Controlling Helical Chirality of Cobalt Complexes by Chirality Transfer with Vicinal Diamines

Min-Seob Seo, Kiseong Kim and Hyunwoo Kim*
${ }^{1}$ Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305701, Republic of Korea
${ }^{2}$ Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305701, Republic of Korea

Table of contents

I General Information S-2
II Experimental Procedures S-2
III Reactions between [Co-3]OTs and Chiral Diamines S-5
IV CD Spectra S-8
V Asymmetric Coordination Chemistry S-9
VI Calculation Results S-12
VII Crystal Structure of [Co-3-(rac)-dpen]OTs S-16
IX NMR Spectra S-18
X References S-23

I. General Information

Commercially available compounds were used without further purification or drying. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ascend 400 spectrometer $\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) and are reported in ppm , relative to residual protonated solvent peak (DMSO- d_{6}). The highresolution mass spectra (HRMS) were obtained on a Jeol JMS700 spectrometer at the Korea Basic Science Center, Daegu, Korea. Circular dichroism (CD) and UV-vis spectra were performed on a JASCO J-815 spectrometer at the KAIST Research Analyst Center. All calculations were performed using Gaussian 09. Rac-, (R, R)-, and (S, S)-1,2-diphenylethylenediamines were purchased and 1,2-bis(2,4,6-trimethylphenyl)ethylenediamine was prepared from hpen (mother diamine) by the diazaCope rearrangement. ${ }^{[1]}$

II. Experimental Procedures

To a stirred solution of 2, 2^{\prime}-dyhydroxybenzophenone ($\left.1,10.0 \mathrm{~g}, 46.7 \mathrm{mmol}\right)^{[2]}$ in methanol (93 mL) was added 2 equiv of ethylenediamine $(6.24 \mathrm{~mL}, 93.4 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. Heating the reaction mixture at $60{ }^{\circ} \mathrm{C}$ for 6 h afforded the product as a yellow precipitate. After allowed to ambient temperature, the mixture was mixed with diethyl ether (93 mL), and stirred for additional 1 h . The resulting cloudy solution was then filtered and washed with diethyl ether to give the product $\mathbf{2}$ as a yellow solid (10.2 g, 85% yield).

Yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.31$ (ddd, $J=8.3,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (ddd, $J=$ $8.4,7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.4,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{ddd}, J=8.1,7.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{br}, 3 \mathrm{H}), 3.32(\mathrm{td}, J=6.4,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{td}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 173.0,163.0,154.5,132.1,130.7,130.5,128.5,120.7,119.4,118.7,117.5,117.0,116.6$, 54.2, 41.8; HRMS (EI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 256.1212$, found : 256.1214.

To a stirred suspension of $\mathbf{2}(5.08 \mathrm{~g}, 19.8 \mathrm{mmol})$ in methanol (40 mL) was added 1.2 equiv of $3,5-$ di-tert-butyl-2-hydroxybenzaldehyde ($5.57 \mathrm{~g}, 23.8 \mathrm{mmol}$) and the resulting mixture was stirred for 6 h at $25^{\circ} \mathrm{C}$. After adding diethyl ether (40 mL), the mixture was stirred for additional 1 h . The resulting solution was then filtered and washed with diethyl ether to give the product $\mathbf{3}$ as a yellow solid $(7.84 \mathrm{~g}$, $84 \%)$.

Yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 15.34$ (s, 1H), 13.88 (br, 1H), 9.96 (br, 1H), 8.59 (s, 1H), 7.34 (ddd, $J=8.3,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 6.91$ (td, $J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~m}, 1 \mathrm{H})$, $3.87(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 173.0,168.1$, $162.2,157.5,153.8,139.5,135.6,132.2,130.7,130.7,128.4,126.4,126.2,120.3,119.5,119.1,117.7$, 117.4, 117.3, 115.9, 58.8, 51.8, 34.6, 33.8, 31.3, 29.2; HRMS (EI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+}$: 472.2726, found : 472.2722.

