Novel chiral yttrium complex with a tridentate linked amido-indenyl ligand for intramolecular hydroamination

Zhuo Chai, Dezhi Hua, Kui Li, Jiang Chu and Gaosheng Yang*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based

Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal

University, Wuhu, 241000, China

gshyang@mail.ahnu.edu.cn

Electronic Supplementary Information

Content

General Information	S2
Preparation of ligand 4	S3
Preparation of yttrium complex 5	S3
X-ray crystallographic analysis of complex 5 and 10	S4
Preparation of aminoalkene substrates 6a–i	S6
General procedure for the intramolecular hydroamination	S7
¹ H NMR monitoring of reactions in Table 2	S8
Determination of the enantiomeric excess (ee) values	S12
Determination of the absolute configurations	S15
Copies of ¹ H NMR and ¹³ C NMR for ligand 4	S18
Copies of ¹ H NMR and ¹³ C NMR for yttrium complex 5	S18
Copies of ¹ H NMR and ¹³ C NMR for aminoalkene substrates 6a–i	S20
Copies of ¹ H NMR and ¹³ C NMR for compounds 8a–i	S29
HPLC Profile of compounds 8a–i	S38

General Information

All reactions with air- or moisture sensitive materials were performed in oven (120 °C) or flame-dried glassware under an inert atmosphere of argon, employing standard Schlenk and glovebox techniques. All solvents were distilled over either finely divided LiAlH₄ or sodium benzophenone ketyl under argon prior to use unless otherwise noted. CDCl₃ was dried over activated 4 Å molecular sieves. C_6D_6 was distilled from sodium/benzophenone ketyl. $[(Me_3Si)_2N]_3Ln(\mu-Cl)Li(THF)_3^{[1]}$ and $C_9H_7CH_2SiMe_2Cl^{[2]}$ were prepared by literature methods. (1R, 2R)-N,N-dimethylcyclohexane-1,2-diamine is commercially available or could be prepared by using literature method.^[3] Elemental analysis data were obtained with a Perkin–Elmer 2400 Series II elemental analyzer. ¹H NMR and ¹³C NMR spectra for analyses of compounds were recorded with a Bruker AV 300 NMR spectrometer in C₆D₆ for the yttrium complex and in CDCl₃ for organic compounds. The aminoalkene substrates 2,2-diphenylpent-4-en-1-amine (6a), (E)-2,2,5-triphenylpent-4-en-1-amine (6b), 2,2-diphenylhex-5-en-1-amine (6c), 2,2-dimethylpent-4-en-1-amine (6d), (E)-2,2-dimethyl-5-phenylpent-4-en-1-amine (6e), 2,2-dimethylhex-5en-1-amine (6f), (1-allylcyclohexyl)methanamine (6g), (E)-(1-cinnamylcyclohexyl)methanemine (6h), (E)-(1-(4-phenylbut-3-enyl)cyclohexyl)methanamine (6i) were synthesized according to literature protocols.^[4] Their analytical data were in agreement with those reported in literatures.

 ⁽a) E. Sheng, S. Wang, G. Yang, S. Zhou, L. Cheng, K. Zhang and Z. Huang, *Organometallics*, 2003, 22, 684; (b)
 S. Zhou, S. Wang, G. Yang, X. Liu, E. Sheng, K. Zhang, L. Cheng and Z. Huang, *Polyhedron*, 2003, 22, 1019.

 ^{[2] (}a) S. Wang, S. Zhou, E. Sheng, M. Xie, K. Zhang, L. Cheng, Y. Feng, L. Mao and Z. Huang, *Organometallics*, 2003, 22, 3546; (b) S. Zhou, S. Wang, E. Sheng, L. Zhang, Z. Yu, X. Xi, G. Chen, W. Luo and Y. Li, *Eur. J. Inorg. Chem.*, 2007, 1519.

 ^{[3] (}a) M. Kaik and J. Gawroński, *Tetrahedron: Asymmetry*, 2003, 14, 1559; (b) T. Okino, Y. Hoashi and Y. Takemoto, *J. Am. Chem. Soc.*, 2003, 125, 12672; (c) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, and Y. Takemoto, *J. Am. Chem. Soc.*, 2005, 127, 119.

