Enantioselective Synthesis of 1,2,4-Triazolines

Catalyzed by a Cinchona Alkaloid-Derived

Organocatalyst

Qian Shao, ${ }^{a}$ Jiean Chen, ${ }^{a}$ Meihua Tu, ${ }^{b}$ David W. Piotrowski, ${ }^{\text {c }}$ and Yong Huang ${ }^{a, *}$
${ }^{a}$ Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China.
${ }^{b}$ Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02139 USA.
${ }^{c}$ Pfizer, Inc., Eastern Point Road, Groton, CT, 06340 USA
Email: huangyong@pkusz.edu.cn

Supporting Information

Table of Contents:

General Methods and Materials 2
Preparation of cinchona alkaloid-derived catalysts 3
Catalyst Structure Survey and Optimization of Conditions 4-6
Mechanistic Studies 7
General Procedure for 3-quaternized 1,2,4-Triazolines 8
Analytical Data and HPLC Chromatograms for 1,2,4-Triazoline Products 9-33
Derivatization and Characterization of 1,2,4-Triazoline Products 34-38
References 39
NMR Spectra Images of Substrates and Products 40-70

General Methods and Materials:

All reactions were carried out under air using anhydrous solvents. Catalyst 5, ${ }^{1}$ catalyst 6^{2-5}, and catalyst $7 \mathrm{a}-\mathrm{d}^{6}$ were prepared according to literature procedures. Azlactones were prepared according to reported procedures. ${ }^{7}$ All other reagents were purchased and used without further purification unless specified otherwise. Solvents for chromatography were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel (Qingdao Haiyang Chemical HG/T2354-92) with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed using Huanghai silica gel plates with HSGF 254. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) or appropriate stains. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded on Bruker 400 M or 500 M nuclear resonance spectrometers unless otherwise specified. Chemical shifts (δ) in ppm are reported as quoted relative to the residual signals of chloroform (${ }^{1} \mathrm{H} 7.26 \mathrm{ppm}$ or $\left.{ }^{13} \mathrm{C} 77.16 \mathrm{ppm}\right)$. Multiplicities are described as: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (J) are reported in Hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with total proton decoupling. Chiral HPLC was recorded on a Shimadzu LC-20A spectrometer using Daicel Chiralpak OD-H, OJ-H, AD-H, AS-H, IA, or IB columns ($250 \times 4.6 \mathrm{~mm}$). HRMS (ESI) analysis was performed by The Analytical Instrumentation Center at Peking University; Shenzhen Graduate School and the data were reported with ion mass/charge (m / z) ratios as values in atomic mass units.

Preparation of cinchona alkaloid-derived catalysts

General procedure for the synthesis of catalyst 7 from Carboxylic Acid Chlorides and (S)-((1S,2S,4S,5R)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methanamine: ${ }^{6}$

A solution of (S)-((1S,2S,4S,5R)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methanamine, prepared from quinine following the literature procedure, ${ }^{2}$ ($488 \mathrm{mg}, 1.5$ mmol) in 10 mL dry dichloromethane and 2 mL triethylamine was cooled to $0^{\circ} \mathrm{C}$. The corresponding carboxylic acid chloride (1.8 mmol) in 2 mL dichloromethane was added dropwise. After the reaction mixture was stirred overnight at room temperature, another 10 mL dichloromethane was added, the reaction was washed three times with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile solvent was removed and the product was purified by silica gel flash chromatography (ethyl acetate / methanol).

7

Catalyst 7d:

85% yield, white powder. ${ }^{27.8}[\alpha]_{\mathrm{D}}=-67^{\circ}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=13.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}$, $1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=13.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 2 \mathrm{H})$, $1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{dd}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.5,158.1,147.4,144.7,136.0,132.5$, 132.1, 131.8, 131.5, 128.3, 127.7, 127.0, 125.0, 124.3, 121.8, 121.6, 118.8, 101.8, 57.5, 55.6, 41.0, 37.0, 28.4, 27.3, 26.0, 25.0, 11.9; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$:
566.2242; Found: 566.2222.

Condition screening:

Screening for different catalysts, solvent, catalyst loading, additive, concentration and temperature.

