Li₄NiTeO₆ as positive electrode for Li-ion batteries

DOI: 10.1039/c3cc46842a

M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, K. Guruprakash, A. S. Prakash, M. L. Doublet and J.-M. Tarascon

Supplementary information

Structural Analysis deduced from the refinement of Synchrotron X-Ray diffraction pattern of Li₄NiTeO₆.

The structure of the compound was analyzed by Rietveld refinement against highresolution synchrotron powder diffraction data, collected on the 11-BM beamline at the Advanced Photon Source (APS, Argonne National Laboratory) with a wavelength of 0.4138Å. Powders were sealed in 1.5 mm diameter kapton capillaries. The 2θ range over which the fit was done is [2°-50°]. We observed some Lorentzian broadening for some reflections (**Figure S1a**), which can arise from size and/or strain effects. Therefore, additional refinements were performed, with the 1/cos θ dependent parameters to fit the intrinsic profile through isotropic size effects, and a tan θ dependence of anisotropic strain. No size broadening was observed and strain parameters, whose S_{hkl} values using Stephens notation¹ are below, led to an improved refinement, as shown on the same set of reflections in **Figure S1b**. The final structural model is shown **Table S1**, and selected bond lengths & bond valence sum analysis were reported in supplementary information-**Table S2**.

1. Stephens, P., Phenomenological model of anisotropic peak broadening in powder diffraction. *Journal of Applied Crystallography* **1999**, 32, (2), 281-289.

Figure S1: Portion of the Synchrotron X-Ray diffraction pattern of Li_4NiTeO_6 (λ =0.4138 Å): a) Rietveld fit with the instrumental resolution function b) adding some anisotropic strain parameters as shown in Table S1.

<u>**Table S1:**</u> Structural parameters of Li_4NiTeO_6 deduced from the Rietveld refinement of Synchrotron XRD.

Space Group	a (Å)	b (Å)	c (Å)	β (°)	Volume (Å ³)	Density (g.cm ⁻³)
<i>C</i> 2/ <i>m</i>	5.1584(1)	8.8806(1)	5.1366(1)	110.241 (1)	220.777(3)	4.665
Atom	Wyckoff Site	X	у	Z	Biso (Å ²)	Occupation factor
Li1	4h	0	0.1738(5)	1/2	0.66(6)	1
Li2	2d	0	1/2	1/2	0.31(9)	1
Li3/Ni	4g	0	0.3335(1)	0	0.43(1)	0.5 Li + 0.5 Ni
Te	2a	0	0	0	0.34(1)	1
01	8j	0.2309(2)	0.1533(2)	0.2334(2)	0.29(2)	1
O2	4 <i>i</i>	0.2302(3)	0	0.7772(3)	0.26(3)	1

Strain Parameters $(x10^{-4})$								
S_{400}	S ₀₄₀	S ₀₀₄	S ₂₂₀	S ₂₀₂	S ₀₂₂	S ₁₂₁	S ₃₀₁	S ₁₀₃
0.168(2)	0.0083(2)	0.333(3)	0.097(2)	0.162(8)	0.235(2)	0.323(3)	0.195(6)	0.277(7)

Table S2:

Average *M*-O Distances (*M*=Li, Ni, Te), Bond Valence Sum values (BVS) and distortion of octahedra (Δ) obtained from the refinement of the Synchrotron X-Ray diffraction pattern of Li₄NiTeO₆. A bond valence sum analysis with the Zachariasen formula $BVS = e^{(d_0-d)}/_{0.37}$, using d₀ parameters from Brown,¹ was performed and the deduced valences are in perfect agreement with what expected, in particular for Te⁶⁺ (5.894(9)) for which bond distance to (Te-O) is shorter than the Li/Ni-O ones . Morever, the structural distortion of the *M*O₆ octahedron (*M*=Li, Ni, Te), has been calculated with the formulae $\Delta = \frac{1}{6} \sum_{n=1}^{6} \left(\frac{(d_n - \langle d \rangle)}{\langle d \rangle} \right)^2$ where, d_n are the individual *M*-O distances and $\langle d \rangle$ is the average value of the 6 M-O distances. Δ is displayed in the Table and indicates regular octahedra.

Atom	Coordinence	ExpectedAverage M-ODistortion AValencedistance (Å)(x10-4)		Distortion Δ	BVS	
	Coordinence			$(x10^{-4})$		
Li1	6	1.000	2.1561(11)	2.923	0.934(3)	
Li2	6	1.000	2.1587(5)	24.512	0.959(1)	
Li3	6	1.000	2.1047(4)	0.845	1.069(1)	
Ni	6	2.000	2.1047(4)	0.845	1.777(2)	
Те	6	6.000	1.9236(5)	0.149	5.894(9)	
01	6	-2.000	2.0988(5)	11.793	1.928(3)	
O2	6	-2.000	2.1074(7)	24.301	1.928(5)	

Reference :

 I. D. Brown, D. Altermatt, Acta Crystallographica Section B-Structural Science, 1985, 41, 244.

Figure S2:

Schematic representation of the Te inductive effect on the Ni²⁺/Ni⁴⁺ redox couple through an orbital interaction viewpoint., i.e. showing the lowering of the redox orbital when Ni²⁺ is surrounded by 3(TeO₆)⁶⁻ octahedra as it occurs in the honeycomb layers of the Li₄NiTeO₃ structure. For sake of clarity only one atomic orbital per element is represented. The global charges added to each molecular entity are required to compensate for the O-excess compared to the solid state stoichiometry. (a) The molecular orbital diagrams of (Ni²⁺O₆)¹⁰⁻ and (Te⁶⁺O₆)⁶⁻ show that Te⁶⁺ is more covalently bonded to the O²⁻ ligands than Ni²⁺ due to the smaller electronegative difference $\Delta \chi$ -Te/O compared to $\Delta \chi$ -Ni/O. This leads to a significant energy lowering of the oxygen-like O(π) orbitals in TeO₆ compared to NiO₆. (b) The molecular orbital diagram of the (Ni²⁺Te⁶⁺₃O₁₈)¹⁶⁻ cluster shows that the redox orbital is lowered in energy due to the smaller interaction of Ni²⁺(3d) orbitals with the strongly electronegative O(π) orbitals of the (TeO₆)⁶⁻ surrounding octahedra, thus increasing the Ni²⁺/Ni⁴⁺ redox potential with respect to Li⁺/Li.

(a)