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Supplementary information

Structural Analysis deduced from the refinemeniSghchrotron X-Ray diffraction
pattern of LiNiTeOs.
The structure of the compound was analyzed by Blieétvefinement against high-

resolution synchrotron powder diffraction data,lected on the 11-BM beamline at the
Advanced Photon Source (APS, Argonne National Laiooy) with a wavelength of
0.4138A. Powders were sealed in 1.5 mm diametetokapapillaries. The @ range over
which the fit was done is [2°-50°We observed some Lorentzian broadening for some
reflections Figure S13, which can arise from size and/or strain effeciierefore,
additional refinements were performed, with theo#icdependent parameters to fit the
intrinsic profile through isotropic size effectsidaa ta® dependence of anisotropic strain. No
size broadening was observed and strain parametérsse $q values using Stephens
notatiort are below, led to an improved refinement, as showthe same set of reflections in
Figure S1h The final structural model is showiable S1,and selected bond lengths & bond

valence sum analysis were reported in supplememtogmationTable S2.

1. Stephens, P., Phenomenological model of anisotiogadk broadening in powder
diffraction. Journal of Applied Crystallography 1999,32, (2), 281-289.
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Figure S1: Portion of the Synchrotron X-Ray diffraction patteof
Li,NiTeOs (A=0.4138 A):a) Rietveld fit with the instrumental resolution
function b) adding some anisotropic strain paramets shown in Table S1.
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Table S1:Structural parameters of INiTeOs; deduced from the Rietveld
refinement of Synchrotron XRD.

gfo'ﬁ)e a (A) b (A) c (A B (°) Volume (A% | Density (g.cn)
110.241
Caim | 5.1584(1) | 8.8806(1)5.1366(1) ] 220.777(3) 4.665
Wyckoff , Occupation
Atom éi o X y z Biso (X) fath)or
LiL 4h 0 | 01738B) 172 0.66(6) 1
Li2 2d 0 1/2 1/2 0.31(9) 1
Li3/Ni 49 0 | 03331 0 0.43(1) 05Li+05Ni
Te 7 0 0 0 0.34(1) 1
o1 g 0.2309(2)| 0.1533(2)| 0.2334(2)|  0.29(2) 1
02 4 0.2302(3) 0 0.7772(3)]  0.26(3) 1

Strain Parameters (x1

S40C SMC S)OA S’ZZC SZOZ 3322 S'12] %O] S105
0.168(2) | 0.0083(2) 0.333(3) 0.097(2) 0.162(8) 0(2B% 0.323(3)] 0.195(6) 0.277(7
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Table S2:

Average M-O Distances NI=Li, Ni, Te), Bond Valence Sum values (BVS) and
distortion of octahedraAj obtained from the refinement of the SynchrotrorRay

diffraction pattern of LiNiTeOs. A bond valence sum analysis with the Zacharidsenula

(do—d)/ .

BVS =e 037, using @ parameters from Browhwas performed and the deduced
valences are in perfect agreement with what erpednh particular for T& (5.894(9)) for
which bond distance to (Te-O) is shorter than LilNi-O ones . Morever, the structural

distortion of theMOg octahedron NI=Li, Ni, Te), has been calculated with the formulae

- 2 . . . . -
A= %Zgzl ((d“(di‘m) where, ¢ are the individuaM-O distances anfll) is the average value

of the 6 M-O distance4 is displayed in the Tabknd indicates regular octahedra.

Atom Coordinence Expected | Average M-O | DistortionA BVS
Valence | distance (A) (x10%)

Li1 6 1.000 2.1561(11) 2.923 0.934(3)
Li2 6 1.000 2.1587(5) 24512 0.959(1)
Li3 6 1.000 2.1047(4) 0.845 1.069(1)
Ni 6 2.000 2.1047(4) 0.845 1.777(2)
Te 6 6.000 1.9236(5) 0.149 5.894(9)
o1 6 -2.000 2.0988(5) 11.793 1.928(3)
02 6 -2.000 2.1074(7) 24.301 1.928(5)

Reference :

1. 1.D.Brown, D. Altermatt, Acta Crystallographica Section B-Structural Science, 1985, 41,
244,
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Figure S2:

Schematic representation of the Te inductive efbacthe Nf*/Ni** redox couple through
an orbital interaction viewpoint., i.e. showing tbevering of the redox orbital when Xi

is surrounded by 3(Te§” octahedra as it occurs in the honeycomb layershef
Li4sNiTeO; structure. For sake of clarity only one atomic itadb per element is
represented. The global charges added to each ufmleentity are required to
compensate for the O-excess compared to the tatel stoichiometry. (a) The molecular
orbital diagrams of (NiOg)*°"and (T&"0g)°” show that T& is more covalently bonded
to the G ligands than Ni due to the smaller electronegative differengeTe/O
compared ta\x-Ni/O. This leads to a significant energy lowerimighe oxygen-like Of)
orbitals in Te@ compared to Ni@ (b) The molecular orbital diagram of the
(Ni?"Te®*3019)™°" cluster shows that the redox orbital is loweredeirergy due to the
smaller interaction of Ni(3d) orbitals with the strongly electronegativeridrbitals of
the (TeQ@)® surrounding octahedra, thus increasing th&/Ni** redox potential with

respect to L/Li.
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