Supporting Information

Iridium Complexes of New NCP Pincer ligands: Catalytic Alkane Dehydrogenation and Alkene Isomerization

Xiangqing Jia, Lei Zhang, Chuan Qin, Xuebing Leng and Zheng Huang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China

huangzh@sioc.ac.cn

Table of Contents

1.	General information	3
2.	Procedures for preparation of iridium complexes	4
3.	Crystal structures and crystallographic data for iridium complexes	.11
4.	Procedures for alkane dehydrogenation	.18
5.	Procedures for alkene isomerization	.19
6.	Procedures for isomerization/hydroboration of internal olefins	23
7.	Reference	.27
8.	NMR spectra	28

1. General information

a. Materials

All manipulations were carried out using standard Schlenk, high-vacuum and glovebox techniques. THF and toluene were dried with Na and distilled under argon. Hexane was dried with CaH₂ and distilled under argon. *n*-Octane and 1-octene were dried with Na, vacuum transferred, and stored under argon. Tert-butylethylene (TBE) was purchased from TCI (96% purity). TBE was dried with LiAlH₄, vacuum transferred, and stored under argon. Pinacolborane (HBPin) was purchased from TCI (97% purity) and purified according to the reported procedure.^[1] The following chemicals were purchased and used as received: IrCl₃.xH₂O (J&K), di-*tert*-butylchlorophosphine (Acros, 96% purity), NaBHEt₃ (1.0 M in toluene) (Aldrich), trans-3-octene (TCI, 98% purity), 2,4-hexadiene (trans : cis = 12 : 1, TCI, 95% purity), 2-hexene (trans: cis = 2 :1, Acros, 85% purity), $[Ir(cod)Cl]_2$ ^[2] (PNN)FeCl₂ *cis*-6-chloro-2-hexene (TCI, 90% purity). **(3)**,^[3] (*t*^{Bu}PCP)IrHCl^[4] and (*t*^{Bu}POCOP)IrHCl^[5] were prepared as previously reported.

b. Analytical Methods

NMR spectra were recorded on varian 300 or 400 MHz and angilent 400 MHz at ambient temperature. The residual peak of deuterated solvent was used as a reference for ¹H and ¹³C chemical shifts. ³¹P NMR chemical shifts were referenced to an external 85% H₃PO₄ standard. GC analysis was acquired on Agilent 7890A gas chromatograph equipped with a flame-ionization detector. GC-MS analysis was performed on Agilent 7890A gas chromatograph coupled to an Agilent 5975C inert mass selective detector. Elemental analysis and high resolution mass spectrometer (HRMS) were performed by the Analytical Laboratory of Shanghai Institute of Organic Chemistry (CAS).

c. Abbreviations

1-oct = 1-octene Cis-2 = cis-2-octene COA = cyclooctane DME = dimethoxyethane DMSO = dimethyl sulfoxixde HBPin = pinacolborane TBE = *tert*-butylethylene THF = tetrahydrofuran *Trans*-2 = *trans*-2-octene *Trans*-3 = *trans*-3-octene TONs = turnover numbers

2. Procedures for preparation of iridium complexes

2-(3-methoxyphenyl)pyridine. To a 250 mL 3-neck flask, 2-bromopyridine (4.4 g, 27.8 mmol), 3-bromophenylboronic acid (5.0 g, 32.8 mmol), K₂CO₃ (9.4 g, 68.0 mmol), DME (50 mL) and distilled water (33 mL) were added. The reaction mixture was purged with argon for 30 min, then Pd(PPh₃)₄ (1.3 g, 1.1 mmol) was added and the mixture was heated to reflux for 12 h. The reaction mixture was cooled to room temperature and the solution was filtrated. The filtrate was extracted with ethyl acetate (30 mL × 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After the removal of the solvent, the crude product was purified with silica gel column chromatography (ethyl acetate/petroleum ether, v/v = 1/20), affording 3.2 g (61% yield) product as colorless oil. ¹H NMR (400 MHz, CD₃Cl) : δ 8.69 (d, *J* = 8.0 Hz, 1H), 7.76-7.70 (m, 2H), 7.59 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.23 (td, *J* = 8.0 Hz, 4.0 Hz, 1H), 3.89 (s, 3H). The spectroscopic data correspond to reported data.^[6]

2-(3-methoxyphenyl)-6-methylpyridine. To a 250 mL 3-neck flask, 2-bromo-6-methylpyridine (5.1 g, 29.8 mmol), 3-bromophenylboronic acid (5.0 g, 32.6 mmol),

K₂CO₃ (9.8 g, 71 mmol), DME (60 mL) and distilled water (38 mL) were added. The reaction mixture was purged with argon for 30 min, then Pd(PPh₃)₄ (1.7 g, 1.5 mmol) was added and the mixture was heated to reflux for 12 h. The reaction mixture was cooled to room temperature and the solution was filtrated. The filtrate was extracted with ethyl acetate (30 mL × 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified with silica gel column chromatography (ethyl acetate/petroleum ether, v/v = 1/50), affording 3.0 g (51% yield) product as colorless oil. ¹H NMR (400 MHz, CD₃Cl): δ 7.63 (td, *J* = 8.0 Hz, 1H), 7.58 (m, 1H), 7.54 (m, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.37 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.95 (m, 1H), 3.89 (s, 3H), 2.63 (s, 3H). ¹³C{¹H} NMR (100 MHz, CD₃Cl): δ 159.8, 157.9, 156.3, 140.9, 136.6, 129.4, 121.5, 119.1, 117.4, 114.3, 112.1, 54.9, 24.5. HRMS (ESI) m/z (M+H+) calcd for C₁₃H₁₄NO: 200.1070, found: 200.1072.