 ^{[4] (}a) C. F. Bender and R. A. Widenhoefer, J. Am. Chem. Soc., 2005, 127, 1070; (b) M. R. Crimmin, A. G. M. Barrett, I. J. Casely, M. S. Hill, and P. A. Procopiou, J. Am. Chem. Soc., 2009, 131, 9670.

Preparation of ligand 4

To a solution of **1** (30.3 mmol) in hexane (50 mL) was added 26 mL of *n*-BuLi (1.17 M in hexane) at -78 °C and the resulting mixture was stirred at room temperature for 24 h to give a pale yellow suspension. This suspension was re-cooled to -78 °C and then treated with **3** (6.75 g, 30.3 mmol) in 20 mL of hexane. The resulting mixture was allowed to warm to room temperature and was stirred overnight. Then the reaction mixture was filtered and the residue was extracted with *n*-hexane (3×10 mL). The extracts were combined, and the solvent was evaporated under reduced pressure. The ligand **4** was obtained as extremely moisture-sensitive yellow oil; yield 8.16 g (82%). [α]_D²⁰= -26.0 (c = 0.60, hexane). IR (neat): *v* = 3345, 3063, 2930, 2858, 1601, 1452, 1398, 1352, 1250, 1171, 1057, 962, 906, 872, 833, 766, 719 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.56–7.08 (m, 6H), 6.30–5.90 (m, 2H), 3.48 (s, 0.5H), 3.31 (s, 2H), 2.78–2.50 (m, 1H), 2.39–1.89 (m, 15H), 1.84–1.48 (m, 5H), 1.31–0.79 (m, 6H), 0.24– 0.26 (m, 9H). ¹³C NMR (75.5 MHz, CDCl₃): δ 146.3, 145.8, 144.4, 141.4, 139.0, 126.1, 125.8, 125.7, 124.5, 124.3, 124.1, 123.5, 123.4, 122.7, 119.3, 119.1, 69.6, 69.3, 69.2, 52.8, 51.5, 43.5, 40.3, 40.0, 39.8, 37.7, 36.5, 36.3, 35.7, 25.6, 25.2, 24.9, 20.7, 18.1, 15.1, 0.2, -0.1, -0.5, -3.3, -3.9. HRMS (EI–TOF) m/z M⁺ calcd for C₂₀H₁₂N₂Si 328.2335, found 328.2335.

Preparation of yttrium complex 5

To a solution of [(Me₃Si)₂N]₃Y(µ-Cl)Li(THF)₃ (4.29 g, 5.18 mmol) in toluene (10.0 mL) was

added a solution of **4** (1.70 g, 5.18 mmol) in toluene (40.0 mL) at room temperature. After the reaction mixture was stirred at room temperature for 3 h, the mixture was heated at 70 °C for 24 h, during which time the solution gradually changed from pale to yellow. The solvent was evaporated under reduced pressure. The residue was extracted with *n*-hexane (2×10.0 mL). The extractions were combined and concentrated to about 5.0 mL. The yellow crystals were obtained after standing at room temperature for several days (1.43 g, 48% yield). IR (Nujol): v = 3052, 2936, 1632, 1597, 1458, 1350, 1252, 1043, 974, 843, 762, 494, 440, 418 cm⁻¹. ¹H NMR (300 MHz, C₆D₆): δ 7.82–7.59 (m, 2H), 7.14–7.01 (m, 2H), 6.42 (brs, 1H), 5.94 (brs, 1H), 2.83–2.56 (m, 3H), 2.49–2.34 (m, 1H), 1.95–1.70 (m, 6H), 1.54–1.19 (m, 4H), 1.07–0.83 (m, 2H), 0.74–0.54 (m, 1H), 0.49 (s, 3H), 0.42–0.26 (m, 4H), 0.25–0.06 (m, 18H). ¹³C NMR (75.5 MHz, C₆D₆): δ 127.1, 126.1, 123.6, 121.23, 121.16, 120.8, 119.0, 116.9, 95.7, 68.2, 60.9, 44.0, 38.3, 37.0, 25.3, 25.2, 20.4, 17.2, 6.7, 5.7, 5.3, 2.4. Anal. Calcd for C₂₆H₄₈N₃Si₃Y: C, 54.23; H, 8.40; N, 7.30; Found: C, 54.25; H, 8.36; N, 7.23.