Table S1. Catalyst screening in toluene at r.t. ${ }^{a}$

DHQ scaffold

Phosphoric acid scaffold

-2%

-45%

-1%

11%

36%
${ }^{a}$: reactions were carried out using $1(0.1 \mathrm{mmol})$, DIAD (0.1 mmol), and catalyst ($0.01 \mathrm{mmol}, 10$ mol\%) in toluene (1 mL) at $25{ }^{\circ} \mathrm{C}$ for 12 hours, unless specified otherwise. ${ }^{b}$: the ee value was determined by chiral HPLC analysis.

Table S2. Catalyst screening in TBME at r.t. ${ }^{a}$

Cyclohexane diamine scaffold

8\%

9%

0\%

Other scaffold

${ }^{a}$: reactions were carried out using $1(0.1 \mathrm{mmol})$, DIAD (0.1 mmol), and catalyst ($0.01 \mathrm{mmol}, 10$
mol\%) in MTBS (1 mL) at $25{ }^{\circ} \mathrm{C}$ for 12 hours, unless specified otherwise. ${ }^{b}$: the ee value was determined by chiral HPLC analysis.

Table S3. Solvent screening at r.t.

	Solvent	Ee\%		Solvent	Ee\%
1	MTBE	-83	9	iPr ${ }_{2} \mathrm{O}$	-91
2	DCM	-74	10	2-MeTHF	-72
3	MeCN	-29	11		-89
4	$\mathrm{Et}_{2} \mathrm{O}$	-91	12		-83
5	Toluene	-88	13	Dioxane	-70
6	Hexane	-80	14	MeOH	-13
7	THF	-70	15	$\mathrm{Bn}_{2} \mathrm{O}$	-82
8	EA	-76	16	Acetone	-45
			17	DME	-71

Table S4. Substrate Scope for Azodicarboxylates.

Entry	DXAD	R	Yield (\%)	ee (\%)
1	DEAD	Et	90	90
2	DIAD	$i-\mathrm{Pr}$	81	93
3	DTBAD	t-Bu	72	90
4	DCAD	$p-\mathrm{Cl}-\mathrm{Bn}$	83	59
5	PTAD	$\underset{\text { product }}{\sim c^{c o g} M}$	52	0

Mechanistic Studies (Table S5)

Conditions	Yield (\%)
MeCN	NR
MeOH	NR
TMSCHN_{2}	81
TFA	Hydrolysis of aminal
HCl	Hydrolysis of azlactone

While Tepe proposed a step-wise addition-cyclization mechanism for his un-catalyzed system, we found that the initial addition products could not undergo subsequent cyclization to give triazolines under his standard protocol. The primary addition product 3a was isolated and subjected under MeCN conditions. No reaction occurred (Table S5). The cyclization only occurred upon treatment with TMSCHN_{2}. This observation suggests that although our catalysed reactions proceeded through the step-wise, TMSCHN_{2} promoted cyclization mechanism, the Tepe reaction was most likely a [3+2] cycloaddition for small size azodicarboxylates (DEAD and DIAD). When DTBAD was employed under the Tepe conditions, only the addition product was observed. Interception of 3a with electrophiles other than TMSCHN_{2} was also attempted and the results are summarized in Table S5.

General Procedure for the Synthesis of 3-Quaternized 1,2,4-Triazolines:

One equivalent of the azodicarboxylate was added to a solution of azlactone rac-1 (0.1 mmol) and $5 \mathrm{~mol} \% \mathbf{7 d}$ in 1 mL of ether in a 2-dram scintillation vial at room temperature. The reaction mixture was stirred at room temperature for 6 hours, which led to the disappearance of color. At this point the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and (trimethylsilyl)diazomethane (2.0 M solution in diethyl ether, $0.15 \mathrm{~mL}, 0.3 \mathrm{mmol}$, Caution: due to the potential explosive nature of this chemical, sharp objects should be avoided during handling and the reaction should be carried out behind a blast shield) was added in a drop wise manner. The reaction mixture was stirred for 15 minutes and methanol (0.3 mL) was added in drop wise manner. The reaction temperature was allowed to warm to ambient temperature. The progress of the reaction was monitored by TLC. About 6-24 hours later, the reaction mixture was concentrated to a minimal residue and purified by silica-gel flash chromatography to afford product 4.

