takano, Shintaro Kodama and Youichi Ishii*
Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Table of Contents

General Considerations. S2
Synthesis of $\left[\mathbf{C p} * \mathbf{R h}\left\{o-\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{M e})=\mathbf{C H P h}\right\}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](\mathbf{2 a})$. S2
Synthesis of $\left[\mathbf{C p} * \operatorname{Rh}\left\{o-\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{E t})=\mathbf{C H E t}\right\}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (2b). S2
Synthesis of $\left[\mathbf{C p} * \mathrm{Rh}\left\{o-\mathrm{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{P h})=\mathbf{C H P h}\right\}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 \mathrm{c})$. S3
Synthesis of $\left[\mathrm{Cp} * \mathrm{Rh}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathbf{C H P h}\right\}\left(\mathrm{PMe}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](5 a)$. S3
Synthesis of $\left[\mathbf{C p} * \operatorname{Rh}\left\{o-\mathbf{C}_{6} \mathbf{H}_{4} \mathrm{C}(\mathrm{Et})=\mathbf{C H E t}\right\}\left(\mathrm{PMe}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (5b). S3
 S4
Synthesis of $\left[\mathbf{C p} * \mathbf{R h}\left\{\mathbf{C}\left(\mathrm{COC}_{6} \mathbf{H}_{4} \mathbf{M e}-\mathrm{p}\right)=\mathrm{CPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](6)$. S4
Synthesis of $\left[\mathbf{C p} * \mathbf{R h C l}(\mathbf{M e})\left(\mathbf{P P h}_{3}\right)\right] \cdot \mathbf{0 . 5 C H} \mathbf{C l}_{\mathbf{2}} \mathbf{(7 \cdot 0 . 5 \mathrm { CH } _ { 2 } \mathrm { Cl } _ { 2 }) \text { . }}$ S5
Reaction of $\mathbf{7 \cdot 0 . 5} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ and $\mathrm{PhC} \equiv \mathbf{C P h}$ S5
Observation of 3c S6
Figure S1. Full ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of 2 c and 3 c S6
Kinetic Experiment. S7
Figure S2. Plot of $\ln [3 c] /\left[3 c_{0}\right]$ versus time for the coversion of 3 c to 2 c at $25^{\circ} \mathrm{C}$. S7
Figure S3. Plot of $\ln \left[3 c-d_{5}\right] /\left[3 c-d_{5}\right]$ versus time for the coversion of $3 c-d_{5}$ to $\mathbf{2 c}-d_{5}$ at $25{ }^{\circ} \mathrm{C}$.S8
X-ray Diffraction Studies. S8
Table S1. X-ray Crystallographic Data for 2a, 5a, and 6. S9
Figure S4. ORTEP drawing of 5a. S10
Figure S5. ORTEP drawing of 6. S10
References S11