X-ray crystallographic analysis of complex 5 and 10

The single crystal X-ray diffraction data for complex **5** and **10** were collected on a diffractometer with graphite monchromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at room temperature. Saint program and SADABS program carried out the data integration. The structures were solved by a direct method and refined on F² using SHELXTL suite of program. All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The details of the X-ray data collection, structure solution and structure refinements were given in Table S1. The Selected bond lengths and angles of complex **5** and **10** were given in Table S2. The crystal structures of **5** and **10** were given in Figure S1.

Compound	5	10
Formula	$C_{26}H_{48}N_3Si_3Y$	C ₂₆ H ₄₈ N ₃ Si ₃ Er
Formula weight	575.85	654.20
Temperature/K	293(2)	293(2)
Crystal system	Orthorhombic	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
<i>a</i> , Å	11.150(2)	11.176(1)

 Table S1
 Crystallographic data and structural refinement details for complex 5 and 10.

S4

b, Å	16.584(2)	15.744(1)
<i>c</i> , Å	17.122(2)	18.201(1)
$V/\text{\AA}^3$	3166.1(8)	3202.6(4)
Ζ	4	4
μ (Mo Ka), mm ⁻¹	1.973	2.750
θ range for data collection, deg	1.7 to 27.9	1.7 to 27.8
Calculated density/ $(g \cdot cm^{-3})$	1.208	1.357
Reflections collected	27312	27941
Unique reflections/R _{int}	7430/R(int) = 0.068	7481/R(int) = 0.032
F (000)	1224	1340
Goodness-of-fit on F ²	0.960	0.82
Crystal dimension/mm ³	0.18×0.19×0.21	0.32 x 0.13 x 0.12
$\mathbf{R}, \mathbf{R}_{\mathrm{w}} \left[\mathbf{I} > 2\sigma(\mathbf{I}) \right]$	0.0441, 0.0846	0.0253, 0.0649
Residual $\rho/(e \cdot Å^{-3})$	0.70, -0.35	0.56, -0.71
Flack χ	-0.009(6)	-0.016(10)
CCDC No.	960598	966418

Table S2Selected bond lengths (Å) and angles (°) of complex 5 and 10.

	5	10
C1–Ln1	2.691(3)	2.644(4)
C2–Ln1	2.669(3)	2.601(4)
C3–Ln1	2.641(4)	2.615(5)
C4–Ln1	2.681(4)	2.687(5)
C5–Ln1	2.670(4)	2.706(4)
N1–Ln1	2.212(3)	2.185(3)
N2–Ln1	2.470(3)	2.455(4)
N3–Ln1	2.249(3)	2.214(3)
N1-Ln1-N2	73.7(1)	75.01(12)
N1–Ln1–N3	118.5(1)	112.76(12)
N3-Ln1-N2	104.1(1)	103.69(11)

Preparation of aminoalkene substrates 6a-i

All these compounds were known compounds with references given in the General information section.

2,2-diphenylpent-4-en-1-amine (**6a**): Purified by column chromatography (petroleum ether/ethyl acetate = 2/1) to afford a viscous colorless oil in 80 % yield. ¹H NMR (300 MHz, CDCl₃): δ 7.35–7.25 (m, 4H), 7.24–7.13 (m, 6H), 5.48–5.31 (m, 1H), 5.10–4.93 (m, 2H), 3.32 (s, 2H), 2.92 (d, *J* = 7.0 Hz, 2H), 1.17–0.95 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 146.3, 134.6, 128.2, 128.1, 126.1, 117.7, 51.4, 48.6, 41.2.

Ph Ph (*E*)-2,2,5-triphenylpent-4-en-1-amine (6b): Purified by column Ph NH₂ chromatography (petroleum ether/ethyl acetate = 2/1) to afford a white solid in 89% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.37–7.10 (m, 15H), 6.38 (d, *J* = 15.8 Hz, 1H), 5.77 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.35 (s, 2H), 3.06 (dd, *J* = 7.3, 1.2 Hz, 2H), 1.17–0.80 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 146.3, 137.5, 132.8, 128.4, 128.3, 128.2, 127.0, 126.5, 126.2, 126.0, 52.0, 48.7, 40.3.

