Supporting Information

Enantioselective Organocatalytic Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences: Asymmetric Synthesis of Tetrahydroquinolines

Young Ku Kang and Dae Young Kim
Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea

Contents
1.1. General S2
1.2. Preparation of starting materials S2
2.1. Optimization of the nonchiral reaction conditions S2
2.2. General procedure for Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization of $\mathbf{1}$-- S2
3. Product data S3
4. Mechanistic studies S7
7. References S7
8. NMR spectra and HPLC chromatogram S8

1.1 General

All commercial reagents and solvents were used without purification. TLC analyses were carried out on pre-coated silica gel plates with F_{254} indicator. Visualization was accomplished by UV light (254 nm), I_{2}, p-anisaldehyde, ninhydrin, and phosphomolybdic acid solution as an indicator. Purification of reaction products was carried out by flash chromatography using E. Merck silica gel $60\left(230-400\right.$ mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHz NMR (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shift values (δ) are reported in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0 \mathrm{ppm})$. Optical rotations were measured on a JASCO-DIP-1000 digital polarimeter with a sodium lamp. The enantiomeric excesses (ee's) were determined by HPLC. HPLC analysis was performed on Younglin M930 Series and Younglin M720 Series, measured at 254 nm using the indicated chiral column.

1.2 Preparation of starting materials

(3-(2-(Dialkylamino)aryl)propanal derivatives were prepared in accordance with literature methods. ${ }^{1}$

2.1 Optimization of the nonchiral reaction conditions

In an attempt to validate the feasibility of the proposed organocatalytic oxidative enamine catalysis and intramolecular redox reactions, 3-(2-(azepan-1-yl)phenyl)propanal (1a) was reacted in the presence of oxidant and nonchiral secondary amine as an organocatalyst in dichloromethane. The results of a representative selection of oxidative enamine catalysis and intramolecular redox reactions are summarized in Table SI-1. We started the study on the effect of various oxidants for the oxidative coupling reaction of 3-(2-(azepan-1-yl)phenyl)propanal (1a) in the presence of pyrrolidinium trifluoromethanesulfonate ($20 \mathrm{~mol} \%$) as a catalyst in dichloromethane. The reaction gave a moderate yield (55%) when using a 1.0 equiv. of 2,3 -dichloro-5,6-dicyanoquinone (DDQ) (Table SI-1, entry 1). Other oxidants including organic and metal oxidants were also used to improve the activity of this reaction. The organic oxidant, such as Dess-Martin periodinane (DMP) and o-iodoxybenzoic acid (IBX), could give the desired product in moderate yields (Table SI-1, entries 2-3). However, the reaction of $1 \mathbf{1 a}$ with metal oxidant such as ceric ammonium nitrate $(\mathrm{CAN}), \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{O}_{2}, \mathrm{CuBr} / \mathrm{TBHP}$, and (bpy) $\mathrm{RuCl}_{2} / \mathrm{CFL}$, did not occur and the starting 1a was recoverd (Table SI-1, entries 4-7).

Table SI-1. Optimization of the reaction conditions. ${ }^{\text {a }}$

	 1a	$\begin{aligned} & \begin{array}{c} \text { oxidant } \\ \text { pyrrolidine- HOTf } \\ (20 \mathrm{~mol} \%) \end{array} \\ & \underset{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { reflux, } 19 \mathrm{~h}}{ } \end{aligned}$		
Entry	Oxidant		Yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}(\%)^{\text {c }}$
1	DDQ		55	1.5:1
2	DMP		45	1.5:1
3	IBX		38	1.5:1
$4^{\text {d }}$	CAN		n.r.	
$5^{\text {e }}$	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$		n.r.	
$6^{\text {f }}$	$\mathrm{CuBr} / \mathrm{TBHP}$		n.r.	
$7^{\text {g }}$	(bpy) ${ }_{3} \mathrm{RuCl}_{2} / 23 \mathrm{~W} \mathrm{C}$	FL	n.r.	