Analytical Data and HPLC Chromatograms for 1,2,4-Triazolines Products:

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4a):
81% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (s, 2H), 2.66 (dt, J = 13.5, 6.7 Hz, 1H), 1.31 (d, J = 6.2 Hz, 2H), 1.28 (d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.11 (dd, $J=6.4,4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.53,158.45,154.82,152.01,131.44,129.55,129.19,127.70,95.84,77.24,76.99,76.74$, 71.89, 70.76, 52.49, 33.49, 21.92, 21.71, 21.40, 21.36, 17.23, 16.28. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 420.2135; Found: 420.2131.
The ee was determined by HPLC using a Chiralcel OD-H column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; t_{R} major $=8.233 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=6.906 \mathrm{~min}(93 \% \mathrm{ee}) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+84{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-benzyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4b):
65% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 168.37, 159.16, 154.09, $150.54,133.86,131.24,131.13,129.43,129.17,127.61,127.54,126.76,92.87,77.30,77.05$, 76.79, $71.70,70.76,52.93,41.18,22.00,21.68,21.17,21.02$. HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 468.2135 ;$ Found: 468.2142,
The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=12.055 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=9.956 \mathrm{~min}\left(92 \%\right.$ ee) $.{ }^{24.6}[\alpha]_{\mathrm{D}}=+105^{\circ}$ ($\mathrm{c}=$ $\left.0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-isobutyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4c):
63% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), 2.17 (d, J = 5.9 Hz, 2H), $1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.62,158.64,154.02,152.13,131.42,129.62,129.17$, 127.68, 93.32, 77.26, 77.00, 76.75, 72.10, 70.60, 52.78, 43.31, 24.69, 23.78, 23.39, 21.93, 21.73, 21.34, 21.27. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 434.2291; Found: 434.2280. The ee was determined by HPLC using a Chiralcel OJ column [n-hexane/EtOH (95:5)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=14.370 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=4.951 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+82^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-allyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4d):
61% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.69$ (ddt, $J=17.3,10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.11 (dd, $J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dq}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.04,159.45,153.75$, 151.86, 131.49, 130.60, 129.60, 129.11, 127.67, 120.66, 91.90, 77.25, 76.99, 76.74, 72.01, $70.74,52.82,39.24,21.94,21.72,21.36$. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$:
418.1978; Found: 418.1980,

The ee was determined by HPLC using IB column [n-hexane/EtOH (99:1)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=8.216 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=7.612 \mathrm{~min}(86 \% \mathrm{ee}) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+21^{\circ}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-(2-(methylthio)ethyl)-5-phenyl-2,3-dihydro-1H-1,2,4 -triazole-3-carboxylate (4e):
78% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 2.64-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ (d, J=6.2 Hz, 3H), $1.02(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.04,159.52$, 153.81, 152.02, 131.69, 129.85, 128.91, 127.74, 92.22, 77.39, 77.07, 76.75, 72.43, 70.98, 52.99, 34.93, 27.79, 22.00, 21.96, 21.79, 21.53, 21.30, 15.50, 0.99. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 452.1855$; Found: 452.1845 .
The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=9.806 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=11.572 \mathrm{~min}(87 \% \mathrm{ee}) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+33^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-p-tolyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4f):
83% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), $4.97(\mathrm{dd}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dt}, J=$ $13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.09(\mathrm{~m}$, 9 H), $0.94(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.62,158.44,154.85,152.15$, 142.00, 129.62, 128.39, 126.20, 95.70, 77.25, 76.99, 76.74, 71.83, 70.69, 52.46, 33.50, 21.93, 21.71, 21.46, 21.41, 17.25, 16.27. HRMS (ESI): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 434.2291$; Found: 434.2277.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=8.197 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=6.466 \mathrm{~min}(91 \% \mathrm{ee}) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+44{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-o-tolyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (4 g):
94\% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 2.69(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{dd}, J=13.2,6.2 \mathrm{~Hz}, 7 \mathrm{H})$, $\left.1.14(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126MHz,CDCl}_{3}\right)$ ठ 167.57, 157.72, 155.10, 150.78, 137.53, 130.45, 130.14, 129.63, 129.08, 125.36, 96.13, 77.23, 76.97, 76.72, 71.43, 70.80, 52.51, 33.44, 21.91, 21.69, 21.24, 21.14, 19.55, 17.21, 16.45. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 434.2291; Found: 434.2274.