To a stirred suspension of $\mathbf{3}(2.36 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was added $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.25$ $\mathrm{g}, 5 \mathrm{mmol})$. After stirring at $25^{\circ} \mathrm{C}$ for 6 h , p-toluenesulfonic acid monohydrate $\left(\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\right)(951 \mathrm{mg}$, 5 mmol) was added and the mixture was stirred for 30 min at the atmospheric environment. All volatiles were removed under reduced pressure and further dried in a vacuum oven overnight at $60^{\circ} \mathrm{C}$ to give the product [Co-3]OTs as a dark green solid ($3.33 \mathrm{~g}, 95 \%$).

Dark green solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.4,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-$ $7.01(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, 1.73 (s, 9H), 1.28 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 173.9$, 167.6, 166.1, 161.8, 153.6, 141.7, $137.3,135.4,133.3,132.9,130.8,128.3,127.8,125.2,123.6,121.8,120.1,119.2,117.7,116.0,114.7$, 57.6, 55.1, 35.3, 33.2, 31.2, 30.0, 20.5; HRMS (FAB) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Co}^{+}$: 529.1901, found : 529.1900.

To a stirred solution of $[\mathrm{Co}-3] \mathrm{OTs}(210 \mathrm{mg}, 0.3 \mathrm{mmol})$ in methanol (3 mL) was added $(R, R)-1,2-$ diphenylethylenediamine (dpen) ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$), and the mixture was stirred for 6 h at $70^{\circ} \mathrm{C}$. Aliquot ${ }^{1} \mathrm{H}$ NMR indicated full conversion and the product ratio of $7: 1$. The pure major $\Delta-[\mathrm{Co}-3-(R, R)$-dpen $] \mathrm{OTs}$ was obtained by slow addition of pentane $(36 \mathrm{~mL})$ to a crude mixture (274 mg) dissolved in EtOH (4 mL). After stored in a refrigerator at $5^{\circ} \mathrm{C}$ for 3 h , the solution were filtrated to give the pure Δ-[Co-3-(R, R)-dpen]OTs as a brown solid.

Brown solid (55 mg, 20\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.01$ (br, 1H), 8.36 ($\mathrm{s}, 1 \mathrm{H}$), 7.53 (t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.06(\mathrm{~m}, 15 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{dd}, J=8.8,0.8,1 \mathrm{H}), 6.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 171.3,168.8,168.7,161.7,155.8,145.8,141.0,138.3,137.5,136.7$, $134.8,134.3,132.7,132.6,131.2,128.9,128.5,128.4,128.3,128.3,128.2,128.0,127.3,125.7,125.5$, $122.8,121.2,119.5,118.3,116.1,115.0,64.9,63.4,59.9,57.3,35.3,33.5,31.4,30.2,20.8$; HRMS $(F A B) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Co}^{+}: 741.3209$, found : 741.3218.

[Co-3]OTs

(R, R)-tpen

$\mathrm{MeOH}(0.02 \mathrm{M})$
$70^{\circ} \mathrm{C}, 6 \mathrm{~h}$

Δ-[Co-3-(R,R)-tpen]OTs (S1)

Brown solid ($84 \mathrm{mg}, 28 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 10.82$ (br, 1 H), 8.37 ($\mathrm{s}, 1 \mathrm{H}$), 7.50 $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09$ $(\mathrm{m}, 3 \mathrm{H}), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 4 \mathrm{H}), 6.65-6.60(\mathrm{~m}$, $2 \mathrm{H}), 6.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 2 \mathrm{H})$, $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.08$ $(\mathrm{s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 171.7$, $169.5,169.0,161.2,145.7,141.1,138.0,137.5,137.5,137.2,137.1,135.5,134.9,134.6,133.9,133.1$, $132.9,132.0,131.1,130.7,129.7,129.5,129.4,129.1,128.8,128.7,128.0,126.6,125.5,122.7,120.4$, $119.2,116.2,115.2,59.1,58.8,57.6,56.4,35.4,33.6,31.3,30.4,20.9,20.9,20.8,20.8,20.4,20.2$, 20.1; HRMS (FAB) m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Co}^{+}$: 825.4148, found : 825.4150.