[^0] of both diastereomers. ${ }^{\text {c }}$ Diastereomeric ratio is determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{\mathrm{d}} \mathrm{CAN}$ (2.0 equiv.) was used. ${ }^{\mathrm{e}}$ $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%)$ and $\mathrm{O}_{2}(1 \mathrm{~atm})$ were used. ${ }^{\mathrm{f}} \mathrm{CuBr}(20 \mathrm{~mol} \%) / \mathrm{TBHP}(1.5 \mathrm{eq}, 5.0-6.0 \mathrm{M}$ in decane $)$ was used. ${ }^{\mathrm{g}}$ (bpy) $)_{3} \mathrm{RuCl}_{2}(20 \mathrm{~mol} \%)$ was used. n.r.: no reaction, CFL : compact fluorescent light.

2.2 General procedure for the catalytic enantioselective 1,5-hydride transfer/ring closure of $\mathbf{1}$.

To a stirred solution of starting material $\mathbf{1}(0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added catalyst $\mathbf{I}(11.9 \mathrm{mg}, 0.02 \mathrm{mmol})$ and DNBS ($4.9 \mathrm{mg}, 0.02 \mathrm{mmol}$). After the mixture was stirred for 1 min , IBX ($56.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added into reaction mixture at room temperature. Reaction mixture was stirred for indicated time, diluted with saturated NaHCO_{3} solution (10 mL) and extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, concentrated, and purified by flash chromatography $(\mathrm{EtOAc} /$ hexane $=1: 10)$ to afford analytically pure 2