The ee was determined by HPLC using IA column [n-hexane/EtOH (99:1)]; flow rate 0.3 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=22.943 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=24.887 \mathrm{~min}(90 \%$ ee $) .{ }^{24.6}[\alpha]_{\mathrm{D}}=+79{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(4-methoxyphenyl)-2,3-dihydro-1H-1,2,4 -triazole-3-carboxylate (4h):
67% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H})$, $2.62(\mathrm{dt}, J=13.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.16-1.08(\mathrm{~m}$, $5 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.70,162.38,158.01,154.85$, $152.23,131.56,121.19,113.13,95.53,77.26,77.00,76.75,71.87,70.73,55.31,52.46,33.50$, 21.90, 21.70, 21.48, 21.44, 17.24, 16.27. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 450.2240; Found: 450.2216.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=13.134 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=10.925 \mathrm{~min}\left(90 \%\right.$ ee). ${ }^{27.8}[\alpha]_{\mathrm{D}}=+48^{\circ}(\mathrm{c}=$ $\left.0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(3,5-dimethoxyphenyl)-2,3-dihydro-1H-

1,2,4-triazole-3-carboxylate (4i):

95% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}$, 1 H), 4.93 ($\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.84(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $2.59(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.03(\mathrm{~m}$, 9 H), 0.89 ($\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.48,160.19,158.42,154.81$, $151.97,130.84,107.56,103.89,95.83,77.44,77.18,76.93,71.91,70.80,55.46,52.52,33.44$, 21.90, 21.70, 21.43, 21.40, 17.26, 16.26. HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 480.2346; Found: 480.2353.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=12.116 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=8.655 \mathrm{~min}(92 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+36{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(naphthalen-1-yl)-2,3-dihydro-1H-1,2,4 -triazole-3-carboxylate (4j):
91% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 1 H), 7.87 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (dd, J = 7.0, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{dt}, J=$ $12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 0.73 (d, J = 6.2 Hz, 3H), $0.68(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.57,157.31$, $155.26,150.64,133.16,131.46,131.31,128.20,128.01,127.33,127.06,126.15,124.94$, 124.54, 96.31, 77.24, 76.99, 76.73, 71.37, 70.94, 52.62, 33.59, 22.01, 21.75, 20.97, 20.85, 17.31, 16.53. HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 492.2111; Found: 492.2082. The ee was determined by HPLC using IA column [n-hexane/EtOH (99:1)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=8.237 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=9.317 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+78^{\circ}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(naphthalen-2-yl)-2,3-dihydro-1H-1,2,4 -triazole-3-carboxylate (4k):
93\% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (ddd, $J=13.5,12.9,8.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{dt}, \mathrm{J}=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, \mathrm{J}=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 2.73(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.58,158.59,154.85,152.12,134.80,132.26,130.25,128.79,127.68$, $127.63,127.27,126.52,126.40,126.05,95.94,77.23,76.97,76.72,71.98,70.83,52.52$, 33.58, 21.95, 21.74, 21.41, 21.38, 17.31, 16.37. HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 470.2291; Found: 470.2280.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=10.344 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=7.788 \mathrm{~min}(93 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+62{ }^{\circ}(\mathrm{c}=$ $\left.0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro -1H-1,2,4-triazole-3-carboxylate (4I):
66% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.02$ (dd, J = 12.5, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 ($\mathrm{dt}, \mathrm{J}=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}), 2.76-2.64(\mathrm{~m}$, $1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=6.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.28,157.42,154.82,152.01,133.39,133.13,132.68$, 130.02, 124.79, 122.59, 72.37, 71.05, 52.66, 33.54, 21.96, 21.75, 21.46, 17.26, 16.34. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 510.1828; Found: 510.1817.
The ee was determined by HPLC using Chiralpak AD-H column [n-hexane/EtOH (97.5:2.5)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=4.386 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=6.285 \mathrm{~min}(92 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+87^{\circ}(\mathrm{c}=$ $\left.0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(4-chlorophenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4m):
75% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (dd, $J=4.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (dd, $J=$ $8.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.98 (dd, $J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H})$, $2.64(\mathrm{dt}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}) .1 .30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.09(\mathrm{~m}$, $9 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.42,157.59,154.83,152.07$, $137.85,131.04,128.10,127.52,95.94,77.39,77.08,76.76,72.25,70.95,52.65,33.50,21.97$, 21.76, 21.52, 21.48, 17.29, 16.30. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 454.1745$; Found: 454.1728.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} \mathrm{major}=6.919 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=5.780 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+80^{\circ}(\mathrm{c}=0.1$,

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(3-chlorophenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4n):
77% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=6.7$,
$1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=7.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (dd, $J=12.5,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.95$ (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.31,157.27,154.73,151.84,133.83$, $131.47,130.84,129.58,129.01,127.78,95.99,77.20,76.95,76.69,72.21,70.94,52.58$, 33.47, 21.91, 21.70, 21.42, 17.20, 16.29. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 476.1564; Found: 476.1557.