General Considerations. All manipulations were carried out under an argon atmosphere by using standard Schlenk techniques unless otherwise stated. 1,2-Dichloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$ was dried and distilled over $\mathrm{P}_{4} \mathrm{O}_{10}$, degassed and stored under an argon atomosphere. The other solvents (anhydrous grade) were purchased from Sigma-Aldrich and purged with argon before use. 1-phenyl-1-propyne, 3-hexyne, diphenylacetylene and MeMgCl (3M in THF) were purchased from Sigma-Aldrich and used as received. $\left[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1}),{ }^{1}\left[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{Ph})\left(\mathrm{PMe}_{3}\right)\right](4),{ }^{1}\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)\right],{ }^{1}$ $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{2}$ and 1-(4-tolyl)-3-phenyl-2-propyn-1-one ${ }^{3}$ were synthesized according to the literature. ${ }^{1} \mathrm{H}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(126 \mathrm{MHz})$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(202 \mathrm{MHz})$ NMR spectra were recorded on a JEOL ECA-500 spectrometer. Chemical shifts are reported in δ, referenced to residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of deuterated solvents as internal standards or to the ${ }^{31} \mathrm{P}$ signal of $\mathrm{PPh}_{3}(\delta-5.65)$ as an external standard. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer by using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
$\left[\mathbf{C p} * \mathbf{R h}\left\{\boldsymbol{0}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{C}(\mathbf{M e})=\mathbf{C H P h}\right\}\left(\mathbf{P P h}_{3}\right)\right]\left[\mathbf{B A r}^{\mathbf{F}}{ }_{4}\right](\mathbf{2 a})$. A mixture of $\left[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1} ; 45.5$ $\mathrm{mg}, 0.074 \mathrm{mmol}), \mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(76.9 \mathrm{mg}, 0.083 \mathrm{mmol})$ and 1-phenyl-1-propyne ($50 \mu \mathrm{l}, 47.0 \mathrm{mg}$, 0.405 mmol , 5 equiv) in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for few minutes. The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. The combined filtrate was concentrated in vacuo and layered with hexane to give $\mathbf{2 a}(86.6 \mathrm{mg}, 0.056$ $\mathrm{mmol}, 76 \%$ yield $)$ as dark red crystals. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 35.5\left(\mathrm{~d}, J_{\mathrm{RhP}}=161 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.71-6.74(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Ar}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp} *), 1.06(\mathrm{t}$, $\left.J_{\mathrm{RhH}}={ }^{2} J_{\mathrm{PH}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C} H \mathrm{Ph}\right)$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \delta 166.7(\mathrm{~s}$, $\left.o-\mathrm{C}_{6} \mathrm{H}_{4} C(\mathrm{Me})=\mathrm{C}\right), 97.5(\mathrm{dd}, J=6.1,3.0 \mathrm{~Hz}, \mathrm{C}=C \mathrm{HPh}), 21.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 9.06\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right)$. Anal. Calcd for $\mathrm{C}_{75} \mathrm{H}_{55} \mathrm{BF}_{24} \mathrm{PRh}$ (2a): C, 57.86; H, 3.56. Found: C, 57.58; H, 3.44.
$\left[\mathbf{C p} * \mathbf{R h}\left\{\boldsymbol{o}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{C}(\mathbf{E t})=\mathbf{C H E t}\right\}\left(\mathbf{P P h}_{3}\right)\right]\left[\mathbf{B A r}{ }^{\mathrm{F}}{ }_{4}\right](\mathbf{2 b})$. This compound was synthesized from $\mathbf{1}(26.3$ $\mathrm{mg}, 0.043 \mathrm{mmmol}), \mathrm{NaBAr}^{\mathrm{F}} \cdot 2 \mathrm{H}_{2} \mathrm{O}(42.3 \mathrm{mg}, 0.046 \mathrm{mmol})$ and 3-hexyne $(25 \mu \mathrm{l}, 0.225 \mathrm{mmol})$ by a
procedure similar to that for the synthesis of 2a except that $\mathrm{Et}_{2} \mathrm{O} /$ hexane was used as the solvent for recystallization. Dark red crystals ($50.6 \mathrm{mg}, 0.033 \mathrm{mmol}, 77 \%$ yield $) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 37.0$ $\left(\mathrm{d}, J_{\mathrm{RhP}}=159 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.70-6.62(\mathrm{~m}, 31 \mathrm{H}, \mathrm{Ar}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ and $\left.o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 2.52-2.48\left(\mathrm{~m}, 1 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 1.81-1.77(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.26\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.15\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 0.34$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right),-0.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \quad \delta \quad 171.8 \quad\left(\mathrm{~s}, \quad o-\mathrm{C}_{6} \mathrm{H}_{4} C\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), \quad 98.4 \quad\left(\mathrm{~m}, \quad \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), \quad 25.9 \quad(\mathrm{~s}$, $\left.o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 23.9 \quad\left(\mathrm{~s}, \quad \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 13.8 \quad\left(\mathrm{~s}, \quad o-\mathrm{C}_{6} \mathrm{H}_{4} C\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 13.6 \quad(\mathrm{~s}$, $\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), $9.15\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right)$. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{57} \mathrm{BF}_{24} \mathrm{PRh}(\mathbf{2 b})$: C, 56.79; $\mathrm{H}, 3.77$. Found: C, 56.51; H, 3.60.