3. Product data

(6R,6aS)-5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinoline-6-carbaldehyde (2a)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-42.2\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.55(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.52-$ $6.54(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.48(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=8.0 \mathrm{~Hz}$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 203.17, 144.90, 129.50, 127.53, 117.15, 115.67, 110.39, 58.26, 49.58, 47.95, 35.02, 26.63, 26.13, 25.94, 23.80; EI-MS : $\mathrm{m} / \mathrm{z}=230.1[\mathrm{M}+\mathrm{H}]^{+}$; ESI-HRMS : m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 230.1545$; found 230.1541; HPLC ($95: 5$, n-hexane : i $\operatorname{PrOH}, 254 \mathrm{~nm}, 0.5 \mathrm{~mL} / \mathrm{min}$) Chiralpak IC column, $\mathrm{t}_{\mathrm{R}}=22.2$ (major), $\mathrm{t}_{\mathrm{R}}=23.8$ (minor), 93% ee.
($6 R, 6 \mathrm{a} S$)-2-Chloro-5,6,6a, 7,8,9,10,11-octahydroazepino[1,2-a]quinoline-6-carbaldehyde (2b)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-52.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.52(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{dd}$, $J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.50(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.21-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-$ $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.41,144,76$, 133.06, 130.37, 119.85, 115.50, 110.11, 57.90, 49.76, 47.73, 35.10, 26.21, 26.04, 25.84, 23.16; EI-MS : m/z=264.1 [M+H] ; HPLC (95:5, n-hexane : i - $\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak OJ-H column, $\mathrm{t}_{\mathrm{R}}=10.1$ (minor), $\mathrm{t}_{\mathrm{R}}=11.0$ (major), $91 \% \mathrm{ee}$.
(6R,6aS)-2-Methoxy-5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinoline-6-carbaldehyde (2c)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-95.3\left(\mathrm{c}=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.54(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.18$ $(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=16.1 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 203.31, 159.50, 144.87, 129.98, 110.03, 100.24, 97.02, 58.14, 55.10, 49.68, 48.03, 35.08, 26.50, 26.10, 25.91, 23.14; EI-MS : $\mathrm{m} / \mathrm{z}=260.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC ($95: 5$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak IC column, $\mathrm{t}_{\mathrm{R}}=17.6(\mathrm{minor}), \mathrm{t}_{\mathrm{R}}=22.4$ (major), 81% ee.
$(6 R, 6 \mathrm{a} R)-6,6 \mathrm{a}, 7,8,9,10,11,12$-Octahydro- 5 H -azocino[1,2-a]quinoline-6-carbaldehyde (2d)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=45.2\left(\mathrm{c}=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.51(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}$, $2 \mathrm{H})$ 6.62-6.55 (m, 2H), 3.85-3.80 (m, 2H), 3.25-3.21 (m, 1H), 3.21-3.10 (m, 2H), 2.55-2.52 (m, 1H), 1.71-1.32 (m, 10 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.32,143.98,129.52,127.54,117.37,115.53,111.33,55.45,53.15,48.65,33.90,27.82,26.91$, 26.26, 26.09, 24.17; EI-MS : m/z=244.1 [M+H] ${ }^{+}$;ESI-HRMS : m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 244.1701$; found 244.1697; HPLC ($90: 10$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=16.6$ (major), $\mathrm{t}_{\mathrm{R}}=27.7$ (minor), 98% ee.
($6 R, 6 \mathrm{a} R$)-3-Bromo-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde ($\mathbf{2 e}$)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=33.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.47(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.62-$ $6.39(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=15.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.8$
$\mathrm{Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.44,142.88,131.84,130.16$, $119.57,112.90,107.20,58.35,53.21,48.47,33.82,27.79,26.59,26.08,26.05,23.75$; EI-MS : m/z=322.0 $[\mathrm{M}+\mathrm{H}]^{+}$; ESIHRMS : m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 322.0807$; found 322.0807 ; HPLC ($90: 10, n$-hexane : $i-\mathrm{PrOH}, 254 \mathrm{~nm}, 0.5$ $\mathrm{mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=16.6$ (major), $\mathrm{t}_{\mathrm{R}}=22.6$ (minor), 99% ee.
($6 R, 6 \mathrm{a} R$)-3-(Trifluoromethyl)-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2f)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=27.6\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.49(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.56-$ $6.54(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.30(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.18,146.32,126.50(\mathrm{q}, J$ $=3.5 \mathrm{~Hz}), 124.74(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.86(\mathrm{q}, J=265.5 \mathrm{~Hz}), 117.19,116.99(\mathrm{q}, J=32.2 \mathrm{~Hz}), 110.71,58.62,53.25,48.40,34.08$, 27.75, 26.42, 26.01, 25.81, 23.83; EI-MS : $\mathrm{m} / \mathrm{z}=312.1[\mathrm{M}+\mathrm{H}]^{+}$; ESI-HRMS : m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 312.1575$; found 312.1571; HPLC ($98: 2$, n-hexane : $i-\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=10.0($ major $), \mathrm{t}_{\mathrm{R}}=12.7$ (minor), 96% ee.
($6 R, 6 \mathrm{a} R$)-3-Fluoro-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2g)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=36.5\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.51(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.46-$ $6.43(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=14.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (dd, $J=16.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.53(\mathrm{~m}, 1 \mathrm{H}) 1.95-1.40(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=201.67,153.44(\mathrm{~d}, J=$ $232.7 \mathrm{~Hz}), 139.21,114.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 112.97(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 110.70(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 57.09,52.42,47.65,32.59$, 26.76, 25.83, 25.36, 22.03, 23.00; EI-MS : m/z=262.1 [M+H] ${ }^{+}$; HPLC ($95: 5$, n-hexane : $i-\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=10.5$ (major), $\mathrm{t}_{\mathrm{R}}=13.9$ (minor), 97% ee.
