Supplementary Information

Access channel residues Ser315 and Asp137 in *Mycobacterium tuberculosis* catalase-peroxidase (KatG) control peroxidatic activation of the *pro*-drug isoniazid

Xiangbo Zhao, Hans-Petter Hersleth, Janan Zhu, Kristoffer Andersson and Richard S. Magliozzo and Richard R

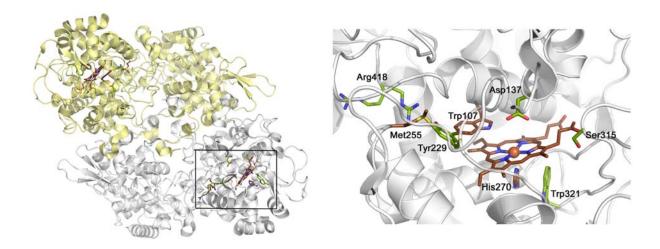
^a Department of Chemistry, Brooklyn College and The Graduate Center of The City University of New York. 2900 Bedford Avenue, Brooklyn, NY 11210 USA Fax: 718 951 4607; Tel: 718 951 5000 X2845; Email: rmaglioz@brooklyn.cuny.edu

^b Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, NO-0316 Oslo, Norway. . Fax: +47 2285 4726; Tel: +47 2285 6625; E-mail: k.k.andersson@ibv.uio.no

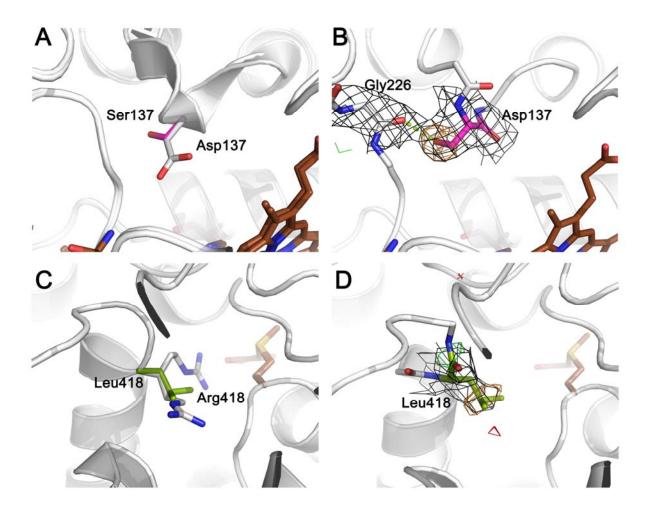
^c Current address, Duke University, Durham, NC, 27705 USA

Experimental section.

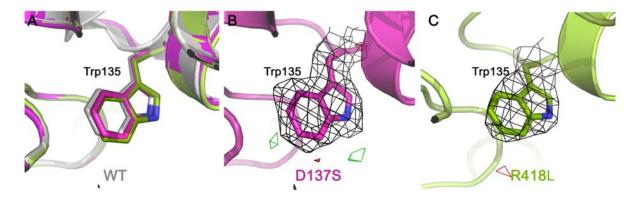
- 1. Overexpression of recombinant *M. tuberculosis* (*M.tb*) WT KatG and its mutant enzymes, and their purification were performed as described in previous reports; the heme precursor δ -aminolevulinic acid (200 μ M) was added to culture media immediately after inducing to promote formation of holo-enzyme. KatG concentration is expressed as the heme concentration based on the pyridine hemochromogen assay.
- 2. The rates of IN-NAD adduct generation with varying concentrations of INH were examined directly in a spectrophotometric assay according to our previous protocol 2 with minor modifications. All reactions were performed at room temp in 20mM potassium phosphate buffer (pH 7.2) containing 0.1 mM EDTA. The assay mixture contains: KatG (1 μ M), NAD $^+$ (200 μ M), Glucose Oxidase (~15 mU/mL, generating 3.0 μ M/min H₂O₂), and glucose (5 mM). To monitor adduct formation, the absorbance at 326 nm was recorded for 10 min after the addition of glucose. The concentration of IN-NAD adduct was calculated according to its extinction coefficient ($\epsilon_{326~nm}$ = 6900M $^{-1}$ cm $^{-1}$). The reference cuvette contained all components except NAD $^+$ to correct for background. The rate of adduct formation was computed from the absorbance change recorded during the first 10 min.
- 3. KatG[Asp137Ser] and KatG[Arg418Leu] were crystallized under conditions similar to those previously reported.⁵ The crystals were grown by sitting-drop vapor diffusion with the crystallization solutions containing 100 mM sodium acetate, pH 4.6, 6% PEG 4000, and 0.17 mM n-dodecyl β -D-maltoside. The crystallization drop was a 1:1 mix between the crystallization solution and ~20 mg/mL KatG solution.
- 4. For X-ray diffraction experiments, single crystals were transferred into a cryo-solution for 10-20 seconds before being flash-frozen in liquid nitrogen in nylon loops (Hampton Research). The cryo-solutions were made by including 30% glucose as a cryoprotectant in the crystallization solutions. For the KatG[Asp137Ser] crystal, the diffraction data were collected at beam line X10SA at the SLS (Swiss-Light-Source), Villigen, Switzerland, while for the KatG[Arg418Leu] crystal, the diffraction data were collected at beamline ID29 at the ESRF (European Synchrotron Radiation Facility), Grenoble, France. Both data sets were collected at 100 K with a 6M Pilatus detector (DECTRIS, Ltd.). The diffraction data were processed and scaled with MOSFLM ⁶ and SCALA ⁷ or AIMLESS, and the space group was confirmed with POINTLESS through the CCP4 software suite ^{8,9}. The tetragonal structures have two KatG molecules in the asymmetric unit, and the structures were solved by molecular replacement with PHASER ¹⁰ based on the structure of WT M.tb KatG (PDB entry 2CCA). Refinement was performed through multiple cycles of restrained refinement in REFMAC ¹¹ using NCS restraints, and model building and addition of water molecules in COOT. ¹² No restraints were used for the Fe-N_{Heme}, Fe-N_{His}, Fe-H₂O, $C\eta 2_{Trp107}$ - $C\epsilon 1_{Tyr229}$ or $C\epsilon 2_{Tyr229}$ - $S\delta_{Met255}$ distances. The program RADDOSE^{13,14} was used to calculate the absorbed X-ray doses ($Gy = J \cdot kg^{-1}$) of the different crystals during crystallographic data collection. The access channel in the KatG variants was calculated with HOLLOW ¹⁵ using a 1.4 Å probe radius. The backbone Cα root mean square deviation (RMSD) values were calculated by use of PDBeFold (http://www.ebi.ac.uk) to be 0.33 Å between the WT KatG and KatG[Asp137Ser] structures and 0.35 Å between the WT KatG and KatG[Arg418Leu] structures. Structure figures were made using PyMOL.¹⁶