III. Reactions between [Co-3]OTs and Chiral Diamines

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Δ-[Co-3-(R, R)-dpen]OTs Recrystallized

Δ-[Co-3-(R, R)-dpen]OTs

Aliquot ${ }^{1} \mathrm{H}$ NMR in DMSO-d 6
Λ-[Co-3-(R,R)-dpen]OTs

Δ-[Co-3-(R, R)-tpen]OTs

Δ-[Co-3-(R, R)-tpen]OTs Recrystallized

$\xrightarrow[\mathrm{MeOH}]{ }$
 Aliquot ${ }^{1} \mathrm{H}$ NMR

MeOH
$70^{\circ} \mathrm{C}, 48 \mathrm{~h}$
in DMSO-d ${ }_{6}$

IV. CD Spectra

Figure S1. Circular dichroism spectra of recrystallized (a) $\Delta-[\operatorname{Co}-3-(R, R)$-dpen]OTs and $\Lambda-[\mathrm{Co}-3-(S, S)-$ dpen $] \mathrm{OTs}$ and (b) Δ-[Co-3-(R, R)-tpen $] \mathrm{OTs}(\mathbf{S 1})\left(100 \mu \mathrm{M}\right.$ in acetonitrile, 10 mm cell, at $\left.20^{\circ} \mathrm{C}\right)$.

Figure S2. (a) Circular dichroism spectra of [Co-3-dpen]OTs with varied enantiopurities of dpen and (b) a linear plot between $\mathrm{CD} / \mathrm{UV}$-vis ratios and enantiopurities of dpen. ($100 \mu \mathrm{M}$ in acetonitrile, 10 mm cell, at $20^{\circ} \mathrm{C}$).

V. Asymmetric Coordination Chemistry

[Co-3]OTs

Aliquot ${ }^{1} \mathrm{H}$ NMR in DMSO- d_{6}

Figure S3. Circular dichroism spectrum of [Co-3-en]OTs prepared from Δ-[Co-3- (R, R)-dpen]OTs (100 $\mu \mathrm{M}$ in acetonitrile, 10 mm cell, at $20^{\circ} \mathrm{C}$) and its UV-vis spectrum.

[Co-3]OTs

Figure S4. Circular dichroism spectrum of [Co-3-bpy]OTs prepared from Δ-[Co-3-(R, R)-dpen]OTs ($100 \mu \mathrm{M}$ in acetonitrile, 10 mm cell, at $20^{\circ} \mathrm{C}$) and its UV-vis spectrum.

VI. Calculation Results

The Gaussian 09 was used for all calculations. We used B3LYP/ 6-31G(d,p) basis for C, H, N and O and LANL2DZ for Co.

Δ-[Co-3-(R, R)-dpen $]^{+}$

$\Delta-[\mathrm{Co}-3-(S, S) \text {-dpen }]^{+}$
(Enantiomer of Λ-[Co-3-(R, R)-dpen $]^{+}$)

Molecule	E (hartree)	$\mathrm{E}+\mathrm{ZPVE}$ (hartree)	$G_{298 \mathrm{~K}}$ $($ hartree $)$	Imaginary Frequency $\left(\mathrm{cm}^{-1}\right)$
$\Delta-[\operatorname{Co}-3-(R, R) \text {-dpen }]^{+}$	-2296.53567290	-2295.673060	-2295.755018	-
$\Delta-[\operatorname{Co}-3-(S, S) \text {-dpen }]^{+}$	-2296.53437244	-2295.671454	-2295.753156	-

Simulated CD Spectra

Figure S5. (a) Circular dichroism spectrum of recrystallized Δ-[Co-3-(R, R)-dpen]OTs and (b) simulated circular dichroism spectrum of Δ-[Co-3-(R, R)-dpen] $]^{+}$by TD-DFT calculation (Gaussian 09 TD-SCF, B3LYP/ 6-31G(d,p) basis for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O and LANL2DZ for Co and CD spectra were generated using the program SpecDis v. 1.61).