(6R,6aR)-2-Methoxy-6,6a, 7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2h)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=36.0\left(\mathrm{c}=1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.48(\mathrm{~s}, 1 \mathrm{H}), 7.05-7(\mathrm{~m}, 1 \mathrm{H}), 6.15-5.90$ $(\mathrm{m}, 2 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.51$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.30(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.44,159.48,144.96,129.99,110.31,100.26,97.84,58.45$, 55.09, 53.20, 48.81, 33.97, 27.83, 26.77, 26.18, 26.09, 23.51; EI-MS : m/z=274.1 [M+H] ${ }^{+}$; HPLC ($90: 10, n$-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak IC column, $\mathrm{t}_{\mathrm{R}}=10.0$ (major), $\mathrm{t}_{\mathrm{R}}=13.9($ minor $), 95 \%$ ee.
($6 R, 6 \mathrm{a} S$)-5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2i)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-145.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.83(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}$, $2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{td}, \mathrm{J}=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=10.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{ddd}, J=14.8 \mathrm{~Hz}, 8.0 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{ddd}, J=14.8 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.10(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.24,144.98,129.78,127.36,120.32,117.05,115.26,58.89$, $56.80,48.00,28.88,27.62,27.26,25.45,25.11,24.75,23.33 ;$ EI-MS : m/z=258.1 [M+H] ${ }^{+}$; ESI-HRMS : m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 258.1861$; found 258.1858 ; HPLC ($97: 3, n$-hexane : i - $\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=6.41$ (major), $\mathrm{t}_{\mathrm{R}}=7.21$ (minor), 98% ee.
($6 R, 6 \mathrm{a} S$)-3-Bromo-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinoline-6-carbaldehyde ($\mathbf{2 j}$)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-51.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.81(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=10.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=14.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=14.8 \mathrm{~Hz}$, $6.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.10(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.46,143.95,132.07,130.11,122.40,116.58,108.80,58.92,56.75,47.82,28.81$, 27.46, 27.10, 25.51, 25.16, 24.74, 23.15; EI-MS : m/z=336.0 [M+H] ${ }^{+}$; HPLC ($95: 5, n$-hexane : $i-\operatorname{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=8.41$ (major), $\mathrm{t}_{\mathrm{R}}=9.71$ (minor), 91% ee.
($6 R, 6 a S$)-3-(Trifluoromethyl)-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinoline-6-carbaldehyde ($\mathbf{2 k}$)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-41.5\left(\mathrm{c}=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.50(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.66-$ $6.64(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=12.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (ddd, $J=15.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18-3.14 (m, 1H), 3.12-3.10 (m, 1H), $2.61(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.30(\mathrm{~m}, 12 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $202.31,147.19,126.57(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.60(\mathrm{q}, J=4.1 \mathrm{~Hz}), 123.81(\mathrm{q}, J=265.2), 117.19,116.99(\mathrm{q}, J=32.2 \mathrm{~Hz})$, $110.71,59.84,56.65,48.75,33.22,30.92,27.69,26.57,26.39,25.35,23.75$; EI-MS : m/z=326.1 $[\mathrm{M}+\mathrm{H}]^{+} ;$HPLC ($97: 3, n-$ hexane : $i-\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak IB column, $\mathrm{t}_{\mathrm{R}}=8.51$ (minor), $\mathrm{t}_{\mathrm{R}}=8.91$ (major), 95% ee.
(6R,6aS)-2-Chloro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2I)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-129.4\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.81(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dt}, J=10.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, J=15.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{ddd}, J=14.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=$ $13.6 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.10(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.53,145.92,132.75,130.66,118.62$, $116.85,114.40,58.98,56.75,48.11,29.06,27.40,17.10,25.60,25.24,24.77,22.87$; EI-MS : m/z=292.1 [M+H] ${ }^{+} ; \mathrm{HPLC}(97: 3$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=7.80$ (major), $\mathrm{t}_{\mathrm{R}}=8.76$ (minor), 98% ee.
(6R,6aS)-3-Fluoro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2m)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-85.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.82(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.77(\mathrm{~m}$, $2 \mathrm{H}), 6.71(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dt}, J=11.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (ddd, $J=14.8 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, $J=14.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}$, $1 \mathrm{H}), 1.90-1.25(\mathrm{~m}, 11 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.77,155.38(\mathrm{~d}, J=234.7 \mathrm{~Hz}), 141.38$, $121.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 116.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 115.62(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 114.08(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 58.20,57.21,47.47,28.52$, 27.53, 27.44, 24.89, 24.55, 24.31, 23.38; EI-MS : m/z=276.1[M+H] ${ }^{+}$; HPLC ($97: 3$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=7.43$ (major), $\mathrm{t}_{\mathrm{R}}=8.91$ (minor), 96% ee.
(6R,6aS)-2-Methoxy-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2n)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-108.6\left(\mathrm{c}=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.81(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}$, $1 \mathrm{H})$, 6.31-6.29 (m, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{ddd}, J=15.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (dd, $J=16.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.10(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.38,159.33,146.03$, 130.37, 113.17, 102.23, 101.07, 59.31, 56.92, 55.20, 48.64, 29.14 27.76, 26.78, 25.75, 25.36, 24.98, 22.81; EI-MS : m/z=288.1 $[\mathrm{M}+\mathrm{H}]^{+}$; HPLC (95: 5, n-hexane : $i-\mathrm{PrOH}, 254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=7.40$ (major), $\mathrm{t}_{\mathrm{R}}=8.43$ (minor), 98\% ee.
(3aS,4R)-1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinoline-4-carbaldehyde (20)