References

- S. Chouchane, I. Lippai and R. S. Magliozzo, Biochemistry, 2000, 39, 9975-9983. 1.
- X. Zhao, H. Yu, S. Yu, F. Wang, J. C. Sacchettini and R. S. Magliozzo, Biochemistry, 2006, 45, 4131-4140. 2.
- 3. B. Lei, C. J. Wei and S. C. Tu, J. Biol. Chem., 2000, 275, 2520-2526.
- R. Rawat, A. Whitty and P. J. Tonge, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 13881-13886. 4.
- 5. X. Zhao, H. Yu, S. Yu, F. Wang, J. C. Sacchettini and R. S. Magliozzo, Biochemistry, 2006, 45, 4131-
- 6. A. G. W. Leslie and H. R. Powell, in Evolving Methods for Macromolecular Crystallography, eds. R. J. Read and J. L. Sussman, Springer Netherlands, 2007, pp. 41-51.
- 7. P. Evans, Acta Crystallogr. Sect. D Biol. Crystallogr., 2006, 62, 72-82.
- M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. 8. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin and K. S. Wilson, Acta Crystallogr. Sect. D Biol. Crystallogr., 2011, 67, 235-242.
- E. Potterton, P. Briggs, M. Turkenburg and E. Dodson, Acta Crystallogr. Sect. D Biol. Crystallogr., 2003, 9. **59**, 1131-1137.
- 10. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, J. Appl. Cryst., 2007, 40, 658-674
- 11. G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long and A. A. Vagin, Acta Crystallogr. Sect. D Biol. Crystallogr., 2011, 67, 355-367.
- P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Acta Crystallogr. Sect. D Biol. Crystallogr., 2010, 66, 12.
- J. W. Murray, R. B. G. Ravelli and E. F. Garman, J. Appl. Cryst., 2004, 37, 513-522. 13.
- 14. K. S. Paithankar and E. F. Garman, Acta Crystallogr. Sect. D Biol. Crystallogr., 2010, 66, 381-388.
- 15.
- B. Ho and F. Gruswitz, *BMC Struct. Biol.*, 2008, **8**, 49. Schrodinger, LLC, *The PyMOL Molecular Graphics System, Version 1.3r1*, (2010). 16..


Table S1 – Crystal data, data collection and refinement statistics.