2-bromo-6-(*tert*-butyl)pyridine. Prepared according to a previously reported procedure.^[7] ¹H NMR (400 MHz, CD₃Cl): 7.44 (t, J = 8.0 Hz, 1H) , 7.26 (d, J = 8.0 Hz, 2H), 1.34 (s, 9H).

2-(*tert***-butyl)-6-(3-methoxyphenyl)pyridine.** To a 250 mL 3-neck flask, 2-bromo-6-(*tert*-butyl)pyridine (3.6 g, 16.8 mmol), 3-bromophenylboronic acid (3.1 g, 20.0 mmol), K₂CO₃ (5.8 g, 42.0 mmol), DME (30 mL) and distilled water (20 mL) were added. The reaction mixture was purged with argon for 30 min, then Pd(PPh₃)₄ (1.0 g, 0.9 mmol) was added and the mixture was heated to reflux for 12 h. The reaction mixture was cooled to room temperature and the solution was filtrated. The filtrate was extracted with ethyl acetate (30 mL × 3). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified with silica gel column chromatography (ethyl acetate/petroleum ether, v/v = 1/100), affording 2.7 g (67% yield) product as colorless oil. ¹H NMR (400 MHz, CD₃Cl): δ 7.85 (m, 1H), 7.73 (m, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.60 (m, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.32 (m, 1H), 7.02 (m, 1H), 3.94 (s, 3H), 1.52 (s, 9H). ¹³C{¹H} NMR (100 MHz, CD₃Cl): δ 168.9, 160.1, 155.1, 141.5, 136.8, 129.6, 119.3, 117.6, 117.0, 114.3, 112.5, 55.3, 37.8, 30.3. HRMS (ESI) m/z (M+) calcd for C₁₆H₁₉NO: 241.1465, found: 241.1467.

3-(pyridin-2-yl)phenol hydrobromide. 100 То mL flask, 2-(3а methoxyphenyl)pyridine (3.2 g, 17.3 mmol) and a 40% HBr (60 mL) aqueous solution were added. The reaction was heated at 120 °C for 12 h. After removal of the volatiles, the crude product was recrystallized with ethanol, affording 3.6 g (85% yield) product as beige white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 8.81 (m, 1H), 8.40 (t, J = 8.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 8.0 Hz, 1H), 7.44-7.39 (m, 3H), 7.01 (m, 1H). ¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ 158.1, 151.9, 145.9, 143.1, 133.0, 130.9, 125.4, 125.2, 119.0, 118.9, 114.8. Elemental analysis calcd for C₁₁H₁₀BrNO (250.99): C, 52.41; H, 4.00; N, 5.56. Found: C, 52.21; H, 4.29; N, 5.56.

3-(6-methylpyridin-2-yl)phenol hydrobromide. To a 100 mL flask, 2-(3methoxyphenyl)-6-methylpyridine (2.0 g, 10.0 mmol) and a 40% HBr (40 mL) aqueous solution were added. The reaction was heated at 120 °C for 12 h. After removal of the volatiles, the crude product was recrystallized with ethanol, affording 2.4 g (90% yield) product as beige white solid. ¹H NMR(400 MHz, DMSO-d₆): δ 8.44 (t, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.0 Hz 1H), 7.84 (t, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.36-7.32 (m, 2H), 7.08 (m, 1H), 2.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 157.9, 154.9, 152.0, 145.3, 133.2, 130.5, 125.8, 122.7, 119.3, 118.5, 115.2, 20.1. Elemental analysis calcd for C₁₂H₁₂BrNO (265.01): C, 54.16; H, 4.54; N, 5.26. Found: C, 53.99; H, 4.72; N, 5.28.

3-(6-(*tert***-butyl)pyridin-2-yl)phenol hydrobromide.** To a 100 mL flask 2-(*tert*-butyl)-6-(3-methoxyphenyl)pyridine (2.7 g, 11.0 mmol) and a 40% HBr (60 mL) aqueous solution were added. The reaction was heated at 120 °C for 12 h. After removal of the volatiles, the crude product was recrystallized with ethanol/petroleum ether, affording 2.9 g (84% yield) product as beige white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 7.98 (t, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.53-7.42 (m, 3H), 7.31 (t, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 1.40 (s, 9H). ¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ 166.1, 157.7, 153.9, 142.5, 136.8, 130.3, 121.4, 120.4, 118.9, 117.4, 114.8, 37.2, 29.6. Elemental analysis calcd for C₁₅H₁₈BrNO (307.06): C, 58.45; H, 5.89; N, 4.54. Found: C, 58.37; H, 5.89; N, 4.42.