Major diastereoisomer. $[\alpha]^{25}{ }_{\mathrm{D}}=-14\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.05 (m, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=1.6 \mathrm{~Hz} .1 \mathrm{H}), 6.60-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.50(\mathrm{ddd}, J=10.4 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (ddd, $J=11.1 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.99,143.89,128.70,127.76,119.06$, $115.48,110.45,57.75,50.35,46.64,31.62,28.59,24.02$; EI-MS : m/z=202.1 [M+H] ${ }^{+}$; ESI-HRMS : m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 202.1232$; found 202.1238; HPLC ($98: 2$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$) Chiralpak IC column, $\mathrm{t}_{\mathrm{R}}=10.3$ (minor), $\mathrm{t}_{\mathrm{R}}=10.8$ (major), 87% ee.
(3aS,4R)-8-chloro-1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinoline-4-carbaldehyde (2p)

Major diastereoisomer. $[\alpha]^{25}{ }_{\mathrm{D}}=-19\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}$, $1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, J=15.2 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=10.8 \mathrm{~Hz}$, $8.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=16.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H})$, 2.05-1.92 (m, 1H), 1.62-1.55 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.60,150.04,133.34,129.60,121.51,115.19$, 110.15, 57.81, 50.44, 46.78, 31.76, 28.29, 24.14; EI-MS : m/z=236.0 [M+H] ${ }^{+}$; HPLC ($97: 3$, n-hexane : i-PrOH, $254 \mathrm{~nm}, 1.0$ $\mathrm{mL} / \mathrm{min}$) Chiralpak IC column, $\mathrm{t}_{\mathrm{R}}=11.1$ (minor), $\mathrm{t}_{\mathrm{R}}=11.4$ (major), 90% ee.]
$(4 \mathrm{aS}, 5 R)-2,3,4,4 \mathrm{a}, 5,6-\mathrm{Hexahydro}-1 \mathrm{H}$-pyrido[1,2-a]quinoline-5-carbaldehyde (2q)

Major diastereomer. $[\alpha]^{28}{ }_{\mathrm{D}}=-50.6\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=$ $8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=$ $10.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=15.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.50(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=202.72,145.73,128.89,127.65,122.10,117.62,112.60,56.53,52.01,48.39,31.26,25.99$, 24.98, 24.06; EI-MS : m/z=216.1 [M+H] ${ }^{+}$; HPLC ($90: 10, n$-hexane : i-PrOH, $254 \mathrm{~nm}, 0.5 \mathrm{~mL} / \mathrm{min}$) Chiralpak AS-H column, $\mathrm{t}_{\mathrm{R}}=21.3$ (major), $\mathrm{t}_{\mathrm{R}}=27.9$ (minor), 80% ee.
(11bR,12R)-7,11b,12,13-Tetrahydro-6H-isoquinolino[2,1-a]quinoline-12-carbaldehyde (2r)

Major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.40(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.80 (m, 1H), $6.79(\mathrm{td}, \mathrm{J}=7.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dt}$, $J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.02,146.38,135.36,134.98,129.86,128.81,126.95,126.83,126.24,121.32,118.87,112.11$ (one aromatic carbon missing), 57.61, 51.21, 42.06, 29.89, 27.67; EI-MS : m/z=264.1 $[\mathrm{M}+\mathrm{H}]^{+}$;
(12b $R, 13 R$)-6,7,8,12b,13,14-Hexahydrobenzo[3,4]azepino[1,2-a]quinoline-13-carbaldehyde (2s)