$\left[\mathbf{C p} * \mathbf{R h}\left\{\boldsymbol{o}-\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{P h})=\mathbf{C H P h}\right\}\left(\mathbf{P P h}_{3}\right)\right]\left[\mathbf{B A r}^{\mathbf{F}}{ }_{4}\right]$ (2c). This compound was synthesized from $\mathbf{1}$ $(33.3 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(58.0 \mathrm{mg}, 0.063 \mathrm{mmol})$ and diphenylacetylene $(25.0 \mathrm{mg}$, 0.140 mmol) by a procedure similar to that for the synthesis of $\mathbf{2 a}$ except that the reaction was performed for 5 h and $\mathrm{Et}_{2} \mathrm{O}$ /hexane was used as the solvent for recystallization. Dark red crystals ($66.8 \mathrm{mg}, 0.041 \mathrm{mmol}, 76 \%$ yield). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 36.4\left(\mathrm{~d}, J_{\mathrm{RhP}}=161 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.71-6.44(\mathrm{~m}, 41 \mathrm{H}, \mathrm{Ar}), 1.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp} *), 0.72\left(\mathrm{t}, J_{\mathrm{RhH}}={ }^{2} J_{\mathrm{PH}}=10.3\right.$ $\mathrm{Hz},, 1 \mathrm{H}, \mathrm{C}=\mathrm{C} H \mathrm{Ph})$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ data $\left(\mathrm{CDCl}_{3}\right): \delta 167.1\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{4} C(\mathrm{Ph})=\mathrm{C}\right), 100.0(\mathrm{dd}, J$ $=6.6,2.5 \mathrm{~Hz}, \mathrm{C}=C \mathrm{HPh}), 9.04\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right)$. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{57} \mathrm{BF}_{24} \mathrm{PRh}(\mathbf{2 c}): \mathrm{C}, 59.35 ; \mathrm{H}$, 3.55. Found: C, 58.98; H, 3.44.
$\left[\mathbf{C p} * \operatorname{Rh}\left\{0-\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{M e})=\mathbf{C H P h}\right\}\left(\mathrm{PMe}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](\mathbf{5 a})$. This compound was synthesized from $\mathbf{4}$ ($23.3 \mathrm{mg}, 0.055 \mathrm{mmmol}$), $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(62.4 \mathrm{mg}, 0.068 \mathrm{mmol}$) and 1-phenyl-1-propyne ($30 \mu \mathrm{l}$, 0.243 mmol) by a procedure similar to that for the synthesis of 2a. Dark red crystals ($67.1 \mathrm{mg}, 0.049$ mmol, 90% yield $) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-2.57\left(\mathrm{~d}, J_{\mathrm{RhP}}=156 \mathrm{~Hz}, \mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $7.71\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{BAr}^{\mathrm{F}}\right.$) , 7.55-7.53 (m, 5H, Ar and $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.45-7.20(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.37\left(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp} *), 0.87\left(\mathrm{t}, J_{\mathrm{RhH}}={ }^{2} J_{\mathrm{PH}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}=\mathrm{C} H \mathrm{Ph})$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \delta 167.4\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{4} C\left(\mathrm{CH}_{3}\right)=\mathrm{C}\right), 95.3$ (br, $\left.\mathrm{C}=\mathrm{CHPh}\right)$,
$21.5\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\right), 15.7\left(\mathrm{~d}, J_{\mathrm{CP}}=33.6 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 9.44\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp} *\right)$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{49} \mathrm{BF}_{24} \mathrm{PRh}(5 \mathbf{5 a})$: C, $52.58 ; \mathrm{H}, 3.60$. Found: C, $52.58 ; \mathrm{H}, 3.35$.
$\left[\mathbf{C p} * \operatorname{Rh}\left\{o-\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{E t})=\mathbf{C H E t}\right\}\left(\mathbf{P M e}_{3}\right)\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](\mathbf{5 b})$. This compound was synthesized from 4 ($24.0 \mathrm{mg}, 0.056 \mathrm{mmmol}$), $\mathrm{NaBAr}^{\mathrm{F}} \cdot{ }^{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($57.0 \mathrm{mg}, 0.062 \mathrm{mmol}$) and 3-hexyne ($32 \mu \mathrm{l}, 0.288 \mathrm{mmol}$) by a procedure similar to that for the synthesis of 2a. Red crystals ($59.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 79 \%$ yield). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.62\left(\mathrm{~d},{ }^{2} J_{\mathrm{RhP}}=147 \mathrm{~Hz}, \mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.71\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{BAr}^{\mathrm{F}} 4\right)$, $7.54\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{BAr}^{\mathrm{F}} 4\right), 7.14-7.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 2.64,2.31\left(\mathrm{~m}, 1 \mathrm{H}\right.$ each, $\left.o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 2.15(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.56(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}$, $\left.15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.30\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 1.27\left(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.02(\mathrm{t}, J=$ $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \delta 90.0\left(\mathrm{br}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{s}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 22.9\left(\mathrm{~s}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 15.3\left(\mathrm{~d}, J_{\mathrm{CP}}=34.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.2(\mathrm{~s}$, $\left.o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\right), 14.2\left(\mathrm{~s}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 9.52\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right)$. Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{BF}_{24} \mathrm{PRh}(\mathbf{5 b})$: C, 51.22; H, 3.85. Found: C, 51.23; H, 3.67.