Cartesian Coordinates of Calculated Compounds

Δ-[Co-3-(R, R)-dpen] ${ }^{+}$

	ATOM	Coordinates (Angstroms)		
		X	Y	Z
1	Co	0.055	-0.569	-0.238
2	N	0.907	-1.548	-1.631
3	N	-1.544	-1.473	-0.859
4	0	0.277	-1.951	1.021
5	C	-2.39	-2.12	-0.093
6	C	-2.109	-2.31	1.318
7	C	-1.502	-3.121	3.938
8	C	-0.739	-2.313	1.766
9	C	-3.137	-2.673	2.231
10	C	-2.849	-3.055	3.525
11	C	-0.475	-2.767	3.085
12	H	-4.167	-2.644	1.893
13	H	-3.647	-3.314	4.212
14	H	0.563	-2.805	3.401
15	H	-1.266	-3.443	4.949
16	C	-3.618	-2.737	-0.676
17	C	-5.943	-3.908	-1.733
18	C	-3.886	-4.105	-0.495
19	C	-4.55	-1.96	-1.394
20	C	-5.708	-2.546	-1.912
21	C	-5.029	-4.695	-1.027
22	H	-3.177	-4.703	0.067
23	H	-6.424	-1.935	-2.455
24	H	-5.21	-5.755	-0.887
25	H	-6.844	-4.352	-2.144
26	C	-1.425	-1.729	-2.296
27	H	-2.181	-2.43	-2.656
28	H	-1.544	-0.796	-2.857
29	C	-0.015	-2.315	-2.479
30	H	0.295	-2.289	-3.531
31	H	-0.024	-3.361	-2.149
32	C	2.193	-1.665	-1.758
33	H	2.557	-2.315	-2.559
34	C	3.2	-1.036	-0.964
35	C	5.276	0.092	0.45
36	C	2.893	-0.1	0.076
37	C	4.546	-1.371	-1.27
38	C	5.605	-0.824	-0.581

39	C	3.989	0.473	0.809
40	H	4.714	-2.085	-2.069
41	H	6.099	0.525	1.003
42	O	1.66	0.274	0.351
43	N	-0.886	0.581	1.106
44	H	-1.751	0.136	1.412
45	H	-0.268	0.613	1.916
46	N	-0.182	1.048	-1.41
47	H	-0.263	0.881	-2.411
48	H	0.709	1.525	-1.261
49	C	-1.319	1.888	-0.925
50	H	-2.226	1.319	-1.15
51	C	-1.159	1.97	0.61
52	H	-0.257	2.55	0.822
53	C	3.746	1.466	1.967
54	C	5.061	1.944	2.617
55	H	4.827	2.634	3.434
56	H	5.701	2.481	1.91
57	H	5.635	1.117	3.045
58	C	3.016	2.729	1.448
59	H	2.848	3.434	2.27
60	H	2.052	2.473	1.006
61	H	3.62	3.239	0.689
62	C	2.911	0.78	3.077
63	H	2.691	1.493	3.88
64	H	3.467	-0.055	3.514
65	H	1.971	0.386	2.687
66	C	7.079	-1.153	-0.874
67	C	7.224	-2.186	-2.007
68	H	6.743	-3.137	-1.756
69	H	8.283	-2.392	-2.186
70	H	6.799	-1.822	-2.949
71	C	7.745	-1.734	0.396
72	H	7.245	-2.654	0.715
73	H	7.718	-1.031	1.234
74	H	8.796	-1.97	0.199
75	C	7.82	0.138	-1.298
76	H	7.783	0.905	-0.518
77	H	7.381	0.563	-2.207
78	H	8.875	-0.077	-1.499

79	O	-4.292	-0.621	-1.554
80	H	-5.043	-0.211	-2.003
81	C	-2.336	2.614	1.318
82	C	-4.491	3.79	2.678
83	C	-3.628	2.078	1.201
84	C	-2.139	3.742	2.122
85	C	-3.21	4.33	2.797
86	C	-4.697	2.663	1.88
87	H	-3.811	1.206	0.576
88	H	-1.143	4.167	2.218
89	H	-3.042	5.206	3.415
90	H	-5.693	2.241	1.784
91	H	-5.324	4.244	3.205
92	C	-1.393	3.238	-1.612
93	C	-1.552	5.722	-2.912
94	C	-2.539	3.594	-2.332
95	C	-0.323	4.145	-1.55
96	C	-0.402	5.378	-2.197
97	C	-2.621	4.828	-2.977
98	H	-3.376	2.902	-2.382
99	H	0.58	3.899	-0.994
100	H	0.432	6.07	-2.141
101	H	-3.518	5.091	-3.53
102	H	-1.612	6.683	-3.413