Major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.64(\mathrm{~d}, J=1.6 \mathrm{HZ}, 1 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 6 \mathrm{H}), 6.67-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dt}, J=14 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.02,143.42,139.63,139.28,130.80,129.28,127.86,127.65,127.16,126.54,119.34,116.07,110.66$, 63.26, 49.49, 46.33, 31.88, 26.72, 24.73; EI-MS : m/z=278.1 [M+H] ${ }^{+}$.
(12b $R, 13 R$)-2-Fluoro-6,7,8,12b,13,14-hexahydrobenzo[3,4]azepino[1,2-a]quinoline-13-carbaldehyde (2t)

Major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.65(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.52$ $(\mathrm{m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=15.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{ddd}, J=16.8 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.23-3.13 (m, 2H), 3.00-2.87 (m, 2H), $2.72(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.42,154.82(\mathrm{~d}, J=233.5 \mathrm{~Hz}), 140.03,139.84,139.42,130.84,127.83,126.89$, 126.51, $120.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 115.66(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 113.74(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 111.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 62.34,49.38,47.70,32.59$, 25.99, 24.55; EI-MS : m/z=296.1 [M+H] .

4. Mechanistic studies

To obtain information on the reaction pathway, we investigated the reaction of 3-(2-(azepan-1-yl)phenyl)propanal (1a) in the presence of catalyst $\mathbf{I}(20 \mathrm{~mol} \%)$ and (-)-camphorsulfonic acid (CSA) in CDCl_{3}. After $1 \mathrm{~d},{ }^{1} \mathrm{H} \mathrm{NMR}$ analysis of the reaction mixture revealed the formation of 3-(2-(azepan-1-yl)phenyl)propenal (1a') as reaction intermediate. This result indicate that the saturated aldehyde $\mathbf{1 a}$ is converted in situ into the corresponding α, β-unsaturated aldehyde 1a' through oxidative enamine catalysis. Based on this experimental result, we proposed the reaction mechanism that the saturated aldehyde is converted in situ into the corresponding α, β-unsaturated aldehyde which can then be manipulated with 1,5 -hydride transfer/cyclization towards the asymmetric synthesis of tetrahydroquinolines as shown in Scheme 1.

5. References

1.(a) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel, D. Org. Lett. 2009, 11, 129. (b) Murarka, S.; Deb, I.; Zhang, C.; Seidel. D. J. Am. Chem. Soc. 2009, 131, 13226. (c) Kohler, E. P.; Chadwell, H, M. Org. Synth. 1941, 1, 78. (d) Brown, H, C.; Hess, H. M. J. Org. Chem. 1969, 34, 2206.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

6. NMR spectra and HPLC chromatogram

2a

2a

분석 결과

번호	$\mathrm{RT}[$ 분]	면적[mV*s]	형태	폭[초]	면적 $\%$
1	22.3833	20590.4352	VV	80.0000	$50.5863 *$
2	23.6667	20113.1251	VV	108.0000	49.4137%

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적[mV*s]	형태	폭[초]	면적 $\%$
1	22.2500	11114.5708	BB	81.0000	96.1195
2	23.5167	448.7142	FF	39.0000	3.8805

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	$10.0333 *$	11828.1328	BV	70.0000	49.4871
2	$11.0833 *$	$12073.3301 *$	WV	96.0000	50.5129

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	10.1000	1799.5964	FF_{*}	51.0000	4.8361
2	11.0167	35411.9142	BB	117.0000	95.1639

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

2c

(206.8995

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	12.8500	506.5475	FF_{*}	51.0000	6.7606
2	13.7167	489.8605	FF_{*}	38.0000	6.5379
3	17.5833	3350.4979	BP	74.0000	44.7169
4	21.8000	3145.7770	BV	79.0000	41.9847