 was synthesized from $4(23.2 \mathrm{mg}, 0.054 \mathrm{mmmol}), \mathrm{NaBAr}^{\mathrm{F}} \cdot{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(60.2 \mathrm{mg}, 0.065 \mathrm{mmol})$ and diphenylacetylene ($48.5 \mathrm{mg}, 0.272 \mathrm{mmol}$) by a procedure similar to that of $\mathbf{2 a}$. Dark red crystals (74.3 mg, $0.050 \mathrm{mmol}, 92 \%$ yield). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-2.99\left(\mathrm{~d}, J_{\mathrm{RhP}}=156 \mathrm{~Hz}, \mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.72\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{BAr}^{\mathrm{F}}\right.$) , $7.54\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.45-6.80(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}), 1.50(\mathrm{~d}, J=10.3$ $\left.\mathrm{Hz}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp} *), 0.38\left(\mathrm{t}, J_{\mathrm{RhH}}={ }^{2} J_{\mathrm{PH}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C} H \mathrm{Ph}\right)$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \delta 168.8\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{4} C(\mathrm{Ph})=\mathrm{C}\right)$, $97.2(\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CHPh}), 15.7\left(\mathrm{~d}, J_{\mathrm{CP}}=33.6 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $9.49\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right)$. Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{53} \mathrm{BClF}_{24} \mathrm{PRh}$ $\left(\mathbf{5 c} \cdot \mathbf{0 . 5} \mathrm{C}_{2} \mathbf{H}_{4} \mathrm{Cl}_{\mathbf{2}}\right)$: C, $53.48 ; \mathrm{H}, 3.60$. Found: C, $53.84 ; \mathrm{H}, 3.46$.
$\left[\mathbf{C p} * \mathbf{R h}\left\{\mathbf{C}\left(\mathbf{C O C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{M e - p}\right)=\mathbf{C P h}_{2}\right\}\left(\mathbf{P P h}_{3}\right)\right]\left[\mathbf{B A r}^{\mathbf{F}}{ }_{4}\right]$ (6). A mixture of $\left[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1} ;$ $26.6 \mathrm{mg}, \quad 0.043 \mathrm{mmol}), \quad \mathrm{NaBAr}_{4}{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(45.0 \quad \mathrm{mg}, \quad 0.049 \quad \mathrm{mmol})$ and 1-(4-tolyl)-3-phenyl-2-propyn-1-one ($40.0 \mathrm{mg}, 0.182 \mathrm{mmol}$) in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for few minutes. The resulting red suspension was filtered through a plug of Celite, and the plug was
rinsed with $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. The combined filtrate was dried in vacuo, and the residue was recrystallized from toluene/hexanes to give $\mathbf{6}(59.6 \mathrm{mg}, 0.036 \mathrm{mmol}, 83 \%$ yield $)$ as red crystals. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 38.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{RhP}}=161 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.70-6.52(\mathrm{~m}, 41 \mathrm{H}, \mathrm{Ar}), 2.18(\mathrm{~s}, 3 \mathrm{H}$, Me), $1.17\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}\right)$. Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right): \delta 208.1(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 21.4(\mathrm{~s}$, $\left.\mathrm{CH}_{3}\right), 8.95\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp} *\right)$. IR $\left(\mathrm{cm}^{-1}\right): 1608\left(\mathrm{~m}, v_{\mathrm{C}=0}\right)$. Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{59} \mathrm{BF}_{24} \mathrm{OPRh}(6)$: C, 59.29; H, 3.58. Found: C, 59.17; H, 3.47.
$\left[\mathbf{C p} * \mathbf{R h C l}(\mathbf{M e})\left(\mathbf{P P h}_{3}\right)\right] \cdot \mathbf{0 . 5} \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}\left(\mathbf{7} \cdot \mathbf{0 . 5} \mathbf{C H}_{2} \mathbf{C l}_{2}\right)$. The following procedure is modified from the preparation method originally reported by Blum. ${ }^{4}$ [$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)\right](300 \mathrm{mg}, 0.525 \mathrm{mmol})$ was suspended in anhydrous THF (20 mL), and the suspension was cooled to $-40^{\circ} \mathrm{C}$. A THF solution of $\mathrm{MeMgCl}(0.53 \mathrm{~mL}$ of 3 M solution, $1.59 \mathrm{mmol}, 3$ equiv) was added dropwise to the suspension by using an airtight syringe. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , warmed to room temperature, and stirring was continued until the suspension became an orange solution (almost 20 $\mathrm{min})$. Then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(0.2 \mathrm{~mL})$ was added to quench unreacted Grignard reagent, and the solvent was removed in vacuo. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a plug of Celite, and the plug was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica ($4 \% \mathrm{THF}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the desired complex as the first orange band. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane afforded pure $7 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(167.6 \mathrm{mg}, 0.282 \mathrm{mmol}, 54 \%$ yield $)$ as orange needles. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.63-7.61(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.36-7.33(\mathrm{br}, 9 \mathrm{H}, \mathrm{Ph}), 1.31(\mathrm{~d} J=2.3 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Cp} *), 0.87$ (dd, $\left.J=6.6,2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 40.2\left(\mathrm{~d}, J=165.7 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta 134.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}, \mathrm{Ph}), 133.2(\mathrm{~d}, J=43.2 \mathrm{~Hz}, \mathrm{Ph}), 129.9(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{Ph}), 128.1$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{Ph}), 99.1\left(\mathrm{t}, J_{\mathrm{RhC}}={ }^{2} J_{\mathrm{CP}}=4.2 \mathrm{~Hz}, \mathrm{Cp}^{*}\right), 8.58\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right), 1.72(\mathrm{dd}, J=23.4,15.0$ $\mathrm{Hz}, \mathrm{CH}_{3}$). Anal. Calcd for $\mathrm{C}_{29.5} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{PRh}: \mathrm{C}, 59.71 ; \mathrm{H}, 5.78$. Found: C, 59.74; H, 5.63.