KatG	D137S	R418L
Crystal data		
Space group	P4 ₂ 2 ₁ 2	P4 ₂ 2 ₁ 2
a, b, c (Å)	150.6 / 150.6 / 157.4	150.7 / 150.7 / 157.1
$lphaeta\gamma(^\circ)$	90 / 90 / 90	90 / 90 / 90
Crystal size (µm³)	120×120×10	100×70×15
Data collection		
X-ray source	SLS-X10SA	ESRF-ID29
Wavelength (Å)	1.0000	0. 97627
Detector	Pilatus 6M	Pilatus 6M
Temperature (K)	100	100
Beam size (μm ²)	100×100	30×30
Flux (photons/sec)	$620 \cdot 10^9$	$309 \cdot 10^9$
Absorbed X-ray dose (MGy)	2.2	19.8
Resolution range (Å)	75.3-2.5 / 2.56-2.50	44.1-3.10 / 3.27-3.10
Completeness (%)*	99.9 / 100.0	99.7 / 99.8
Redundancy *	6.2 / 6.5	7.7 / 7.3
$I/\mathrm{sd}(I)^*$	8.7 / 3.9	11.4 / 4.5
${R_{\mathrm{sym}}}^{*\P}$	13.0 / 38.7	15.7 / 46.7
Total observations	389770	2588312
Unique reflections	62942	33364
Mosaicity	0.42	0.51
Refinement Statistics		
$R_{ m work} \left(\% ight)^{\dagger}$	26.6	16.3
$R_{ m free} \left(\% ight)^{\!\#}$	31.1	21.4
Mean overall isotropic B-factor (Å ²)	34.3	39.7
Ramachandran plot: ration in most favoured / other allowed regions / generously allowed regions (%)	88.8 / 10.9 / 0.2	87.1 /12.1 / 0.8
Estimated overall coordinate error based on R_{work} Maximum Likelihood (Å)	0.59 / 0.31	- / 0.28
RMSD bond (Å) / angles (°)	0.012 / 1.4	0.012 / 1.5
Solvent content (%)	56.3	56.5
Molecules per asymmetric unit	2	2
Added water molecules	82	6
Volume not occupied by model (%)	46.6	46.8
Unmodelled residues	1-24	1-23
PDB code	4C50	4C51


^{*} The value before the backslash is for all data, and the value after the backslash is for the data in the highest resolution shell

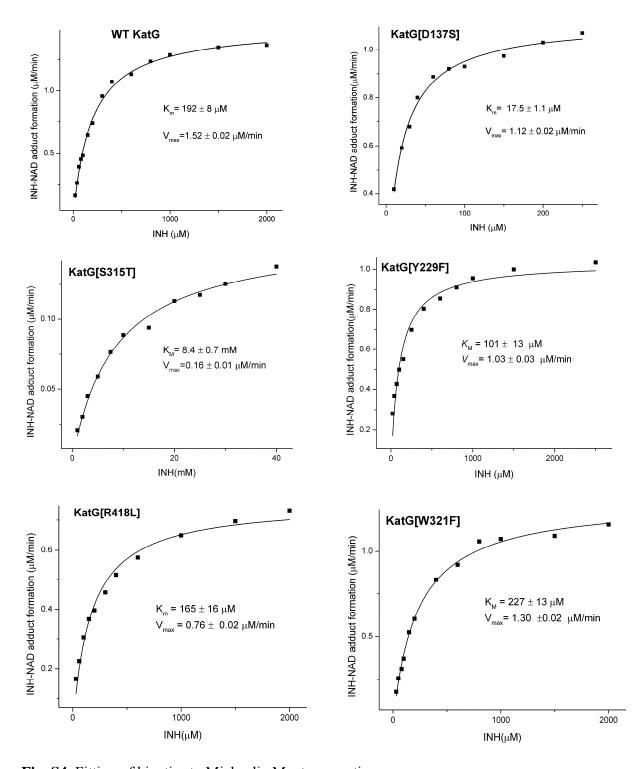

Fig. S1. Structure of the *M.tb* KatG dimer (2CCA.pdb) shown on the left. On the right, the residues mutated for this study are colored in green. The figure was generated using PyMOL.¹⁶

Fig. S2. Structures of the Asp137Ser and Arg418Leu mutants of *M.tb* KatG. **A.** Overlay of WT (2CCA.pdb) and Asp137Ser mutant structures; **B.** Asp137Ser mutant structure showing Ser137 and Gly226 with electron density; **C.** Overlay of WT (2CCA.pdb) and Arg418Leu mutant structures; **D.** Arg418Leu mutant structure showing Leu418 with electron density. The $2F_0$ - F_c electron density maps (black) are contoured at $+1\sigma$, the F_0 - F_c electron density difference maps are contoured at $+3\sigma$ (red) and $+3\sigma$ (green), and the F_0 - F_c OMIT-map of the mutated residues are contoured at $+4.7\sigma$ (orange). The figure was generated using PyMOL. ¹⁶

Fig. S3. Structures of *M.tb* WT KatG, KatG[Asp137Ser], and KatG[Arg418Leu] mutants showing the Trp135 residue. **A.** Overlay of WT (2CCA.pdb) and Asp137Ser and Arg418Leu structures; **B.** Asp137Ser mutant structure showing Trp135 with electron density; **C.** Arg418Leu mutant structure showing Trp135 with electron density. The $2F_0$ - F_c electron density maps (black) are countered at +1 σ , and the F_0 - F_c electron density difference maps are contoured at -3 σ (red) and +3 σ (green). The figure was generated using PyMOL. ¹⁶

Fig. S4. Fitting of kinetics to Michaelis-Menten equation.