2,2-diphenylhex-5-en-1-amine (**6c**): Purified by column chromatography (petroleum ether/ethyl acetate = 2/1) to afford a viscous yellow oil in 48% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.13 (m, 10H), 5.84–5.68 (m, 1H), 5.00–4.85 (m, 2H), 3.33 (s, 2H), 2.25–2.14 (m, 2H), 1.81–1.68 (m, 2H), 0.99–0.83 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 146.3, 138.8, 128.3, 128.1, 126.1, 114.4, 51.8, 49.1, 35.7, 28.6.

MeAlgorithm**2,2-dimethylpent-4-en-1-amine** (6d): Purified by distillation under reduced
pressure (40 °C, 35 mmHg) to afford colorless oil in 58% yield. ¹H NMR(300 MHz, CDCl₃): δ 5.91–5.73 (m, 1H), 5.09–4.95 (m, 2H), 2.45 (s, 2H), 1.97 (d, J = 7.5 Hz,
2H), 1.43–1.17 (brs, 2H), 0.86 (s, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 135.3, 116.9, 52.7, 44.1,
34.9, 24.6.

Me Me (E)-2,2-dimethyl-5-phenylpent-4-en-1-amine (6e): Purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to afford a

colorless oil in 60% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.40–7.16 (m, 5H), 6.40 (d, *J* = 15.7 Hz, 1H), 6.24 (dt, *J* = 15.7, 7.3 Hz, 1H), 2.50 (s, 2H), 2.13 (dd, *J* = 7.3, 0.7 Hz, 2H), 1.35–1.20 (brs, 2H), 0.91 (s, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 137.7, 132.2, 128.5, 127.3, 127.0, 126.0, 52.8, 43.2, 35.7, 24.8.

 Me
 Algorithm
 2,2-dimethylhex-5-en-1-amine (6f): Purified by distillation under reduced pressure (80 °C, 50 mmHg) to afford colorless oil in 50 % yield. ¹H NMR

 (300 MHz, CDCl₃): δ 5.91–5.75 (m, 1H), 5.07–4.88 (m, 2H), 2.45 (s, 2H), 2.07–1.94 (m, 2H), 1.33–1.24 (m, 2H), 1.21–1.09 (brs, 2H), 0.85 (s, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 139.6, 114.0, 52.8, 38.7, 34.5, 28.4, 24.6.

(1-allylcyclohexyl)methanamine (6g): Purified by distillation under reduced NH_2 pressure (68 °C, 5 mmHg) to afford colorless oil in 50 % yield. ¹H NMR (300 MHz, CDCl₃): δ 5.88–5.72 (m, 1H), 5.10–4.99 (m, 2H), 2.52 (s, 2H), 2.07 (d, *J* = 7.2 Hz, 2H), 1.49–1.34 (m, 6H), 1.32–1.20 (m, 4H), 1.18–1.09 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 135.0, 116.8, 48.8, 39.9, 37.0, 33.3, 26.4, 21.5.

(*E*)-(1-cinnamylcyclohexyl)methanamine (6h): Purified by column Ph NH_2 chromatography (petroleum ether/ethyl acetate = 5/1) to afford a colorless oil in 44% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.39–7.13 (m, 5H), 6.40 (d, *J* = 15.7 Hz, 1H), 6.21 (dt, *J* = 15.7, 7.5 Hz, 1H), 2.55 (s, 2H), 2.20 (dd, *J* = 7.5, 0.9 Hz, 2H), 1.56–1.23 (m, 10H), 1.19–1.06 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 137.7, 132.1, 128.5, 127.01, 126.96, 126.0, 48.9, 39.0, 37.8, 33.4, 26.5, 21.6.

(1-(but-3-en-1-yl)cyclohexyl)methanamine (6i): Purified by distillation NH₂ under reduced pressure (85 °C, 5 mmHg) to afford colorless oil in 43 % yield. ¹H NMR (300 MHz, CDCl₃): δ 5.91–5.76 (m, 1H), 5.06–4.90 (m, 2H), 2.53 (s, 2H), 2.01–1.90 (m, 2H), 1.49–1.22 (m, 12H), 1.19–1.05 (brs, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 139.7, 114.0, 48.5, 36.4, 34.2, 33.4, 27.4, 26.5, 21.5.