Reaction of $\mathbf{7 \cdot 0 . 5} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ with $\mathbf{N a B A r}{ }^{\mathbf{F}}{ }_{4}$ and $\mathbf{P h C} \equiv \mathbf{C P h}$ A mixture of $\mathbf{7} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(22.7 \mathrm{mg}, 0.038$ $\mathrm{mmol}), \mathrm{NaBAr}^{\mathrm{F}} \cdot{ }_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(36.2 \mathrm{mg}, 0.039 \mathrm{mmol})$ and diphenylacetylene $(20.5 \mathrm{mg}, 0.115 \mathrm{mmol}, 3$ equiv) in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 21 h . The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. The combined filtrate was
concentrated in vacuo, and the solution was added hexane to give $\mathbf{2 a}(42.3 \mathrm{mg}, 0.027 \mathrm{mmol}, 71 \%$ yield) as dark red crystals.

Observation of Bc. A mixture of $\mathbf{1}(28.6 \mathrm{mg}, 0.047 \mathrm{mmol}), \mathrm{NaBAr}^{\mathrm{F}} \cdot 2 \mathrm{H}_{2} \mathrm{O}(47.2 \mathrm{mg}, 0.051 \mathrm{mmol})$ and diphenylacetylene ($26.1 \mathrm{mg}, 0.146 \mathrm{mmol}, 3$ equiv) in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The resulting dark red suspension was filtered through a plug of Celite, and the plug was rinsed with $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. The combined filtrate was dried in vacuo and washed with hexane $(2 \mathrm{~mL} \times 3)$. The singal of $\mathbf{3 c}$ was observed from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectrum of the CDCl_{3} solution of the residure. When similar reaction was performed by using $\mathbf{1}-d_{5}$, the diagnostic signal of $\mathbf{3 c}(\delta 5.31)$, which was attributed to the agostic ortho protons of the phenyl substituent, was not observed in ${ }^{1} \mathrm{H}$ NMR.