2a

2-(3-((di-*tert***-butylphosphino)oxy)phenyl)pyridine 2a.** Di-*tert*-butylchlorophosphine (0.42 mL, 2.2 mmol) was added to a solution of 3-(pyridin-2-yl)phenol hydrobromide (0.5 g, 2.0 mmol) and NaH (0.18 mg, 4.4 mmol, 60% purity) in 5 mL THF in a 25 mL Schlenk flask. The flask was sealed with a Teflon plug and then heated at 100 °C for 3 h. After evaporation of the solvent under vacuum, the residue was extracted with 30 mL hexane, and the extract was cannula transferred and filtered through a pad of Celite. After removal of hexane under vacuum, the flask was heated at 70 °C for 1 h under vacuum to remove the remaining di-*tert*-butylchlorophosphine. The product was obtained as colorless viscous oil (0.5 g, 73% yield). ¹H NMR (400 MHz, C₆D₆): δ 8.56 (m, 1H), 8.41 (m, 1H), 7.75 (m, 1H), 7.38 (m, 1H), 7.36 (m, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.06 (m, 1H), 6.62 (m, 1H), 1.15 (d, *J* = 12.0 Hz, 18H). ³¹P NMR (162 MHz, C₆D₆): δ 152.3. ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 160.9 (d, *J* = 10.0 Hz), 157.1, 149.9, 141.4, 136.4, 129.9, 122.2, 120.3 (d, *J* = 1.0 Hz), 120.2, 119.2 (d, *J* = 12.0 Hz), 117.4 (d, *J* = 10.0 Hz), 35.8 (d, *J* = 27.0 Hz), 27.6 (d, *J* = 16.0 Hz). HRMS (ESI) m/z (M+) calcd for C₁₉H₂₇NOP:

316.18248, found: 316.18353.

2-(3-((di-tert-butylphosphino)oxy)phenyl)-6-methylpyridine 2b.

Di-*tert*-butylchlorophosphine (0.36 mL, 2.1 mmol) was added to a solution of 3-(6methylpyridin-2-yl)phenol hydrobromide (0.5 g, 1.9 mmol) and NaH (0.17 g, 4.1 mmol, 60% purity) in 5 mL THF in a 25 mL Schlenk flask. The flask was sealed with a Teflon plug and then heated at 100 °C for 3 h. After evaporation of the solvent under vacuum, the residue was extracted with 30 mL hexane, and the extract was cannula transferred and filtered through a pad of Celite. After removal of hexane under vacuum, the flask was heated at 70 °C for 1 h under vacuum to remove the remaining di-*tert*butylchlorophosphine. The product was obtained as colorless viscous oil (0.434 g (70% yield). ¹H NMR (400 MHz, C₆D₆): δ 8.36 (m, 1H), 7.78 (m, 1H), 7.40 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 2.43 (s, 3H), 1.15 (d, *J* = 12.0 Hz, 18H). ³¹P NMR (162 MHz, C₆D₆): δ 151.9. ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 160.9 (d, *J* = 9.0 Hz), 158.5, 156.6, 141.8, 136.7, 129.9, 121.6, 120.5 (d, *J* = 1.0 Hz), 118.8 (d, *J* = 12.0 Hz), 117.5 (d, *J* = 9.0 Hz), 117.4, 35.8 (d, *J* = 27.0 Hz), 27.6 (d, *J* = 15.0 Hz), 24.8. HRMS (ESI) m/z (M+H+) calcd for C₂₀H₂₉NOP: 330.19813, found: 330.19885.

2-(tert-butyl)-6-(3-((di-tert-butylphosphino)oxy)phenyl)pyridine 2c.

Di-*tert*-butylchlorophosphine (0.34 mL, 2.0 mmol) was added to a solution of 3-(6-(*tert*-butyl)pyridin-2-yl)phenol hydrobromide (0.5 g, 1.6 mmol) and NaH (0.14 g, 3.6 mmol, 60% purity) in 5 mL THF in a 25 mL Schlenk flask. The flask was sealed with a Teflon plug and then heated at 100 °C for 3 h. After evaporation of the solvent under vacuum, the residue was extracted with 30 mL hexane, and the extract was cannula transferred and

filtered through a pad of Celite. After removal of hexane under vacuum, the flask was heated at 70 °C for 1 h under vacuum to remove the remaining di-*tert*-butylchlorophosphine. The product was obtained as colorless viscous oil (0.452 g (75% yield). ¹H NMR (400 MHz, C₆D₆): δ 8.39 (d, J = 1.0 Hz, 1H,), 7.81 (m, 1H), 7.36 (m, 1H), 7.31 (m, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.16 (m, 1H), 6.95 (m, 1H), 1.42 (s, 3H), 1.17 (d, J = 12.0 Hz, 18H). ³¹P NMR (162 MHz, C₆D₆): δ 153.0. ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 169.0, 160.8 (d, J = 10.0 Hz), 155.7, 142.0, 136.9, 129.9, 120.5 (d, J = 1.0 Hz), 119.0 (d, J = 10.0 Hz), 117.5, 117.4 (d, J = 11.0 Hz), 117.3, 37.9, 35.8 (d, J = 26.0 Hz), 30.4, 27.6 (d, J = 16.0 Hz). HRMS (ESI) m/z (M+) calcd for C₂₀H₃₄NOP: 371.24508, found: 371.07178.

Iridium Complexe 1a. In a 50 mL Schlenk flask, compound **2a** (0.37 g, 1.2 mmol) and $[Ir(cod)Cl]_2$ (0.37 g, 0.56 mmol) were dissolved in 20 mL toluene. The flask was sealed with a teflon plug and then heated at 120 °C for 12 h under hydrogen atmosphere. Toluene was then removed under vacuum, and the residue was washed with hexane. The solid was dried under vacuum to give 0.48 g (75% yield) product as red solid. The product (20 mg) was dissolved in toluene (2 mL), and pentane (1.5 mL) was added slowly. The solvents evaporated slowly at ambient temperature in the glovebox. After a few days, red crystals of **1a(H₂O)** suitable for X-ray analysis were obtained. ¹H NMR (400 MHz, C₆D₆): δ 9.75 (s, 1H), 7.02 (m, 2H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.87-6.83 (m, 2H), 6.55 (t, *J* = 6.0 Hz, 1H), 1.34 (d, *J* = 12.0 Hz, 9H), 1.20 (d, *J* = 12.0 Hz, 9H,), -39.24 (b, 1H). ³¹P NMR (162 MHz, C₆D₆): δ 160.8 (d, *J* = 21.1 Hz). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 167.1, 165.4, 150.3, 144.1, 143.9, 138.3, 122.9, 122.4, 118.5, 118.0, 111.2 (d, *J* = 10.0 Hz), 41.9 (d, *J* = 26.0 Hz), 39.0 (d, *J* = 31.0 Hz), 28.1 (d, *J* = 4.0 Hz), 27.9 (d, *J* = 5.0 Hz). Elemental analysis calcd for C₁₉H₂₆ClIrNOP (543.11): C, 42.02; H, 4.83; N, 2.58. Found: C, 42.54; H, 5.25; N, 2.51.

