### VX and VG chemical warfare agents bidentate complexation with lanthanide ions

Genevieve H. Dennison, Mark R. Sambrook and Martin R. Johnston

#### Supporting information

### Reagents:

VX and VG were synthesised in-house and were > 95% pure. All non-CWA reagents and solvents were obtained from Sigma-Aldrich (Australia) and were used as received without further purification.

# Solvents:

DMF was distilled under nitrogen and stored over sieves before use. Acetonitrile was purchased dry from Sigma-Aldrich (Australia).

#### Synthesis:

Lanthanide complexes  $[Eu(phen)_2(NO_3)_3(H_2O)_3]$  and  $[Tb(phen)_2(NO_3)_3(H_2O)_2]$  were prepared using a modification of the literature procedures<sup>[1]</sup> and were characterised by elemental and IR analyses.<sup>[2]</sup>

#### Elemental

 $[Eu(phen)_2(NO_3)_3(H_2O)_3]$ : Found C 38.37%, H 2.60%, N 12.79% calculated  $Eu(phen)_2(NO_3)_3.(H_2O)_3$  C 38.31%, H 2.95%, N 13.03%.

[Tb(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]: Found C 39.27%, H 2.43%, N 12.96% calculated Tb(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub>.(H<sub>2</sub>O)<sub>2</sub> C 39.25%, H 2.74%, N 13.35%.

# IR

[Eu(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]: 1626 (C=C, C=N), 1590 (C=C, C=N), 1578 (C=C, C=N), 1519, 1495 ( $\upsilon_4 \text{ NO}_3^-$ ), 1462, 1424 (C=C, C=N), 1307 ( $\upsilon_1 \text{ NO}_3^-$ ), 1271 (C=C, C-H), 1143, 1103 (C-H in plane), 1035 ( $\upsilon_2 \text{ NO}_3^-$ ), 1027, 864 (C-H out of plane), 848 (C-H out of plane, C-N), 815 ( $\upsilon_6 \text{ NO}_3^-$ ), 773 (C-H out of plane), 738 ( $\upsilon_3 \text{ NO}_3^-$ ), 723 (C-H out of plane).

 $[Tb(phen)_2(NO_3)_3(H_2O)_2] : 1626 (C=C, C=N), 1590 (C=C, C=N), 1578 (C=C, C=N), 1520, 1496 (\upsilon_4 NO_3^{-}), 1463, 1424 (C=C, C=N), 1312, 1273 (C=C, C-H), 1222 (C=C, C-H), 1210 (C=C, C-H), 1144, 1104 (C-H in plane), 1037 (\upsilon_2 NO_3^{-}), 1029, 865 (C-H out of plane), 848 (C-H out of plane, C-N), 816 (\upsilon_6 NO_3^{-}), 741 (C-H out of plane), 741 (\upsilon_3 NO_3^{-}), 724 (C-H out of plane).$ 

# Instrumentation

Solution fluorescence studies were performed on an OceanOptics portable USB 2000 fluorimeter with fibre optic cables and PX-2 pulsed xenon light source (Integration Time ( $\mu$ sec): 100000, Spectra Averaged: 10, Boxcar Smoothing: 0 ).

UV-Vis studies were performed on a Thermo Scientific Evolution 201 UV-Vis spectrophotometer (absorbance, band width = 2nm, Integration time 0.05 seconds, data interval 1.00 nm, scan speed 1200 nm/min).

IR spectra (ATR) were obtained on a Perkin Elmer FT-IR Frontier spectrometer (scan rate 4, resolution 4cm<sup>-1</sup>, diamond ZnSe).

# General titration methodology

Solutions of the lanthanide complexes  $(1x10^{-3} \text{ mol dm}^{-3})$  were prepared in dry dimethylformamide / dry acetonitrile (1:9) before dilution to  $1x10^{-5} \text{ mol dm}^{-3}$  in acetonitrile. Diluted solutions of the complexes were prepared fresh each day from the  $1x10^{-3} \text{ mol dm}^{-3}$  stock solutions before titration. Blank additions of acetonitrile were performed to account for any fluorescence changes resulting from concentration differences.

Guest (CWA and simulant) solutions were prepared in dry acetonitrile and added to the lanthanide complex solution in a septa fitted cuvette. The concentration of the guest solution was varied during the course of the titrations to ensure  $[H_{inital}]$  was as close to  $[H_{final}]$  as possible. The solution was left stirring without irradiation for at least 2 minutes after each addition of guest before a spectrum was obtained.

# **Spectral plots**



Figure S1. Quenching of the luminescent emission of **1** upon addition of VG;  $[complex] = 1x10^{-5} mol dm^{-3}$ , 293K.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013



Figure S2. Quenching of the luminescent emission of **2** upon addition of (a) VX and (b) VG; [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293K.



Figure S3. UV-Vis titration data for the addition of VG to 1; [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293 K.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013



Figure S4. UV-Vis titration data for the addition of (a) VX and (b) VG to 2; [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293 K.



Figure S5. Selected UV-Vis spectral data from the titration of **1** with DMMP; [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293 K.



Figure S5. Stern-Volmer plot of the luminescent quenching titration of **1** with DMMP up to 10 mol equivalents of DMMP added where  $\lambda^{em} = 617$  nm ; [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293 K.



Figure S6. Fitting of low quencher concentration region of the Stern-Volmer plot for the titration of **1** with DMMP (two titration data sets shown); [complex] =  $1 \times 10^{-5}$  mol dm<sup>-3</sup>, 293 K.



Figure S7. Comparison of the luminescence emission quenching of **1** by VX (+) and DMMP ( $\diamond$ ) where  $\lambda^{em} = 617$  nm; [complex]<sub>initial</sub> =1x10<sup>-5</sup> mol dm<sup>-3</sup>, 293 K.



Figure S8. <sup>1</sup>H NMR spectrum of the VX used in this study (CDCl<sub>3</sub>)



Figure S9. <sup>13</sup>C NMR spectrum of the VX used in this study (CDCl<sub>3</sub>)



Figure S10. <sup>31</sup>P NMR spectrum of the VX used in this study (CDCl<sub>3</sub>)



Figure S11. <sup>1</sup>H NMR spectrum of the VG used in this study (D<sub>2</sub>O)



Figure S12.  $^{\rm 31}P$  NMR spectrum of the VG used in this study (D\_2O)

#### References

- [1] R. C. Grandey, T. Moeller, J. Inorg. Nucl. Chem, **1970**, 32(1): 333-336.
- [2] V. Tsaryuk, V. Zolin, L. Puntus, V. Savchenko, J. Legendziewicz, J. Sokolnicki, R. Szostak, *J. Alloy. Compd.*, **2000**, 300-1, 184-192.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013