Bc, Cp* (15H)

sc, Cp* (15H)

Figure S1. Full ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{2 c}$ and $\mathbf{3 c}(\mathbf{2 c}: \mathbf{3 c}=0.45: 1)$

Kinetic Experiment. A $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ solution $(1 \mathrm{~mL})$ containing $1(16.7 \mathrm{mg}, 0.027 \mathrm{mmol}) \mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ ($28.0 \mathrm{mg}, 0.030 \mathrm{mmol}$) and ca. 3 equiv of diphenylacetylene ($15.0 \mathrm{mg}, 0.084 \mathrm{mmol}$) was transferred to an NMR tube under an atomosphere of argon. The sample was kept at $25^{\circ} \mathrm{C}$, and the reaction was monitored by means of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Throughout the measurement, two distinct doublet signals were observed, which were assigned as complexes $2 \mathbf{c}(\delta 36.4)$ and $\mathbf{3 c}(\delta 33.2)$. The ratios of these copmlexes were determined on the basis of the relative intensities of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals, and the apparent first-order rate constant for the isomerisation of $\mathbf{3 c}\left(k_{\mathrm{H}}=1.63 \times 10^{-4} \mathrm{~s}^{-1}\right)$ was obtained from the time-conversion plot (Figure S2). The k_{D} value ($k_{\mathrm{D}}=0.50 \times 10^{-4} \mathrm{~s}^{-1}$, Figure S3) was obtained from a similar reaction using a $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ solution (1 mL) containing 1- $d_{5}(17.0 \mathrm{mg}, 0.028$ $\mathrm{mmol}), \mathrm{NaBAr}_{4}{ }_{4}(28.5 \mathrm{mg}, 0.031 \mathrm{mmol})$ and ca. 3 equiv of diphenylacetylene ($15.0 \mathrm{mg}, 0.084 \mathrm{mmol}$). The rate constant ratio $k_{\mathrm{H}} / k_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right)$ was determined to be 3.3. Primary KIE $\left(k_{\mathrm{H}} / k_{\mathrm{D}}\right)$ values of 2.1-4.2 have been reported for $\mathrm{Cp} * \mathrm{Rh}(\mathrm{III})$-catalyzed ortho $\mathrm{C}-\mathrm{H}$ activation of arenes. ${ }^{5}$