Iridium Complexe 1b. In a 50 mL Schlenk flask, compound **2b** (0.25 g, 0.8 mmol) and $[Ir(cod)Cl]_2$ (0.25 g, 0.4 mmol) were dissolved in 20 mL toluene. The flask was sealed with a teflon plug and then heated at 120 °C for 12 h under hydrogen atmosphere. Toluene was then removed under vacuum, and the residue was washed with hexane. The solid was dried under vacuum to give 0.3 g (71% yield) product as red solid. The product (20 mg) was dissolved in toluene (2 mL), and pentane (1.5 mL) was added slowly. The solvents evaporated slowly at ambient temperature in the glovebox. After a few days, red crystals of **1b** suitable for X-ray analysis were obtained. ¹H NMR (400 MHz, C₆D₆): δ 7.51 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.22-7.14 (m, 3H), 6.79 (d, *J* = 8.0 Hz, 1H), 3.49 (s, 3H), 1.79 (d, *J* = 12.0 Hz, 9H), 1.65 (d, *J* = 12.0 Hz, 9H), -33.27 (d, *J* = 20.0 Hz, 1H). ³¹P NMR (162 MHz, C₆D₆): δ 156.4 (d, *J* = 13.0 Hz). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 165.3, 164.2, 162.7, 142.3, 142.3, 137.9, 123.7, 122.7, 118.1, 116.1, 110.9 (d, *J* = 10.0 Hz), 41.9 (d, *J* = 27.0 Hz), 38.9 (d, *J* = 31.0 Hz), 28.5 (d, *J* = 5.0 Hz), 27.7 (d, *J* = 4.0 Hz), 27.1. Elemental analysis calcd for C₂₀H₂₈CIIrNOP (557.12): C, 43.12; H, 5.07; N, 2.51. Found: C, 42.70; H, 5.20; N, 2.61.

Iridium Complexe 1c. In a 50 mL Schlenk flask, compound **2c** (0.44 g, 1.2 mmol) and $[Ir(cod)Cl]_2$ (0.38 g, 0.6 mmol) were dissolved in 20 mL toluene. The flask was sealed with a teflon plug and then heated at 120 °C for 12 h under hydrogen atmosphere. Toluene was then removed by vacuum, and the residue was washed with hexane. The solid was dried under vacuum to give 0.55 g (77% yield) product as light yellow-green solid. The product (30 mg) was dissolved in benzene (3 mL). The solvents evaporated slowly at ambient temperature in the glovebox. After a few days, light yellow-green

crystals of **1c** suitable for X-ray analysis were obtained. ¹H NMR (400 MHz, C₆D₆): δ 7.09 (d, J = 8.0 Hz, 1H), 6.99-6.92 (m, 2H), 6.85-6.79 (m, 2H), 6.69 (d, J = 8 Hz, 1H), 1.65 (d, J = 12.0 Hz, 9H), 1.28 (d, J = 16.0 Hz, 9H), 1.20 (s, 9H), -21.89 (d, J = 20.0 Hz, 1H). ³¹P NMR (162 MHz, C₆D₆): δ 164.3 (d, J = 14.6 Hz). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 169.4, 162.6 (d, J = 3.0 Hz), 162.4 (d, J = 2.0 Hz), 141.8, 141.8, 137.5, 122.9, 120.1 (d, J = 3.0 Hz), 118.0, 117.3, 110.0 (d, J = 10.0 Hz), 44.4, 42.3 (d, J = 24.0 Hz), 38.6 (d, J = 31.0 Hz), 28.9 (d, J = 5.0 Hz), 28.7 (d, J = 4.0 Hz), 27.8. Elemental analysis calcd for C₂₃H₃₄ClIrNOP (599.17): C, 46.11; H, 5.72; N, 2.34. Found: C, 46.06; H, 6.00; N, 2.45.