Δ-[Co-3-(S,S)-dpen $]^{+}$

		Coordinates (Anstroms)		
	ATOM	X	Y	Z
1	Co	-0.017	-0.636	-0.196
2	N	0.797	-1.729	-1.53
3	N	-1.645	-1.549	-0.73
4	O	0.189	-1.941	1.147
5	C	-2.501	-2.098	0.099
6	C	-2.201	-2.188	1.517
7	C	-1.565	-2.839	4.174
8	C	-0.821	-2.216	1.935
9	C	-3.221	-2.44	2.474
10	C	-2.918	-2.742	3.786
11	C	-0.544	-2.59	3.277
12	H	-4.257	-2.389	2.157
13	H	-3.709	-2.916	4.506
14	H	0.498	-2.647	3.573

15	H	-1.319	-3.099	5.2
16	C	-3.756	-2.721	-0.415
17	C	-6.134	-3.901	-1.336
18	C	-4.076	-4.052	-0.097
19	C	-4.663	-1.984	-1.205
20	C	-5.848	-2.575	-1.653
21	C	-5.245	-4.648	-0.56
22	H	-3.384	-4.619	0.518
23	H	-6.546	-1.993	-2.251
24	H	-5.464	-5.681	-0.314
25	H	-7.056	-4.348	-1.696
26	C	-1.546	-1.955	-2.134
27	H	-2.316	-2.679	-2.408
28	H	-1.659	-1.091	-2.798
29	C	-0.147	-2.575	-2.271
30	H	0.146	-2.675	-3.323
31	H	-0.161	-3.575	-1.82
32	C	2.078	-1.843	-1.703
33	H	2.415	-2.544	-2.473
34	C	3.11	-1.158	-0.993
35	C	5.233	0.017	0.306
36	C	2.837	-0.186	0.023
37	C	4.445	-1.495	-1.343
38	C	5.528	-0.921	-0.716
39	C	3.959	0.401	0.706
40	H	4.587	-2.236	-2.124
41	H	6.075	0.464	0.819
42	O	1.616	0.199	0.324
43	N	-0.89	0.636	1.062
44	H	-1.513	0.182	1.729
45	H	-0.098	1.01	1.588
46	N	-0.235	0.889	-1.506
47	H	-0.882	0.667	-2.26
48	H	0.676	1.043	-1.937
49	C	3.758	1.408	1.86
50	C	5.095	1.883	2.467
51	H	4.889	2.578	3.286
52	H	5.717	2.412	1.738
53	H	5.677	1.054	2.883
54	C	3.026	2.671	1.346
55	H	2.878	3.384	2.165
56	H	2.053	2.417	0.923
57	H	3.614	3.172	0.57

58	C	2.951	0.74	3.001
59	H	2.754	1.465	3.799
60	H	3.52	-0.088	3.437
61	H	2.001	0.339	2.646
62	C	6.991	-1.248	-1.058
63	C	7.099	-2.301	-2.177
64	H	6.635	-3.251	-1.89
65	H	8.153	-2.503	-2.392
66	H	6.635	-1.957	-3.108
67	C	7.707	-1.803	0.197
68	H	7.224	-2.72	0.551
69	H	7.706	-1.084	1.023
70	H	8.752	-2.036	-0.034
71	C	7.709	0.039	-1.531
72	H	7.697	0.819	-0.764
73	H	7.234	0.445	-2.43
74	H	8.756	-0.175	-1.768
75	O	-4.359	-0.68	-1.503
76	H	-5.108	-0.287	-1.971
77	C	-0.691	2.15	-0.823
78	H	0.208	2.598	-0.393
79	C	-1.615	1.72	0.335
80	H	-2.506	1.247	-0.089
81	C	-2.046	2.857	1.243
82	C	-2.881	4.932	2.939
83	C	-3.407	3.14	1.406
84	C	-1.104	3.627	1.942
85	C	-1.52	4.657	2.786
86	C	-3.824	4.172	2.247
87	H	-4.146	2.55	0.869
88	H	-0.04	3.431	1.836
89	H	-0.782	5.245	3.322
90	H	-4.883	4.38	2.363
91	H	-3.203	5.734	3.596
92	C	-1.319	3.131	-1.794
93	C	-2.446	4.942	-3.619
94	C	-2.477	2.792	-2.51
95	C	-0.735	4.385	-2.003
96	C	-1.296	5.288	-2.908
97	C	-3.035	3.691	-3.419
98	H	-2.955	1.825	-2.358
99	H	0.16	4.661	-1.452