Figure S2. Plot of $\ln [3 c] /\left[3 c_{0}\right]$ versus time for the coversion of $\mathbf{3 c}$ to $\mathbf{2 c}$ at $25^{\circ} \mathrm{C}$.

Figure S3. Plot of $\ln \left[3 \boldsymbol{c}-d_{5}\right] /\left[3 \boldsymbol{c}-d_{5}{ }_{0}\right]$ versus time for the coversion of $\mathbf{3 c}-d_{5}$ to $\mathbf{2 c}-d_{5}$ at $25^{\circ} \mathrm{C}$.

X-ray Diffraction Studies. Diffraction data for 2a, 5a and $\mathbf{6}$ were collected on a Rigaku Mercury CCD area detector with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation $\left(\lambda=0.71070 \AA\right.$) at $-150{ }^{\circ} \mathrm{C}$. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (REQAB). ${ }^{6}$ All calculations were performed using the CrystalStructure ${ }^{7}$ crystallographic software package except for refinements, which were performed using SHELXL-97. ${ }^{8}$ The positions of the non-hydrogen atoms were determined by direct methods (SIR-2008) ${ }^{9}$ and subsequent Fourier syntheses (DIRDIF-99). ${ }^{10}$ All non-hydrogen atoms were refined on $F_{o}{ }^{2}$ anisotropically by full-matrix least-square techniques. All hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. Details of the X-ray diffraction study are summarized in Table S1.

Table S1. X-ray Crystallographic Data for 2a, 5a and 6.

	2a	5a	6
CCDC	957816	957817	957818
formula	$\mathrm{C}_{75} \mathrm{H}_{55} \mathrm{BF}_{24} \mathrm{PRh}$	$\mathrm{C}_{60} \mathrm{H}_{49} \mathrm{BF}_{24} \mathrm{PRh}$	$\mathrm{C}_{82} \mathrm{H}_{59} \mathrm{BF}_{24} \mathrm{OPRh}$
fw	1556.91	1370.7	1661.02
crystal dimension	$0.43 \times 0.32 \times 0.30$		
crystal system	monoclinic	triclinic	monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$ (\#14)	P-1 (\#2)	$\mathrm{P} 2_{1} / \mathrm{n}(\# 14)$
a, \AA	14.906(3)	12.591(2)	13.909(3)
b, \AA	25.081(5)	15.472(3)	17.236(4)
c, \AA	18.215(3)	17.459(3)	31.046(7)
α, deg	90	65.085(5)	90
β, deg	92.956(2)	70.167(6)	91.043(3)
$\gamma, \operatorname{deg}$	90	81.773(7)	90
V, \AA^{3}	6801 (2)	2901.7(8)	7442 (3)
Z	4	2	4
$\rho_{\text {calcd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.521	1.569	1.482
$F(000)$	3144	1380	3360
μ, cm^{-1}	3.839	4.378	3.571
transmission factors range	0.857-0.891	0.807-0.916	0.901-0.941
index range	$-19 \leq h \leq 16$	$-16 \leq h \leq 16$	$-17 \leq h \leq 18$
	$-25 \leq k \leq 32$	$-12 \leq k \leq 20$	$-22 \leq k \leq 14$
	$-21 \leq l \leq 23$	$-20 \leq l \leq 22$	$-39 \leq l \leq 40$
no. reflections total	52317	22533	56972
unique ($\mathrm{R}_{\text {int }}$)	15429 (0.0720)	12848 (0.0408)	17012 (0.0883)
$I>2 \sigma(I)$	10917	10542	10495
no. parameters	920	788	991
$R 1(I>2 \sigma(I))^{\text {a }}$	0.0694	0.0508	0.0883
$w R 2$ (all data) ${ }^{\text {b }}$	0.1796	0.1287	0.2398
$\mathrm{GOF}^{\text {c }}$	1.028	1.101	1.025
max diff peak / hole, e \AA^{-3}	1.48/-0.85	0.90/-0.80	1.26/-0.68