3. Crystal structures and crystallographic data for Ir complexes

Figure S1. Crystal structure for 1a(H₂O)

Table	S1-1 .	Selected	bond	length	for 1a	(H_2O)
1	~ .	Serected	00114	1011Bell	101 10	(112)

Selected bond length	Distance (Å)
Ir(1)-C(11)	1.955(3)

Ir(1)-N(1)	2.158(3)
Ir(1)-P(1)	2.2143(8)
Ir(1)-O(2)	2.266(2)
Ir(1)-Cl(1)	2.4806(9)

Table S1-2. Selected bond angles for 1a(H₂O)

Selected bond angles	(Deg)
C(11)-Ir(1)-N(1)	78.49(12)
C(11)-Ir(1)-P(1)	81.54(10)
N(1)-Ir(1)-P(1)	159.85(8)
C(11)-Ir(1)-Cl(1)	174.42(10)
N(1)-Ir(1)-Cl(1)	96.78(8)
P(1)-Ir(1)-Cl(1)	103.02(3)

Figure S2. Crystal structure for 1b

Table S2-1	Selected	bond	length	for	1b
------------	----------	------	--------	-----	----

Selected bond length	Distance (Å)
----------------------	--------------

Ir(1)-C(1)	1.955(2)
Ir(1)-N(1)	2.158(2)
Ir(1)-P(1)	2.2239(7)
Ir(1)-Cl(1)	2.3929(7)

Table S2-2. Selected bond angles for 1b

Selected bond angles	(Deg)
C(1)-Ir(1)-N(1)	78.82(10)
C(1)-Ir(1)-P(1)	81.83(8)
N(1)-Ir(1)-P(1)	160.61(7)
C(1)-Ir(1)-Cl(1)	140.23(8)
N(1)-Ir(1)-Cl(1)	93.32(6)
P(1)-Ir(1)-Cl(1)	102.49(2)

Figure S3. Crystal structure for 1c

Table S3-1.	Selected bond	l length for 1c
-------------	---------------	-----------------

Selected bond length	Distance (Å)
----------------------	--------------

Ir(1)-C(1)	1.939(4)
Ir(1)-N(1)	2.114(3)
Ir(1)-P(1)	2.2374(10)
Ir(1)-Cl(1)	2.4769(9)

 Table S3-2. Selected bond angles for 1c

Selected bond angles	(Deg)
C(1)-Ir(1)-N(1)	80.90(13)
C(1)-Ir(1)-P(1)	81.24(11)
N(1)-Ir(1)-P(1)	161.52(8)
C(1)-Ir(1)-Cl(1)	103.38(11)
N(1)-Ir(1)-Cl(1)	85.18(8)
P(1)-Ir(1)-Cl(1)	103.54(3)

Empirical formula	C19 H30 Cl Ir N O3 P					
Formula weight	579.06					
Temperature	140(2) K					
Wavelength	0.71073 A					
Crystal system, space group	Triclinic, P-1					
Unit cell dimensions	a = 8.0810(8) Å alpha = 79.849(2)					
	b = 8.7266(8) Å beta = 79.048(2)°					
	c = 15.7699(15) Å gamma =					
79.265(2)°						
Volume	1061.23(18) Å ³					
Z, Calculated density	2, 1.812 Mg/m ³					
Absorption coefficient	6.510 mm ⁻¹					
F(000)	568					
Crystal size	0.20 x 0.04 x 0.03 mm ³					
Theta range for data collection	2.40 to 30.90°.					
Limiting indices	-11<=h<=11, -12<=k<=8, -22<=l<=22					
Reflections collected / unique	10752 / 6602 [R(int) = 0.0250]					
Completeness to theta = 30.90°	98.2 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.8287 and 0.3559					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	6602 / 0 / 245					
Goodness-of-fit on F ²	1.087					
Final R indices [I>2sigma(I)]	R1 = 0.0251, wR2 = 0.0594					
R indices (all data)	R1 = 0.0311, $wR2 = 0.0611$					
Largest diff. peak and hole	0.895 and -1.101 e. Å ⁻³					

Table S4. Crystal data and structure refinement for 1a(H₂O)

Table S5. Crystal data and structure refinement for 1b

Empirical formula	C20 H28 Cl Ir N O P
Formula weight	557.05
Temperature	140(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 10.1303(10) A alpha = 90°
	b = 13.7700(14) A beta =
105.782(2)°	
	c = 15.0040(15) A gamma = 90°
Volume	2014.1(3) Å ³
Z, Calculated density	4, 1.837 Mg/m ³
Absorption coefficient	6.849 mm ⁻¹
F(000)	1088
Crystal size	0.30 x 0.25 x 0.16 mm ³
Theta range for data collection	2.04 to 30.60°.
Limiting indices	-14<=h<=14, -16<=k<=19, -
21<=1<=21	
Reflections collected / unique	19210 / 6175 [R(int) = 0.0283]
Completeness to theta = 30.60°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.4070 and 0.2331
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6175 / 0 / 233
Goodness-of-fit on F ²	0.989
Final R indices [I>2sigma(I)]	R1 = 0.0221, $wR2 = 0.0511$
R indices (all data)	R1 = 0.0312, $wR2 = 0.0544$
Largest diff. peak and hole	2.315 and -1.768 e. Å ⁻³

Table	S6.	Crystal	data	and	structure	refinem	ent for	1c

Empirical formula	C26 H37 Cl Ir N O P				
Formula weight	638.19				
Temperature	133(2) K				
Wavelength	0.71073 A				
Crystal system, space group	Orthorhombic, P2(1)2(1)2				
Unit cell dimensions	$a = 15.6237(15) A$ $alpha = 90^{\circ}$				
	b = 16.1007(16) A beta = 90°				
	c = 9.9759(10) A gamma = 90°				
Volume	2509.5(4) Å ³				
Z, Calculated density	4, 1.689 Mg/m ³				
Absorption coefficient	5.509 mm ⁻¹				
F(000)	1268				
Crystal size	0.15 x 0.08 x 0.05 mm ³				
Theta range for data collection	1.82 to 30.78°.				
Limiting indices	-22<=h<=22, -15<=k<=23, -14<=l<=14				
Reflections collected / unique	24962 / 7798 [R(int) = 0.0469]				
Completeness to theta = 30.78°	99.3 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7702 and 0.4921				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	7798 / 6 / 320				
Goodness-of-fit on F ²	0.880				
Final R indices [I>2sigma(I)]	R1 = 0.0263, wR2 = 0.0507				
R indices (all data)	R1 = 0.0327, wR2 = 0.0528				
Absolute structure parameter	-0.016(6)				
Largest diff. peak and hole	0.860 and -0.922 e. Å ⁻³				