General procedure for the intramolecular hydroamination

In an argon-filled glovebox, 2 mol% of **5**, Cp₂Fe (6.0 mg, internal standard) and aminoalkene **6** (0.32 mmol) were weighed into a 5-mm NMR tube equipped with a Teflon valve (J-Young), and C_6D_6 (0.6 mL) was added. The hydroamination reaction was then monitored by ¹H NMR analysis for estimate of both conversion and yield.

¹H NMR monitoring of reactions in Table 2

¹H NMR, 300 MHz, C₆D₆, ferrocene as internal standard **Table 2 entry 1** Substrate: 6a (0.32 mmol), Catalyst: 5 (2.0 %mol), Temperature: 25 °C

¹H NMR, 300 MHz, C₆D₆, ferrocene as internal standard **Table 2 entry 2** Substrate: **6b** (0.32 mmol), Catalyst: **5** (2.0 %mol), Temperature: 25 °C

¹H NMR, 300 MHz, C₆D₆, ferrocene as internal standard **Table 2 entry 5** Substrate: **6e** (0.32 mmol), Catalyst: **5** (5.0 %mol), Temperature: 50 °C

¹H NMR, 300 MHz, C₆D₆, ferrocene as internal standard **Table 2 entry 6** Substrate: **6f** (0.32 mmol), Catalyst: **5** (2.0 %mol), Temperature: 50 °C

¹H NMR, 300 MHz, C₆D₆, ferrocene as internal standard **Table 2 entry 9** Substrate: **6i** (0.32 mmol), Catalyst: **5** (2.0 %mol), Temperature: 25 °C

The enantiomeric excess values were determined by HPLC analysis of the **8** using AS-H, AD-H, or OJ-H column. Typical procedure of derivatization: To a solution of the corresponding cyclized product **7** (0.16 mmol) in CH₂Cl₂ (5 mL) was added 4-dimethylaminopyridine (DMAP, 4.8 mg, 0.04 mmol), triethylamine (45 μ L, 0.3 mmol), and 4-methoxybenzoyl chloride (40 μ L, 0.3 mmol) at ambient temperature. After stirring for 2 h, a saturated aqueous solution of ammonium chloride (5 mL) was poured into the reaction mixture and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with saturated aqueous solution of ammonium chloride (5 mL) and concentrated in vacuo. The crude product was purified by preparative TLC plate (silica gel).

(8a): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 85% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (1/1 hexane/*i*-PrOH; flow rate

1.0 mL/min; $\lambda = 254$ nm; $t_R = 30.6$ (major), 10.1 (minor) min). $[\alpha]_D^{20} = -119.2$ (c = 0.53, CH₂Cl₂). IR (neat): v = 1624, 1607, 1572, 1512, 1491, 1458, 1447, 1420, 1398, 1254, 1171, 841, 764, 698 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, J = 8.2 Hz, 2H), 7.33–7.10 (m, 8H), 7.03 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 4.38 (d, J = 11.1 Hz, 1H), 4.17–4.01 (m, 1H), 3.94–3.76 (m, 4H), 2.96–2.81 (m, 1H), 2.36 (t, J = 11.3 Hz, 1H), 1.45 (d, J = 5.8 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 168.8, 160.2, 144.4, 143.3, 128.5, 128.3, 127.6, 127.5, 125.7, 125.6, 125.5, 125.3, 112.6, 58.7, 54.3, 52.6, 51.5, 44.6, 18.8. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₂₅H₂₆NO₂ 372.1964, found 372.1964.

