Electronic Supplementary Information (ESI)

Solvent stable polymeric membranes via UV depth-curing

Izabela Strużyńska-Piron,^a Johan Loccufier,^b Luc Vanmaele^b, Ivo F.J. Vankelecom^{a,*}

^a Centre for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23, Box 2461, B-3001 Leuven, Belgium,

^b Agfa-Gevaert N.V., Septestraat 27, B-2640 Mortsel, Belgium

* corresponding author

1. Experimental section

Table 1 presents an overview of the photoinitiators used for the investigation of the influence of photoinitiator type and concentration on the UV curing efficiency.

Table 2 illustrates the cross-linkers applied to study the change in UV curing efficiency upon addition of a cross-linker with different functionality.

Table 3 shows the absorbance peak of the photoinitiators and the co-initiator used in this research.

Table 4 gives the composition of the membranes used to explore the effect of different type and concentration of the photoinitiator on the C=C conversion (Results and discussion section, paragraph 1), while Table 5 shows the composition of the membranes applied for studying the influence of the cross-linker functionality on the C=C conversion (Results and discussion section, paragraph 2). In further paragraphs, the membrane $3M5^{TPO}$ (Table 5) was used.

The SRNF filtrations were carried out using a high-throughput dead-end filtration module (HTML, Belgium) with 8 filtration cells and an active membrane surface area of 1.54 10^{-4} m² mechanically stirred at 300 rpm. A solution of 17.5 μ M of Rose Bengal B (RB, M_w = 1017 Da) in IPA was used as a feed. Separation was performed under various pressures ranging from 5 to 20 bar, depending on the membrane. The permeance was calculated as a ratio of collected permeate (V, l) to the active surface area of the membrane (A, m²), collection time (t, h) and applied pressure (p, bar), as in eq. 1:

$$Permeance = \frac{V}{A*t*p}, \qquad (1 \text{ m}^{-2}\text{h}^{-1}\text{bar}^{-1})$$
(1)

The rejection was determined based on eq. 2:

$$R = \left(1 - \frac{C_P}{C_F}\right) * 100 , \qquad (\%)$$

where C_P and C_F are concentration of RB in the permeate and in the feed solution, respectively (µmol/l). The concentration of the RB in the permeate was determined by means of UV/Vis spectrophotometry at $\lambda_{max} = 555$ nm (Perkin - Elmer, Lambda 12 spectrophotometer).

2. Results and discussion section

Fig. 1a is an example of the way of choosing a photoinitiator based on the conversion of the C=C bond of SR399LV cross-linker for the membrane with various concentrations of the TPO photoinitiator. ATR-FTIR analysis of the conversion of the C=C bond (of SR399LV) for various types of PhIn systems and various PhIn concentrations (from 1 up to 7 wt%) (see Manuscript, Fig. 1), indicated TPO and IR819 as the most efficient photoinitiators. Because there was no spectacular increase of the conversion of the C=C bond upon addition of higher concentrations of TPO or IR819, a concentration of 3 wt% was chosen for further studies. As for the photoinitiator, TPO was selected mainly because of the yellowing effect of IR819 when applied in coatings and also because membranes loaded with IR819 exhibited worse adhesion to the non-woven support.

Table 6 contains the Hansen solubility parameters for PSU, cross-linkers, and photoinitiator. The solubility parameters (δ) of the cross-linkers and the photoinitiators were calculated based on the group contribution method of Hoftyzer and Van Krevelen [1] (eqs 3 – 6), and the interactions between compound (i) and (j) (j = DMF, H₂O or PSU) according to eq. 7.

$$\delta_{d,i} = \frac{\Sigma F_{d,i}}{V_i} \tag{3}$$

$$\delta_{p,i} = \frac{\sqrt{\Sigma F_{p,i}^2}}{V_i} \tag{4}$$

$$\delta_{h,i} = \sqrt{\frac{\Sigma E_{h,i}}{V_i}} \tag{5}$$

$$\sqrt{\delta_{t,i}^2} = \sqrt{\delta_{d,i}^2 + \delta_{p,i}^2 + \delta_{h,i}^2}$$
(6)

$$\Delta \delta_{t,j_{i}} = \left| \delta_{t,j} - \delta_{t,i} \right| \tag{7}$$

where:

 $\delta_{d,i}$, $\delta_{p,i}$, and $\delta_{h,i}$ are the partial (Hansen) solubility parameters attributed to dispersive forces, polar forces, and hydrogen bonding, respectively;

 $F_{d,i}$, $F_{p,i}$, and $E_{h,i}$ are group contributions to dispersive forces, polar forces, and to hydrogen bonding, respectively;

 $\delta_{t,j}$, $\delta_{t,I}$ and $\Delta \delta_{t\,j/i}$ are total solubility parameter of a component j and i and the difference between the total solubility parameter of the component j and i, respectively;

and V_i is the molar volume of the component (i).

Table 7 gives the solvent stability results for the reference and UV cured PSU membranes. The stability in the various solvents at room temperature was defined by visual inspection.