4. Procedures for alkane dehydrogenation

Table 1. In an argon-filled glovebox, 5.0 μ mol of the iridium complex (**1a**, **1b** or **1c**) and 11.0 μ mol of sodium *tert*-butyloxide were dissolved in 4.7 mL of cyclooctane (COA). *Tert*-butylethylene (2.5 mmol) was added to the solution. The solution was transfered into a 10 mL thick-wall tube. The tube was sealed with a teflon plug under an argon atmosphere, and the solution stirred in a 150 °C oil bath. Periodically, the flask was removed from the bath and cooled to room temperature. An aliquot was removed from the flask and analyzed by GC.

The effect of different concentration of *tert*-butylethylene for transfer dehydrogenation of cyclooctane

In an argon-filled glovebox, iridium complexe **1a** (2.7 mg, 5.0 μ mol) and sodium *tert*butyloxide (1.1 mg, 11.0 μ mol) were dissolved in cyclooctane. *Tert*-butylethylene (2.5 mmol, 5.0 mmol, 10.0 mmol or 12.5 mmol, respectively) was added to the solution. The solution was transfered into a 10 mL thick-wall tube. The tube was sealed with a teflon plug under an argon atmosphere, and the solution stirred in a 150 °C oil bath. Periodically, the flask was removed from the bath and cooled to room temperature. An aliquot was removed from the flask and analyzed by GC.

[Ir]/TBE	1/500	1/1000	1/2000	1/2500
Time	(TONs)	(TONs)	(TONs)	(TONs)
10 min	168	123	101	71
30 min	257	238	188	150
1 h	333	326	270	220
5 h	446	514	438	364

Table S7. Transfer-dehydrogenation of COA with 0.5 M, 1.0 M, 2.0 M or 2.5 M of TBE catalyzed by **1a**/ NaO'Bu at 150 °C

Figure S4. TONs vs time for transfer-dehydrogenations of COA with 0.5 M, 1.0 M, 2.0 M or 2.5 M of TBE

Table 2. In an argon-filled glovebox, 5.0 μ mol of the iridium complexe (**1a**, **1b** or **1c**) and 11.0 μ mol of sodium *tert*-butyloxide were dissolved in *n*-octane (4.7mL). *Tert*-butylethylene (330 μ L, 2.5 mmol) and mesitylene (10 μ L) as internal standard were added to the solution. Then the solution was transfered into a 10 mL thick-wall tube. The tube was sealed with a teflon plug under an argon atmosphere, and the solution stirred in a 150 °C oil bath. Periodically, the flask was removed from the bath and cooled to room temperature. An aliquot was removed from the flask and analyzed by GC.

5. Procedures for alkene isomerization

Isomerization of 1-octene. In an argon-filled glovebox, 5.0 μ mol of iridium complex (**1a**, **1b**, **1c**, (*i*^{Bu}PCP)IrHCl or (*i*^{Bu}POCOP)IrHCl), 11.0 μ mol of sodium *tert*-butyloxide, 2.5 mmol of 1-octene (392 μ L), and 1.6 mL of mesitylene were added to a 10 mL tube. The tube was sealed with a teflon plug under an argon atmosphere, and the solution stirred in a 60 °C oil bath. Periodically, the flask was removed from the bath and cooled to room temperature. An aliquot was removed from the flask and analyzed by GC.

Table S8. Octene distributions (concentration in mM) from 1b/NaO'Bu-catalyzed isomerization of 1-octene at 60 $^\circ C$

Octenes	5 min	10 min	30 min	1 h	2 h	4 h
3- and 4-octenes	132	228	312	371	378	391
Cis-2-octene	125	140	220	207	202	197
Trans-2-octene	287	407	595	645	653	645
1-Octene	705	475	123	27	17	17

Table S9. Octene distributions (concentration in mM) from 1a/NaO⁴Bu-catalyzed isomerization of 1-octene at 60 °C

Octenes	5 min	10 min	30 min	1 h	2 h	4 h	15 h	32 h
3- and 4-octenes	53	80	125	145	155	157	217	384
Cis-2-octene	130	177	242	260	265	258	248	218
Trans-2-octene	253	355	545	655	770	810	760	635
1-Octene	815	637	337	190	60	25	25	13

Figure S5. Isomerization of 1-octene catalyzed by 1a/NaO'Bu at 60 °C

Table S10. Octene distributions (concentration in mM) from 1c/NaO^tBu-catalyzed isomerization of 1-octene at 60 °C

Octenes	5 min	10 min	30 min	1 h	2 h	4 h
3- and 4-octenes	145	205	313	355	380	388
Cis-2-octene	150	192	242	255	250	243
Trans-2-octene	332	430	530	570	580	592
1-Octene	622	422	165	70	40	25

Figure S6. Isomerization of 1-octene catalyzed by 1c/NaO'Bu at 60 °C

Table S11. Octene distributions (concentration in mM) from (^{tBu}PCP)IrHCl/NaO'Bucatalyzed isomerization of 1-octene at 60 °C