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	$17.6333 *$	337.2080	BV	52.0000	8.9995
2	$22.4667 *$	3409.7427	BB	94.0000	91.0005

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 [mV*s]	형태	폭[초]	면적 $\%$
1	16.4667	33022.6145	BB	234.0000	50.5595
2	27.0167	32291.6838	FF	397.0000	49.4405

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	16.6000	62643.3399		FF_{*}	327.0000

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

-202.445

2 e

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 [mV*s]	형태	폭 [초]	면적\%
1	13.8333	3805.0891	BB	53.0000	6.7656
2	15.2000	3325.1969	BB	58.0000	5.9123
3	16.2000	25229.7620	BB	85.0000	44.8595
4	22.0833	23881.72410	FFe	292.0000	42.4626

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	16.6000	6389.8638	FF_{*}	237.0000	99.4916
2	22.6667	32.6539	FF_{*}	87.0000	0.5084

Electronic Supplementary Material (ESI) for Chemical Communications

$2 f$

$2 f$

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	10.1167	6125.9363	BB	83.0000	51.4649
2	13.0167	5777.2055	FF	133.0000	48.5351

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면 적 $[\mathrm{mV} * \mathrm{~s}]$	형 태	폭[초]	면 적 \%
1	10.0333	1688.9008	BB	72.0000	98.2012
2	12.7500	30.9373	FF_{4}	34.0000	1.7988

$2 g$

분석 결과

번호	$\mathrm{RT}[$ 분]	면적[mV*s]	형태	폭[초]	면적\%
1	10.4000	6958.4383	BB	80.0000	50.2231
2	13.5333	6896.6210	BB	117.0000	49.7769

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	10.5500	3615.2193	FF	112.0000	98.2663
2	13.9833	63.7819	FF	43.0000	1.7337

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	11.8333	565.0889	BB	36.0000	9.7173
2	12.3667	2358.0405	BB	58.0000	40.5490
3	14.1000	593.8637	BV	51.0000	10.2121
4	15.2000	2298.2975	BB	71.0000	39.5216

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	10.0333	7366.8692	BB	66.0000	96.7923
2	13.9167	244.1411	FF	47.0000	3.2077

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	6.4000	3039.9738	BB	37.0000	49.5289
2	7.0167	3097.8071	BB	45.0000	50.4711

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	6.4167	16029.2550	FF	70.0000	98.8728
2	7.2167	182.7363	FF	26.0000	1.1272

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	8.0167	15825.9074	VB	102.0000	46.9534
2	9.1167	14655.6514	BB	66.0000	43.4814
3	10.083	2209.9942	BB	79.0000	6.5568
4	13.7500	1014.0415	FF	92.0000	3.0085

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적[mV*s]	형태	폭[초]	면적\%
1	8.4167	2039.3506	BB	84.0000	95.5407
2	9.7167	95.1864	FF_{*}	37.0000	4.4593

2k

ले

2k
$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

분석 결과

번 호	$\mathrm{RT}[$ 분]	면 적 [mV*s]	형태	폭[초]	면 적 $\%$
1	7.7000	3539.2566	BV	24.0000	19.3692
2	8.0167	3596.4558	BV	21.0000	19.6822
3	8.4333	5412.4912	BB	25.0000	29.6208
4	8.8333	5724.4267	BV	38.0000	31.3279

분석 결과

번호	$R T[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	8.5167	95.3366	FF_{*}	16.0000	2.7954
2	8.9167	3315.1881	BV	37.0000	97.2046

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

[^1]

분석 결과

번호	$\mathrm{RT}[$ 분]	면적[mV*s]	형태	폭[초]	면적 $\%$
1	7.7833	27936.2758	VV	59.0000	51.8857
2	8.8500	25905.6347	VV	49.0000	48.1143

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	7.8000	1057.7961	BB	65.0000	98.2131
2	8.7667	19.2452	FF	29.0000	1.7869

2m

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} *$ s]	형태	폭[초]	면적 $\%$
1	7.5333	10059.5523	VV	56.0000	52.2806
2	8.6000	9181.8961	VB	60.0000	47.7194