Figure S4. ORTEP drawing of $\mathbf{5 a}$ (50% probability). Anionic part and hydrogen atoms except for H 1 are omitted for clarity. Selected bond lengths (\AA) and angles (deg): Rh1-P1, 2.3030(10); Rh1-C1, 2.475(5); Rh1-C9, 2.033(3); Rh1-H1, 1.753; C1-C2, 1.357(4); C1-C2-C3, 122.7(3); C1-C2-C4, 118.4(3); C3-C2-C4, 118.9(3); C2-C1-C10, 130.5(4).

Figure S5. ORTEP drawing of $\mathbf{6}$ (50% probability). Anionic part and hydrogen atoms are omitted for clarity. Selected bond length (\AA) and angles (deg): Rh1-O1, 2.141(4); Rh1-C1, 2.101(6); Rh1-P1, $2.3315(16) ; \mathrm{C} 1-\mathrm{C} 2,1.449(8) ; \mathrm{C} 1-\mathrm{C} 3,1.350(8) ; \mathrm{O} 1-\mathrm{C} 2,1.285(7) ; \mathrm{O} 1-\mathrm{Rh} 1-\mathrm{C} 1,64.32(18)$; Rh1-O1-C2, 93.6(3); Rh1-C1-C2, 90.6(4); Rh1-C1-C3, 134.3(4); C2-C1-C3, 130.0(6); O1-C2-C1, 111.2(5), O1-C2-C16, 117.8(5); C1-C2-C16, 130.8(6).

References

(1) (a) W. D. Jones and F. J. Feher, Inorg. Chem., 1984, 23, 2376; (b) W. D. Jones and V. L. Kuykendall, Inorg. Chem., 1991, 30, 2615.
(2) (a) D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, Inorg. Chem., 2001, 40, 3810; (b) D. L. Reger, C. A. Little, J. J. S. Lamba and K. J. Brown, Inorg. Synth., 2004, 34, 5; (c) C. R. Smith, A. Zhang, D. J. Mans and T. V. BajanBabu, Org. Synth., 2008, 85, 248.
(3) S. Roy, M. P. Davydova, R. Pal K. Gilmore, G. A. Tolstikov, S. F. Vasilevsky and I. V. Alabugin, J. Org. Chem., 2011, 76, 7482.
(4) Y. Shi, S. A. Blum, Organometallics, 2011, 30, 1776.
(5) (a) D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326; (b) T.-J. Gong, B. Xiao, Z.-J. Liu, J. Wan, J. Xu, D.-F. Luo, Y. Fu and L. Liu, Org. Lett., 2011, 13, 3235; (c) G. Song, X. Gong and X. Li, J. Org. Chem., 2011, 76, 7583; (d) C. Feng and T.-P. Loh, Chem. Commun., 2011, 47, 10458; (e) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012, 14, 272.
(6) R. A. Jacobson, Private Communication to Rigaku Corp.; Rigaku Corp.; Tokyo, Japan, 1998.
(7) CrystalStructure 4.0: Single Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000-2010.
(8) G. M. Sheldrick, Acta Crystallogr., Sect A, 2008, 64, 112.
(9) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi and R. Spagna, J. Appl. Crystallogr., 2007, 40, 609.
(10) P. T. Beurskens, G. Beurskens, R. de Gelder, S. García-Granda, R. O. Gould, R. Israël and J. M. M. Smits, The DIRDIF-99 program system; Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.