The ee was determined by HPLC using a Chiralcel OJ column [n-hexane/EtOH (98:2)]; flow
rate $1.0 \mathrm{~mL} / \mathrm{min}$; t_{R} major $=8.047 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=6.103 \mathrm{~min}(92 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+94{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(4-bromophenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (40):
65% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 2 H), 4.98 (dd, $J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.89(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dt}, J=$ $13.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 9 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.34,157.62,154.75,152.02,131.13,131.02$, 128.00, 126.20, 95.96, 77.24, 76.98, 76.73, 72.18, 70.87, 52.55, 33.45, 21.90, 21.69, 21.46, 21.42, 17.21, 16.27. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 498.1240; Found: 498.1243.

The ee was determined by HPLC using Chiralpak AD-H column [n-hexane/EtOH (98:2)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=7.492 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=10.924 \mathrm{~min}(91 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+83^{\circ}(\mathrm{c}=0.1$,

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(3-fluoro-4-methylphenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4p):
87% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{dt}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dt}, \mathrm{J}=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dt}, J=$ $13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{dd}, \mathrm{J}=10.7,6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{dd}, J=6.2,4.3 \mathrm{~Hz}, 6 \mathrm{H})$, $1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.49,161.67$, $159.23,157.52,154.87,152.14,130.83,130.78,129.09,128.91,128.37,128.29,125.28$, 125.24, 116.45, 116.20, 95.87, 77.35, 77.04, 76.72, 72.16, 70.91, 52.62, 33.52, 21.98, 21.77, 21.52, 21.50, 17.28, 16.32, 14.72, 14.69. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.51$. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{FN}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 452.2197 ; Found: 452.2200 .

The ee was determined by HPLC using a Chiralcel OD column［n－hexane／EtOH（99：1）］；flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ ； t_{R} major $=9.621 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=7.885 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+67{ }^{\circ}(\mathrm{c}=0.1$ ， CHCl_{3} ）．

峰表

PDA Ch1 254 nm 4 nm					
峰茾	保留时间	面积	高度	面积 $\%$	高表 $\%$
1	7.885	63866	1840	5.084	4.703
2	9.621	1192359	37287	94.916	95.297
总计		1256225	39127	100.000	100.000

Methyl 1，2－bis（isopropoxycarbonyl）－3－isopropyl－5－（4－fluorophenyl）－2，3－dihydro－1H－1，2，4－ triazole－3－carboxylate（4q）：
65% yield，colorless oil．${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$ ， $1 \mathrm{H}), 4.98(\mathrm{dt}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dt}, J=$ $13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{dd}, J=10.7,6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{dd}, J=6.2,4.3 \mathrm{~Hz}, 6 \mathrm{H})$ ， $1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.49,161.67$ ， $159.23,157.52,154.87,152.14,130.83,130.78,129.09,128.91,128.37,128.29,125.28$ ， $125.24,116.45,116.20,95.87,77.35,77.04,76.72,72.16,70.91,52.62,33.52,21.98,21.77$ ， 21．52，21．50，17．28，16．32，14．72，14．69．HRMS（ESI）Calcd．for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$：
438．2040；Found：438．2048．
The ee was determined by HPLC using a Chiralcel OD column［n－hexane／EtOH（99：1）］；flow
rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=10.465 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=8.731 \mathrm{~min}(90 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+77^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(3-cyanophenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4r):
51% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, J=7.7 Hz, 1H), $7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.71 (s, 3H), 2.68 (dt, J = 13.0, 6.4 Hz, 1H), 1.33 (d, J = 6.2 Hz, 3H), 1.30 (d, J = 6.3 Hz, 3H), $1.16(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ($167.12,156.65,154.73,151.90,134.51,133.68,133.25,130.51,128.66,117.74$, 112.45, 96.27, 77.17, 76.92, 76.66, 72.50, 71.11, 52.63, 33.48, 21.90, 21.68, 21.47, 21.43, 17.16, 16.31. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 467.1907$; Found: 467.1895 . The ee was determined by HPLC using IA column [n-hexane/EtOH (97.5:2.5)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=12.925 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=11.036 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+16{ }^{\circ}(\mathrm{c}=0.1$,
CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-isopropyl-5-(6-methoxypyridin-3-yl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4s):
50% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 1 \mathrm{H}), 6.77-$ $6.71(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=12.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.47,165.99,156.02$, 154.74, 152.04, 149.09, 139.62, 118.37, 109.79, 95.68, 77.24, 76.98, 76.73, 72.14, 70.79, 53.76, 52.48, 33.49, 21.88, 21.67, 21.49, 21.44, 17.17, 16.26. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 451.2193; Found: 451.2178.
The ee was determined by HPLC using IA column [n-hexane/EtOH (99:1)]; flow rate 0.5
$\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=25.889 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=23.540 \mathrm{~min}(90 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+46{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Methyl 1,2-bis(isopropoxycarbonyl)-3-benzyl-5-cyclopropyl-2,3-dihydro-1H-1,2,4-triazole -3-carboxylate (4t):
82% yield, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.97(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.3$ $\mathrm{Hz}, 4 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.73(\mathrm{~m}$, $1 \mathrm{H}), 0.52-0.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.82,161.87,154.09,150.35,134.09$, $131.25,127.44,126.60,92.08,77.21,76.96,76.71,71.53,70.67,52.79,41.11,21.98,21.65$, 21.61, 21.49, 10.09, 9.70, 8.29. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 432.2135$; Found: 432.2131.