VII. Crystal Structure of [Co-3-(rac)-dpen]OTs

X-ray quality crystals for [Co-3-(rac)-dpen]OTs were obtained by slow diffusion of hexane to its solution in EtOH at $5^{\circ} \mathrm{C}$.

Figure S6. ORTEP representation (50\% probability) of the crystal structure of Δ-[Co-3-(R, R)-dpen]OTs. Its enantiomer $\Lambda-[\operatorname{Co}-3-(S, S)-d p e n] O T s$, tosylate, and solvent ethanol are not shown. All hydrogens except for those in dpen and phenols are omitted for clarity.

Figure S7. The unit-cell structure of [Co-3-(rac)-dpen]OTs.

Empirical formula	C55 H69 Co N4 O8 S
Formula weight	1005.13
Temperature	147（2）K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P－1
Unit cell dimensions	$\mathrm{a}=13.631(3) \AA$ 風 $\quad \alpha=98.858(5)^{\circ}$
	$\mathrm{b}=14.137(3) \AA$ 風 $\quad \beta=95.100(5)^{\circ}$
	$\mathrm{c}=14.402(3) \AA$ 成 $\quad \gamma=105.071(5)^{\circ}$
Volume	2623．6（10）\AA^{3}
Z	2
Density（calculated）	$1.272 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.424 \mathrm{~mm}^{-1}$
F（000）	1068
Crystal size	$0.22 \times 0.22 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.52 to 27.55° ．
Index ranges	$-17<=\mathrm{h}<=17,-18<=\mathrm{k}<=12,-18<=1<=18$
Reflections collected	45043
Independent reflections	11987 ［R（int）$=0.0749$ ］
Completeness to theta $=27.55^{\circ}$	98．90\％
Absorption correction	Semi－empirical from equivalents
Max．and min．transmission	0.7456 and 0.6243
Refinement method	Full－matrix least－squares on F^{2}
Data／restraints／parameters	11987／ 1 ／ 651
Goodness－of－fit on F^{2}	1.016
Final R indices［ $\mathrm{I}>2$ sigma（I）］	$\mathrm{R} 1=0.0570, \mathrm{w} 2=0.1228$
R indices（all data）	$\mathrm{R} 1=0.1071, \mathrm{w} 2=0.1430$
Largest diff．peak and hole	0.968 and－0．536 e．\AA^{-3}

VIII. NMR Spectra

Mmm@m@NNNNN

200	180	60	140	120	100	80	60	40	20								0

						80		40	20	
200	180	160	140	120	100	80	60	40	20	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013
M
M

[Co-3]OTs
DMSO-d 6

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Δ-[Co-3-(R,R)-dpen]OTs
DMSO-d ${ }_{6}$

200	180	160	140	120	100	80	60	40	20	0

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

S1
DMSO-d 6

$$
\begin{aligned}
& \text { Mmलי्NNDNNNN }
\end{aligned}
$$

IX. References

[1] (a) H. Kim, Y. Nguyen, A. J. Lough, J. Chin, J. Angew. Chem. Int. Ed., 2008, 47, 8678. (b) H. Kim, Y. Nguyen, C. P.-H. Yen, L. Chagal, A. J. Lough, B. M. Kim, J. Chin, J. Am. Chem. Soc., 2008, 130, 12184.
[2] Y. Gardikis, P. G. Tsoungas, C. Potamitis, M. Zervou, M, P. Cordopatis, Heterocycles., 2011, 83, 1077.