Photoinitiator	Name	Structure
ТРО	2,4,6-trimethylbenzoyl-diphenyl- phosphineoxide (Darocur TM TPO)	H ₃ C CH ₃ CH ₃
IR819	bis (2,4,6- trimethylbenzoyl)- phenylphosphineoxide (Irgacure TM 819)	H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
IR907	2-methyl-1-[4-(methylthio) phenyl]-2-(4-morpholinyl)-1- propanone (Irgacure [®] 907)	H ₃ C _S H ₃ C _S
IR369	2-benzyl-2-(dimethylamino)-1-[4- (4-morpholinyl)phenyl]-1- butanone (Irgacure [®] 369)	H ₃ C H ₃ C H ₃ C H ₃ C
ITX	isopropylthioxanthone (Darocur [®] ITX)	CH ₃ CH ₃
EDB (co-initiator)	ethyl 4-(dimethylamino) benzoate (Darocur [®] EDB)	H ₃ C _N H ₃ C

Table 1. List of photoinitiators (PhIns), their name and structure.

Cross-linker	Name	Structure
EGDA	ethylene glycol diacrylate (EGDA)	
SR351	trimethylolpropane triacrylate (Sartomer [™] SR351)	
SR295	pentaerythritol tetraacrylate (Sartomer [™] SR295)	
SR399LV	dipentaerythritol pentaacrylate (Sartomer [™] SR399LV)	
M600	dipentaerythritol hexaacrylate (Miramer TM M600)	

Table 2. List of cross-linkers, their name and structure.

Table 3. Absorbance peaks in DMF of the photoinitiators and the co-initiator.

Photoinitiator	Absorbance peak (nm)
ТРО	280, 360, 380, 400
IR819	290, 365, 395
IR907	230, 305
IR369	232, 325
ITX	270, 380
EDB (co-initiator)	230, 310

Membrane code	PSU (wt%)	PhIn system	PhIn (wt%)	Cross-linker (SR399LV) (wt%)	DMF (wt%)	THF (wt%)
M0	21	-	-	-	67,11	11,89
XM5 ^{TPO}		ТРО				
XM5 ^{IR819}		IR819				
XM5 ^{I+IR907}	21	ITX + IR907 (1:1)	1-7	5	56,96÷ 62,05	10,05 ÷10,9 5
XM5 ^{I+IR369}		ITX + IR369 (1:1)				
XM5 ^{I+EDB}]	ITX + EDB (1:1)				

Table 4. Composition of the UV curable membranes with various PhIns before NIPS.

 XMY^{z} : X – PhIn concentration, x = 1, 3, 5 or 7 wt%; Y – cross-linker type; z – PhIn type

Table 5. Composition of the UV curable membranes with various cross-linkers before NIPS.

Membrane	PSU	PhIn	Cross-linker	DMF	THF
code	(wt%)	(3 wt%)	(5 wt%)	(wt%)	(wt%)
M0	21	-	-	67,11	11,89
3M2 ^{TPO}			EGDA		
3M3 ^{TPO}			SR351		
3M4 ^{TPO}	21	ТРО	SR295	60,35	10,65
3M5 ^{TPO}			SR399LV		
3M6 ^{TPO}			M600		

 XMY^{z} : X – PhIn concentration, x = 3; Y – cross-linker type; z – PhIn type

Compound	δ_d	δ_p	δ_h	δ_t	$\Delta\delta_{t\ H2O/i}$	$\Delta \delta_{t \ DMF/i}$	$\Delta\delta_t \ _{PSU/i}$
(i)	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$	(MPa ^{1/2})	$(MPa^{1/2})$
ТРО	19,7	2,9	2,7	20,1	27,7	4,7	2,8
BAPO	19,4	3,4	3,5	20,0	27,8	4,8	2,9
1907	19,8	5,1	6,6	21,4	26,4	3,4	1,5
I369	19,5	4,6	6,9	21,2	26,6	3,6	1,7
ITX	20,8	4,0	3,2	21,5	26,3	3,3	1,4
EDB	19,1	5,4	6,8	21,0	26,8	3,8	1,9
M2	14,8	4,6	9,6	18,3	29,5	6,5	4,6
M3	15,5	3,3	9,0	18,2	29,6	6,6	4,7
M4	15,6	3,4	9,9	18,8	29,0	6,0	4,1
M5	16,4	3,1	12,0	20,6	27,2	4,2	2,3

M6	16,0	2,8	10,0	19,1	28,7	5,7	3,8
DMF [2]	17,4	13,7	11,3	24,8	23,0	-	1,9
H ₂ 0 [2]	15,5	16	42,3	47,8	-	23,0	24,9
PSU [2]	19,7	8,3	8,3	22,9	24,9	1,9	-

[1] J. Brandrup et al., Polymer handbook, 4th edition, 1999

[2] Ch. M. Hansen, Hansen solubility parameters, A User's Handbook, 2nd edition, 2007

Fig. 1a. Influence of the TPO concentration on the conversion of the C=C bond (of the SR399LV cross-linker) on top and bottom side of the membrane (150 μ m wet thickness).

Table 7.	Solvent	stability re	sults fo	or the r	eference an	nd UV	cross-linked PSU	membranes
		- 1						

	PSU membrane		
Solvent	Reference	UV cured	
IPA	0	0	
Acetone	Х	0	
Ethyl acetate	1	0	
THF	1	х	

0-stable, x-swelling, 1-dissolution