The ee was determined by HPLC using IA column [n-hexane/EtOH (99:1)]; flow rate 1.0
$\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} \mathrm{major}=9.750 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=11.260 \mathrm{~min}(81 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+12^{\circ}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(isopropoxycarbonyl)-3-(4-bromophenyl)-5-([1,1'-biphenyl]-4-yl))-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (4u):
42% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}$, $4 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=15.6,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dt}, \mathrm{J}=$ $12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ (d, J = 6.2 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.26,159.36,150.73,144.38,140.10$, 133.07, 132.99, 130.86, 129.85, 128.94, 128.04, 127.20, 126.38, 121.13, 92.59, 72.35, 71.01, 53.18, 40.67, 22.13, 21.81, 21.34, 21.24. HRMS (ESI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{BrN}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$:
622.1553; Found: 622.1547.

The ee was determined by HPLC using AD column [n-hexane/EtOH (95:5)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=10.399 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=14.044 \mathrm{~min}(93 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+74{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Chromatogram

1 PDA Multi $1 / 254 \mathrm{~mm} 4 \mathrm{~mm}$
PeakTable
PDACh1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.295	6821916	262266	50.040	63.819
2	13.721	681105	148690	49.960	36.181
Total		13633021	410956	100.000	100.000

Chromatogram
D: le木东201Data Huang GrouplShaoqianlYH00068-23\YH00068-23-2.lcd
uV

1 PDA Multi $1 / 254 \mathrm{~mm} 4 \mathrm{~mm}$
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.399	1200626	46078	96.663	97.830
2	14.044	41451	1022	3.337	2.170
Total		1242078	47100	100.000	100.000

Methyl 1,2-bis(ethoxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (DEAD-product):
90% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dt}, \mathrm{J}=$ $13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{dd}, J=13.9,6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.46,158.30,155.35,152.52,131.57,129.55,128.93,127.76$, 96.10, 77.24, 76.98, 76.73, 63.55, 62.68, 52.60, 33.53, 17.13, 16.31, 14.19, 13.80.

HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 392.1822; Found: 392.1820

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} \mathrm{major}=14.941 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=10.307 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+61{ }^{\circ}(\mathrm{c}=$ $0.1, \mathrm{CHCl}_{3}$).

Methyl 1,2-bis(tertbutoxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3carboxylate (DTBAD-product):
72% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dt}, \mathrm{J}=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}$, $9 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8167.78 , 158.73, 153.80, 150.84, 131.21, 129.44, 128.37, 127.73, 95.21, 83.75, 82.30, 77.22, 76.97, $76.71,52.37,33.54,28.01,27.56,17.23,16.29$. HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 448.2448; Found: 448.2487.

The ee was determined by HPLC using a Chiralcel OD column [n-hexane/EtOH (99:1)]; flow rate $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=12.183 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=8.688 \mathrm{~min}(90 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+66^{\circ}(\mathrm{c}=$
$\left.0.1, \mathrm{CHCl}_{3}\right)$.