Octenes	5 min	10 min	30 min	1 h	2 h	4 h
3- and 4-octenes	28	37	72	120	250	327
Cis-2-octene	30	41	63	94	120	191
Trans-2-octene	66	107	200	315	542	613
1-Octene	1125	1065	915	721	538	119

Figure S7. Isomerization of 1-octene catalyzed by (*t*^{Bu}PCP)IrHCl/NaO*t*Bu at 60 °C

Table S12. Octene distributions (concentration in mM) from $(^{tBu}POCOP)$ IrHCl/NaO'Bu-catalyzed isomerization of 1-octene at 60 °C

Octenes	5 min	10 min	30 min	1 h	2 h	4 h
3- and 4-octenes	22	28	44	60	83	117
Cis-2-octene	23	32	53	68	95	127
Trans-2-octene	32	43	68	88	120	173
1-Octene	1173	1147	1085	1034	952	833

Figure S8. Isomerization of 1-octene catalyzed by ($^{tBu}POCOP$)IrHCl/NaO'Bu at 60 °C

6. Procedures for isomerization/hydroboration of internal olefins

Table 3, entry 1-7, entry 9. In an argon-filled glovebox, complex **1b** (2.2 mg, 4.0 μ mol), complex (PNN)FeCl₂ **3** (18.0 mg, 40.0 μ mol), 1 mL toluene, NaBHEt₃ (88.0 μ mol, 88.0 μ L, 1.0 M in toluene), HBPin (116.0 μ L, 0.8 mmol), and the olefin substrate (0.8 mmol) were added to a 10 mL tube. The solution stirred at room temperature for 0.5-4 h, and then the reaction was quenched by exposing the solution to air. The resulting solution was concentrated under vacuum and the residue was purified by elution through a silica gel plug with hexane and ethyl acetate.

2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4. ¹H NMR (400 MHz, CD₃Cl): δ 1.41-1.38 (m, 2H), 1.31-1.26 (m, 6H), 1.24 (s, 12H), 0.87 (t, 3H), 0.76 (t, 2H). The spectroscopic data correspond to reported data.^[8]

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane 5. ¹H NMR (400 MHz, CD₃Cl): δ 1.41-1.38 (m, 2H), 1.29-1.26 (m, 10H), 1.24 (m, 12H), 0.87 (t, 3H), 0.76 (t, 2H). The spectroscopic data correspond to reported data.^[9]

5,7,7-trimethyloct-2-ene This olefin was prepared by wittig olefination: aldehyde with ethyltriphenylphosphonium bromide and *n*-BuLi in THF. The Z/E was determinated by GC. The complex NMR spectra see below.

4,4,5,5-tetramethyl-2-(5,7,7-trimethyloctyl)-1,3,2-dioxaborolane 6 ¹H NMR (400 MHz, CD₃Cl): δ 1.40-1.34 (m, 4H), 1.24-1.11 (m, 15H), 1.02-0.97 (m, 2H), 0.87 (s, 12H), 0.77 (t, 3H). ¹³C{¹H} NMR (100 MHz, CD₃Cl): δ 82.9, 51.4, 39.5, 31.2, 30.2, 30.1, 29.3, 24.9, 24.5, 22.8. HRMS (EI) m/z (M+) calcd for C₁₇H₃₅¹⁰BO₂: 281.2766, found: 281.2763.

(Z)-2-(hex-3-en-1-yl)-1,3-dioxolane *cis*-4-heptenal (5.0 mL, 37.9 mmol), ethylene glycol (6.3 mL, 113 mmol), *p*-toluenesulfonic acid (130 mg, 0.56 mmol) in 100 mL of toluene refluxed for 10 h with continus removal of water as toluene azeotrope. After cooling, evaporated of the solvent under vacuum, the crude product was purified with silica gel column chromatography by petroleum ether, affording 4.7 g (80% yield) product as colorless oil.

¹H NMR (400 MHz, CD₃Cl): δ 5.42-5.30 (m, 2H), 4.86 (t, 1H), 4.04-3.92 (m, 2H), 3.89-3.81 (m, 2H), 2.19-2.14 (m, 2H), 2.09-2.01 (m, 2H), 1.73-1.68 (m, 2H), 0.95 (t, 3H). ¹³C{¹H} NMR (100 MHz, CD₃Cl): δ 132.3, 128.0, 104.2, 64.9, 33.9, 21.9, 20.5, 14.3. HRMS (EI) m/z (M-H+) calcd for C₉H₁₅O₂: 155.1072, found: 155.1076.

2-(6-(1,3-dioxolan-2-yl)hexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8 ¹H NMR (400 MHz, CD₃Cl): δ 4.83 (t, 1H), 3.99-3.91 (m, 2H), 3.88-3.80 (m, 2H), 1.64-1.58 (m, 2H), 1.42-1.38 (m, 4H), 1.31-1.23 (m, 16H), 0.76 (t, 3H). ¹³C{¹H} NMR (100 MHz, CD₃Cl): δ 104.8, 82.9, 64.9, 34.0, 32.4, 29.4, 24.9, 24.1, 24.0. HRMS (EI) m/z (M-H+) calcd for C₁₅H₂₈¹⁰BO₄: 282.2117, found: 282.2121.

Table 3, entry 8. In an argon-filled glovebox, complex **1b** (2.2 mg, 4.0 μ mol), complex (PNN)FeCl₂ **3** (18.0 mg, 40.0 μ mol), 1 mL toluene, NaBHEt₃ (88.0 μ L, 88.0 μ mol, 1.0 M in toluene), HBPin (232.0 μ L, 1.6 mmol), and 2,4-hexadiene (*trans* : *cis* = 12 :1, 0.8 mmol) were added to a 10 mL tube. The solution stirred at room temperature for 3 h and then the reaction was quenched by exposing the solution to air. The resulting solution was concentrated under vacuum and the residue was purified by elution through a silica gel plug with hexane and ethyl acetate. The hydroboration product 7 was obtained in 80% isolated yield.