(**8b**): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 6/1) to afford a viscous colorless oil in 97% ee. The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/*i*-PrOH; flow

rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 16.9$ (major), 41.2 (minor) min). $[\alpha]_D^{20} = -113.0$ (c = 0.50, CH₂Cl₂). IR (neat): v = 1626, 1607, 1574, 1512, 1495, 1447, 1420, 1400, 1254, 1171, 1030, 841, 754, 700 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, J = 8.8 Hz, 2H), 7.36–7.08 (m, 11H), 7.06–6.91 (m, 6H), 4.39–4.25 (m, 2H), 3.87 (s, 3H), 3.57 (d, J = 11.1 Hz, 1H), 3.31 (dd, J = 13.2, 3.0 Hz, 1H), 3.04 (dd, J = 12.9, 8.1 Hz, 1H), 2.74–2.64 (m, 1H), 2.49 (dd, J = 12.6, 10.5 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 161.3, 145.2, 144.1, 138.1, 130.0, 129.5, 129.1, 128.6, 128.5, 128.4, 126.7, 126.6, 126.5, 126.4, 113.7, 60.2, 57.3, 55.4, 53.4, 42.0, 38.5. HRMS (ESI–TOF) m/z [M + Na]⁺ calcd for C₃₁H₂₉NO₂Na 470.2096, found 470.2095.

(8c): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 69% ee. Mp 187–188 °C. The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1

hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 8.7 (major), 23.4 (minor) min). [α]_D²⁰= -34.5 (c = 0.71, CH₂Cl₂). IR (neat): v = 1624, 1609, 1510, 1497, 1447, 1425, 1364, 1250, 1173, 1028, 839, 752, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.44–7.12 (m, 12H), 6.93–6.83 (m, 2H), 5.41–5.10 (brs, 1H), 4.34–4.07 (brs, 1H), 3.81 (s, 3H), 3.17 (d, J = 13.5 Hz, 1H), 2.66–2.49 (m, 2H), 1.84–1.66 (m, 1H), 1.43 (d, J = 13.5 Hz, 1H), 1.20 (d, J = 6.9 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 171.0, 160.4, 147.4, 143.8, 129.3, 128.5, 128.4, 128.0, 127.7, 126.5, 126.4, 126.1, 113.8, 55.3, 48.4, 47.2, 45.9, 29.5, 26.2, 17.2. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₂₆H₂₈NO₂ 386.2120, found 386.2120.

(8d): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 4/1) to afford a viscous colorless oil in 82% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1 hexane/*i*-PrOH; flow

rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 9.9$ (major), 7.9 (minor) min). $[\alpha]_D^{20} = -114.3$ (c = 0.64,

CH₂Cl₂). IR (neat): v = 1624, 1609, 1572, 1512, 1458, 1420, 1398, 1254, 1171, 1030, 841 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 2H), 6.96–6.84 (m, 2H), 4.44–4.23 (m, 1H), 3.84 (s, 3H), 3.39–3.25 (m, 1H), 3.24–3.07 (m, 1H), 1.99–1.85 (m, 1H), 1.49–1.25 (m, 4H), 1.06 (s, 3H), 0.90 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.8, 161.0, 129.6, 113.4, 62.9, 55.3, 53.0, 47.6, 38.3, 25.8, 25.5, 20.3. HRMS (ESI–TOF) m/z [M + Na]⁺ calcd for C₁₅H₂₁NO₂Na 270.1470, found 270.1470.

(8e): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 6/1) to afford a viscous colorless oil in 80% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (2/1 hexane/*i*-PrOH; flow

rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 13.0$ (major), 7.8 (minor) min). $[\alpha]_D^{20} = -98.9$ (c = 0.39, CH₂Cl₂). IR (neat): $\nu = 1620$, 1607, 1572, 1508, 1454, 1419, 1398, 1254, 1171, 1030, 841, 766, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.56–7.48 (m, 2H), 7.34–7.18 (m, 5H), 6.95–6.87 (m, 2H), 4.65–4.50 (m, 1H), 3.84 (s, 3H), 3.27 (dd, J = 12.9, 2.6 Hz, 1H), 3.13 (d, J = 13.2 Hz, 1H), 3.05–2.88 (m, 2H), 1.70 (ddd, J = 12.6, 7.4, 1.7 Hz, 1H), 1.56 (dd, J = 12.5, 10.0 Hz, 1H), 0.95 (s, 3H), 0.84 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 161.1, 138.4, 129.9, 129.6, 129.2, 128.2, 126.2, 113.4, 63.5, 57.9, 55.3, 43.9, 38.9, 38.0, 25.6, 25.5. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₂₁H₂₆NO₂ 324.1964, found 324.1963.