Methyl 1,2-bis(4-chlorobenzyloxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylate (DCAD-product):
83% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{q}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{q}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $2.65(\mathrm{dt}, J=13.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.16,157.88,155.15,152.34,134.40,134.34,133.83,132.82,131.76$, $129.60,129.50,129.27,128.70,128.60,127.98,96.38,77.27,77.02,76.76,68.30,67.51$,

52．63，33．46，17．15，16．27．HRMS（ESI）Calcd．for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$： 584.1355 ；Found： 584．1344．

The ee was determined by HPLC using IA column［n－hexane／EtOH（95：5）］；flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=13.711 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=16.931 \mathrm{~min}(59 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+46{ }^{\circ}(\mathrm{c}=0.1$ ， CHCl_{3} ）．

PDA Ch1 254nm 4num

㐿茾	保留时间	面积	高度	面积 \％	度 \％
1	13.711	724168	34390	79.439	82.863
2	16.931	187432	7112	20.561	17.137
总计		911600	41502	100.000	100.000

Methyl 1－isopropyl－5，7－dioxo－3，6－diphenyl－1，5，6，7－tetrahydro－［1，2，4］triazolo［1，2－a］［1，2，4］ triazole－1－carboxylate（PTAD－product）：
52% yield，colorless oil．${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.49(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dt}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$ ， $1.25(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.52,153.75$ ， 153．61，148．69，133．13，131．01，130．39，129．16，128．80，128．27，126．08，125．04，98．09，77．25， $77.00,76.75,53.46,33.08,17.56,16.11$ ．HRMS（ESI）Calcd．for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$： 393．1563；Found：393．1555．
The ee was determined by HPLC using a Chiralcel IA column［n－hexane／EtOH（99：1）］；flow
rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=10.263 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=11.746 \mathrm{~min}(2 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+18^{\circ}(\mathrm{c}=$ $\left.0.1, \mathrm{CHCl}_{3}\right)$.

Derivatization and Characterization of Triazoline Products

Three equivalents of Lil was added to a solution of $4 a$ in EA and refluxed overnight. The progress of the reaction was monitored by TLC. The reaction was washed three times with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile solvent was removed and the product 8 was used directly without further purification. A solution of 8, EDCI (2 equiv.) and HOAT (2 equiv.) in dry dichloromethane was cooled to $0^{\circ} \mathrm{C}$, and followed this, DIPEA (8 equiv.) was added. After the reaction mixture was stirred for 5 min , the amine (1.5 equiv.) was added dropwise. The progress of the reaction was monitored by TLC. Up on complete consumption of the starting material 8 , the reaction was washed three times with aqueous NaHCO 3 solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile solvent was removed and the product was purified by silica gel flash chromatography (ethyl acetate / hexane).

Isopropyl 7a-isopropyl-6-((S)-1-methoxy-1-oxopropan-2-yl)-5,7-dioxo-2-phenyl-5,6,7,7a-tetrahydro-3H-imidazo[1,5-b][1,2,4]triazole-3-carboxylate (9a):
85% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (dd, J=10.6,
$4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 3H), $2.52(\mathrm{dd}, \mathrm{J}=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.75,168.77,161.29,160.18,152.40,132.15,129.81,128.35,127.97,96.25,77.17,76.92$, 76.67, $72.49,52.68,49.05,32.04,29.30,21.52,21.41,16.07,14.92,14.38$. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 431.1931; Found: 431.1932.
The ee was determined by HPLC using IA column [n-hexane/EtOH (97.5:2.5)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=8.898 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=10.609 \mathrm{~min}(92 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+136{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Isopropyl 6-((S)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)-7a-isopropyl-5,7-dioxo-2-phenyl-5,6,7,7a-tetrahydro-3H-imidazo[1,5-b][1,2,4]triazole-3-carboxylate (9b):
83% yield, colourless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dt}, J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=14.9,12.4,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=14.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ (dd, $J=6.1,2.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.18 (dd, $J=6.1,3.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.14 (dd, $J=16.9,6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.95 (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.96,170.61,167.13,167.09,162.18,161.64$, $160.41,160.37,152.34,132.31,129.95,129.88,128.26,128.05,128.03,96.40,96.37,72.69$, 60.33, 60.28, 60.10, 56.20, 53.03, 52.88, 32.33, 32.17, 21.56, 21.46, 16.18, 16.15, 14.95.

HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 447.1880; Found: 447.1875.
The ee was determined by HPLC using IA column [n-hexane/EtOH (95:5)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=22.344 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{minor}=25.584 \mathrm{~min}(91 \% \mathrm{ee}) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+168{ }^{\circ}(\mathrm{c}=0.1$, CHCl_{3}).

Isopropyl 6-butyl-7a-isopropyl-5,7-dioxo-2-phenyl-5,6,7,7a-tetrahydro-3H-imidazo[1,5-b] [1,2,4]triazole-3-carboxylate (9c):
81% yield, colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 1 H), 7.42 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.98 (dt, $J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (td, $J=7.1,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (dt, J = 13.7, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (dd, $J=8.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.36-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{dd}, J=13.5,7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.73,162.43,160.20,152.56,132.17,129.86,128.45,127.99,96.21$, 72.49, 39.32, 31.89, 29.56, 21.60, 21.47, 19.83, 16.29, 14.88, 13.49. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 401.2189$; Found: 401.2187.
The ee was determined by HPLC using IA column [n-hexane/EtOH (99:1)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} \mathrm{major}=8.044 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ minor $=12.210 \mathrm{~min}(90 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+81^{\circ}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$.

Diisopropyl 3-((3,5-dimethoxyphenyl)carbamoyl)-3-isopropyl-5-phenyl-1H-1,2,4-triazole-1,2(3H)-dicarboxylate (9d):
85% yield, colourless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.05(\mathrm{dt}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dt}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.19(\mathrm{~s}$, $1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.01(\mathrm{~m}$, $6 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.57,158.85,156.55,154.14$, 151.87, 149.52, 131.63, 129.86, 129.19, 127.78, 121.10, 120.48, 103.91, 98.76, 96.45, 72.12, 70.82, $55.84,55.50,21.84,21.82,21.36,21.29,17.79,16.19$. HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 541.2662$; Found: 541.2656.
The ee was determined by HPLC using IA column [n-hexane/EtOH (97.5:2.5)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ major $=18.973 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \operatorname{minor}=21.623 \mathrm{~min}(93 \%$ ee $) .{ }^{27.8}[\alpha]_{\mathrm{D}}=+102{ }^{\circ}(\mathrm{c}=0.1$,

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013
CHCl_{3}).

References

1. Tomotaka, O.; Yasutaka, H.; Yoshiji, T. J. Am. Chem. Soc. 2003, 125, 12672.
2. Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967.
3. Luo, J.; Xu, L.-W.; Hay, R.A.S.; Lu, Y.-X. Org. Lett. 2009, 11, 437.
4. Gryko, D.; Lipiński, R. Eur. J. Org. Chem. 2006, 3864
5. Lee, J.-W.; Ryu, T. H.; Oh, J. S.; Bae, H. Y.; Jang, H. B.; Song, C. E. Chem. Commun., 2009, 7224.
6. a) Brunner, H.; Buegler, J.; Nuber, B. Tetrahedron Asymmetry. 1995, 6, 1699. b) Brunner, H.; Schmidt, P. Eur. J. Org. Chem. 2000, 2119. c) Brunner, H.; Baur, M. A. Eur. J. Org. Chem. 2003, 2854. d) Sundermeier, U.; Döbler, C.; Mehltretter, G. M.; Baumann, W.; Beller, M. Chirality 2003, 15, 127
7. a) Chen, F. M. F.; Kuroda, K.; Benoiton, N. L. Synthesis, 1978, 12, 928. b) Peet, N. P.; Burkhart, J. P.; Angelastro, M. R.; Giroux, E. L.; Mehdi, S.; Bey, P.; Kolb, M.; Neises, B.; Schirlin D. J. Med. Chem. 1990, 33, 394. c) Peddibhotla, S.; Tepe, J. J. Synthesis, 2003, 9, 1433. d) Kahlon, D. K.; Lansdell, T. A.; Fisk, J. S.; Hupp, C. D.; Friebe, T. L.; Hovde, S.; Jones, A. D.; Dyer, R. D.; Henry, R. W.; Tepe, J. J. J. Med. Chem. 2009, 52, 1302. e) Saleem, R. S. Z.; Tepe, J. J. J. Org. Chem. 2010, 75, 4330.

NMR Spectra Images

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