분석 결과

번호	RT[분]	면적 [mV*s]	형태	폭[초]	면적\%
1	7.4333	3375.2458	BV	82.0000	97.9657
2	8.9167	70.0880	FFe	37.0000	2.0343

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

2n

분석 결과

번 호	$\mathrm{RT}[$ 분 $]$	면 적 [mV*s]	형태	폭[초]	면 적 \%
1	7.5333	1379.0729	BB	59.0000	50.5353
2	8.5833	1349.8594	BB	58.0000	49.4647

분석 결과

번호	RT[분]	면적 [mV*s]	형태	폭[초]	면적\%
1	7.4000	8465.1441	FFe	72.0000	98.8195
2	8.4333	101.1278	FFp	30.0000	1.1805

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적[mV*s]	형태	폭[초]	면적\%
1	9.0833	24313.7227	BV	35.0000	49.7426
2	9.6000	24565.3788	VB	43.0000	50.2574

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 [mV*s]	형태	폭[초]	면적\%
1	10.3833	190.7781	FFe	24.0000	6.4630
2	10.81670	2761.07120	FF*	55.0000	93.5370

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	10.2833	4670.7695	VV	32.0000	11.8348
2	10.7000	3381.9621	VV	16.0000	8.5692
3	11.0000	17186.2143	VV	44.0000	43.5466
4	11.8000	14227.3483	VV	72.0000	36.0494

분석 결과

번호	RT[분]	면적[mV*s]	형태	폭[초]	면적\%
1	11.1667	2363.7984	FF_{*}	28.0000	95.0924
2	11.4833	121.9919	FF_{*}	16.0000	4.9076

Electronic Supplementary Material（ESI）for Chemical Communications This journal is © The Royal Society of Chemistry 2013

2q

[^2]

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	21.8167	62411.8779	BB	281.0000	51.9628
2	28.7000	57696.8101	FF	402.0000	48.0372

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 \%
1	21.3333	10743.1187	PB	170.0000	89.7214
2	27.9667	1230.7429	FF	110.0000	10.2786

$2 r$

분석 결과

번호	$\mathrm{RT}[$ 분]	면적 [mV*s]	형태	폭 [초]	면적\%
1	12.1667	19434.45340	BV	49.0000	43.0987
2	12.9667	4934.60170	BV	50.0000	$10.9432+$
3	14.6333	3667.69770	BV	55.0000	8.1337
4	19.01674	17056.1186	BB	89.0000	37.8244

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	$12.7667 *$	54708.6472	BB	52.0000	58.7746
2	19.6500	38373.4720	BB	113.0000	41.2254

2s

2s

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	7.9333	85.6473	FF_{*}	25.0000	3.1472
2	8.5000	1313.3456	FF_{*}	42.0000	48.2605
3	9.0833	1232.2616	FF_{*}	43.0000	45.2810
4	10.0833	90.1105	FF_{*}	34.0000	3.3112

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적 $\%$
1	8.2167	620.1112	BB	20.0000	33.9485
2	10.0167	1206.5124	BB	31.0000	66.0515

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적 $[\mathrm{mV} * \mathrm{~s}]$	형태	폭[초]	면적\%
1	12.6833	64276.9990	BV	44.0000	50.3703
2	13.1333	63331.8893	BB	59.0000	49.6297

분석 결과

번호	$\mathrm{RT}[$ 분 $]$	면적[mV*s]	형태	폭[초]	면적 $\%$
1	12.6500	10223.3796	BV	48.0000	58.2676
2	13.2833	7322.1752	VB	46.0000	41.7324

[^0]: ${ }^{\text {a }}$ Reactions were carried out with $1 \mathrm{a}(0.2 \mathrm{mmol})$, catalyst ($20 \mathrm{~mol} \%$), oxidant (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$. ${ }^{\mathrm{b}}$ Combined yield

[^1]: $\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^2]: $\begin{array}{llll}180 & 170 & 160 & 150\end{array}$ $140 \quad 1$ $\begin{array}{ll}30 & 120 \\ 110\end{array}$ 100 9080