1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexane 7. ¹H NMR (400 MHz, CD₃Cl): δ 1.38 (m, 4H), 1.29-1.21 (m, 28H), 0.75 (t, 4H). The spectroscopic data correspond to reported data.^[10]

Table 3, entry 10. In an argon-filled glovebox, complex **1b** (1.1 mg, 2.0 μ mol), complex (PNN)FeCl₂ **3** (36.0 mg, 80.0 μ mol), 1 mL toluene, HBPin (58.0 μ L, 0.4 mmol), and *cis*-6-chloro-2-hexene (57 μ L, 0.4 mmol, 90% purity) were added to a 10 mL tube. The solution of NaBHEt₃ (164.0 μ L, 164.0 μ mol, 1.0 M in toluene) was dropped slowly into the tube. After 10 min, all NaBHEt₃ was added. The solution stirred continuesly at room temperature for 20 min and then the reaction was quenched by exposing the solution to air. The resulting solution was concentrated under vacuum and the residue was purified

by elution through a silica gel plug with hexane and ethyl acetate. The hydroboration product **9** was obtained in 74% isolated yield.

ot B. Cl^

2-(6-chlorohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9. ¹H NMR (400 MHz, CD₃Cl): δ 3.52 (t, 2H), 1.76 (t, 2H), 1.44-1.40 (m, 4H), 1.34-1.29(m, 2H), 1.24 (s, 12H), 0.77 (t, 2H). The spectroscopic data correspond to reported data.^[9]

7. Reference.

[1] Shimada, A. S. Batsanov, J. A. K. Howard, T. B. Marder, *Angew. Chem. Int. Ed.* 2001, **40**, 2168.

[2] D. Yang, Y. Long, J. Zhang, H. Zeng, S. Wang, C. Li, *Organometallics* 2010, 29, 3477.

[3] L. Zhang, D. Peng, X. Leng and Z. Huang, *Angew. Chem. Int. Ed.*, 2013, **125**, 3764-3768.

[4] C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976, 11, 1020-1024.

[5] I. Göttker-Schnetmann, P. White and M. Brookhart, J. Am. Chem. Soc., 2004, **126**, 1804-1811.

[6] L. C. Campeau, S. Rousseaux and K. Fagnou, *J. Am. Chem. Soc.* 2005, **127**, 18020-18021.

[7] K. Kurotobi and Y. Murata, *Science*. 2011, **333**, 613-616.

[8] J. Yi, J. H. Liu, J. Liang, J. J. Dai, C. T. Yang, Y. Fu and L. Liu, Adv. Synth. Catal.

2012, **354**, 1685 - 1691.

[9] C. J. Lata and C. M. Crudden, J. Am. Chem. Soc. 2010, 132, 131–137.

[10] C.T. Yang, Z. Q. Zhang, H. Tajuddin, C. C. Wu, J. Liang, J. H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder and L. Liu, *Angew. Chem. Int. Ed.* 2012, **51**, 528-532.

8. NMR spectra.

¹H NMR (400 MHz, CD₃Cl) for 2-(3-methoxyphenyl)-6-methylpyridine

¹³C NMR (100 MHz, CD₃Cl) for 2-(3-methoxyphenyl)-6-methylpyridine

¹H NMR (400 MHz, CD₃Cl) for 2-(*tert*-butyl)-6-(3-methoxyphenyl)pyridine

¹³C NMR (100 MHz, CD₃Cl) for 2-(*tert*-butyl)-6-(3-methoxyphenyl)pyridine

¹H NMR (400 MHz, C_6D_6) for 2a

 ^{31}P NMR (162 MHz, C₆D₆) for **2a**

¹H NMR (400 MHz, C_6D_6) for **2b**

³¹P NMR (162 MHz, C_6D_6) for **2b**

 ^{13}C NMR (100 MHz, $C_6D_6)$ for $\boldsymbol{2b}$

¹H NMR (400 MHz, C_6D_6) for **2c**

 ^{31}P NMR (162 MHz, C₆D₆) for 2c

¹³C NMR (100 MHz, C_6D_6) for **2c**

 $^1\mathrm{H}$ NMR (400 MHz, CD₃Cl) for 4

¹H NMR (400 MHz, CD₃Cl) for **5**

¹H NMR (400 MHz, CD₃Cl) for 5,7,7-trimethyloct-2-ene

¹³C NMR (100 MHz, CD₃Cl) for 5,7,7-trimethyloct-2-ene

 $^1\mathrm{H}$ NMR (400 MHz, CD₃Cl) for $\mathbf{6}$

 13 C NMR (100 MHz, CD₃Cl) for **6**

 ^1H NMR (400 MHz, CD_3Cl) for 7

¹H NMR (400 MHz, CD₃Cl) for (Z)-2-(hex-3-en-1-yl)-1,3-dioxolane

¹³C NMR (100 MHz, CD₃Cl) for (Z)-2-(hex-3-en-1-yl)-1,3-dioxolane

¹H NMR (400 MHz, CD₃Cl) for $\mathbf{8}$

 ^{13}C NMR (100 MHz, CD₃Cl) for $\boldsymbol{8}$

¹H NMR (400 MHz, CD₃Cl) for **9**