(8f) Purified by preparative TLC plate (petroleum ether/ethyl acetate = 5/1) to afford a viscous colorless oil in 58% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1 hexane/*i*-PrOH;

flow rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 10.4$ (major), 13.1 (minor) min). $[\alpha]_D^{20} = -90.0$ (c = 0.40, CH₂Cl₂). IR (neat): v = 1626, 1609, 1574, 1514, 1462, 1420, 1391, 1250, 1173, 1034, 841 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.31 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.79–4.27 (brs, 1H), 3.83 (s, 3H), 3.76–3.36 (brs, 1H), 2.79 (d, J = 12.9 Hz, 1H), 2.00–1.83 (m, 1H), 1.65–1.50 (m, 1H), 1.42–1.24 (m, 2H), 1.20 (d, J = 6.9 Hz, 3H), 0.93 (s, 3H), 0.90 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 170.9, 160.2, 129.4, 128.3, 113.7, 55.3, 32.4, 31.4, 29.1, 26.1, 23.0, 16.2. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₁₆H₂₄NO₂ 262.1807, found 262.1806.

(8g): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 4/1) to afford a viscous colorless oil in 75% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (1/1 hexane/*i*-PrOH;

flow rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 14.1$ (major), 8.3 (minor) min). $[\alpha]_D^{20} = -62.0$ (c = 0.40, CH₂Cl₂). IR (neat): v = 1628, 1609, 1572, 1512, 1448, 1420, 1400, 1252, 1175, 1030, 841 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, J = 8.1 Hz, 2H), 6.95–6.85 (m, 2H), 4.39–4.17 (brs, 1H), 3.84 (s, 3H), 3.36 (d, J = 10.2 Hz, 1H), 3.22 (d, J = 10.5 Hz, 1H), 2.12 (dd, J = 12.3, 7.5 Hz, 1H), 1.60–1.12 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃): δ 169.9, 160.9, 129.5, 113.4, 60.7, 55.3, 52.1, 44.7, 42.3, 36.3, 33.4, 26.1, 23.8, 22.5, 20.3. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₁₈H₂₆NO₂ 288.1963, found 288.1961.

(8h): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 9/1) to afford a viscous colorless oil in 87% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (20/1 hexane/*i*-PrOH;

flow rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 20.8$ (major), 13.9 (minor) min). $[\alpha]_D^{20} = -186.0$ (c = 0.60, CH₂Cl₂). IR (neat): v = 1624, 1607, 1512, 1452, 1420, 1398, 1252, 1173, 1030, 841, 766, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, J = 8.7 Hz, 2H), 7.37–7.17 (m, 5H), 6.91 (d, J = 8.7 Hz, 2H), 4.62–4.45 (m, 1H), 3.84 (s, 3H), 3.39–3.16 (m, 2H), 3.02–2.82 (m, 2H), 1.98–1.83 (m, 1H), 1.50–1.12 (m, 11H). ¹³C NMR (75.5 MHz, CDCl₃): δ 170.0, 161.0, 138.4, 130.0, 129.6, 129.3, 128.2, 126.2, 113.4, 61.2, 56.9, 55.3, 42.0, 40.9, 39.0, 36.0, 33.5, 26.1, 23.7, 22.4. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₂₄H₃₀NO₂ 364.2276, found 364.2275.

(8i): Purified by preparative TLC plate (petroleum ether/ethyl acetate = 5/1) to afford a viscous colorless oil in 73% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1 hexane/*i*-PrOH;

flow rate 1.0 mL/min; $\lambda = 254$ nm; $t_R = 20.5$ (major), 14.2 (minor) min). $[\alpha]_D{}^{20} = -104.0$ (c = 0.40, CH₂Cl₂). IR (neat): v = 1624, 1609, 1572, 1508, 1448, 1420, 1398, 1252, 1173, 1030, 841 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 731 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.73–4.31 (brs, 1H), 3.84 (s, 3H), 2.70 (d, J = 12.8 Hz, 1H), 2.00–1.69 (m, 2H), 1.62–1.12 (m, 16H). ¹³C NMR (75.5 MHz, CDCl₃): δ 170.9, 160.2, 129.6, 128.3, 113.7, 55.3, 38.3, 33.8, 30.9, 29.9, 26.5, 25.4, 21.6, 21.4, 16.4. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₁₉H₂₈NO₂ 302.2120, found 302.2119.

Determination of the absolute configurations

The absolute configurations of products **7a**, **7c** and **7d** were determined by X-ray crystallographic analysis of the derivatized products **9a**, **9c** and **9d**. Typical procedure for the derivatization: to a solution of **7** (0.16 mmol) in CH₂Cl₂ (5 mL) was added dimethylaminopyridine (4.8 mg, 0.04 mmol), triethylamine (45 μ L, 0.32 mmol), and 4-bromobenzoyl chloride (40 μ L, 0.3 mmol) at ambient temperature. After stirring for 2 h, saturated aqueous solution of ammonium chloride (5 mL) was poured into the reaction mixture

and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3×5 mL). The combined organic layers were then washed with saturated aqueous solution of ammonium chloride (5 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC plate (silica gel). The crystals of the **9a** and **9d** suitable for X-ray crystallographic analysis were obtained by recrystallization from a mixed solvent of CH_2Cl_2 and hexane. The crystal of the **9c** suitable for X-ray crystallographic analysis was obtained by recrystallization from ethyl acetate.

The single crystal X-ray diffraction data for compounds **9a**, **9c** and **9d** were collected on a diffractometer with graphite monchromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at room temperature. Saint program and SADABS program carried out the data integration. The structures were solved by a direct method and refined on F² using SHELXTL suite of program.All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The details of the X-ray data collection, structure solution and structure refinements are given in Table S3. The crystal structures of **9a**, **9c** and **9d** are given in Figure S2.

Compound	9a	9c	9d
Formula	C ₂₄ H ₂₂ BrNO	C ₂₅ H ₂₄ BrNO	C ₁₄ H ₁₈ BrNO
Formula weight	420.33	434.35	296.19
Temperature/K	293(2)	293(2)	293(2)
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	P212121	P21	P212121
<i>a</i> , Å	10.329(1)	8.785(1)	7.487(1)
b, Å	11.606(1)	12.874(1)	9.521(1)
<i>c</i> , Å	16.666(2)	9.389(1)	19.774(3)
α , deg	90	90	90
β , deg	90	95.271(1)	90
γ, deg	90	90	90
$V/\text{\AA}^3$	1997.8(4)	1057.4(2)	1409.5(4)
Ζ	4	2	4
μ (Mo Ka), mm ⁻¹	2.071	1.958	2.902
θ range for data collection, deg	2.1 to 29.1	2.2 to 27.4	2.1 to 27.4
Calculated density/(g·cm ⁻³)	1.398	1.364	1.396
Reflections collected	17894	8880	12032
Unique reflections/R _{int}	4936/R(int) = 0.036	4636/R(int) = 0.020	3209/R(int) = 0.029
F (000)	864	448	608
Goodness-of-fit on F ²	0.83	0.66	0.81

 Table S3
 Crystallographic data and structural refinement details for compounds 9a, 9c and 9d.

-

Crystal dimension/mm ³	0.20×0.22×0.25	0.15×0.19×0.20	0.23×0.25×0.28
R, $R_w [I > 2\sigma(I)]$	0.0494, 0.1775	0.0247, 0.0784	0.0345, 0.1201
Residual $\rho/(e \cdot \text{\AA}^{-3})$	0.97, -0.93	0.19, -0.33	0.34, -0.68
Flack χ	-0.004(13)	0.018(7)	0.012(14)
CCDC No.	960599	960600	960601

Figure S2 X-ray structures (50 % probability ellipsoids) of compounds 9a, 9c and 9d.

Copies of ¹H NMR and ¹³C NMR for ligand 4

Copies of ¹H NMR and ¹³C NMR for yttrium complex 5

Copies of ¹H NMR and ¹³C NMR for aminoalkene substrates 6a-i

¹H NMR 300 MHz,CDCl₃

Copies of ¹H NMR and ¹³C NMR for compounds 8a-i

¹H NMR 300 MHz,CDCl₃

HPLC Profile of compounds 8a-i

117.81854

92.3939

2 12.979 BV

2.1776 1.35614e4

AS-H, hexane/2-propanol 2:1, 1mL/min

90.2223

96.02909

S43

