Supporting Information for

Solution Superstructures: Truncated Cubeoctahedron Structures of Pyrogallol[4]arene Nanoassemblies

In the section, we report two sets of experiments:

- a) SANS data analysis of holmium-seamed *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly in d6-DMSO
- b) SANS data analysis of holmium-seamed C-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly in d6-DMSO

For the SANS experiments, solid precipitates of PgC_1Ho or PgC_3Ho were dissolved in d6-DMSO at a mass fraction of 3%. Samples were held in cells of path length 2 mm and held at a constant temperature of 25 °C. SANS measurements were carried out at the NG7 SANS instrument at the NIST Center for Neutron Research using 6 Å neutrons and two different sample to detector distances to give an overall q-range of 0.01659 Å⁻¹ to 0.514Å⁻¹. Data was reduced and placed on an absolute scale using standard software supplied by the NCNR. Here, we report the full sets of fitting parameters of the cylinder, core-shell sphere, core-shell cylinder, ellipsoid, bimodal Schulz sphere and Schulz sphere fits for PgC_1Ho and PgC_3Ho . All modeling used resolution-smeared model functions that incorporate the finite resolution of the SANS instrument into the data analysis. Fitted values are one standard deviation of each fitted parameter. Comparing the quality of each different model fit with respect to the criteria enlisted below leads to the conclusion that the Schulz Sphere model best represents the structure of PgC_1Ho and PgC_3Ho in solution. It is the only model that fits well with respect to all of the criteria (see notes below each graph).

Selection Criterion:

The model fits shows some deviation between model and data at high q values but that is true for all types of model fits (cylinder, core shell sphere, core shell cylinder, bimodal Schulz sphere), and the data has large error bars at high q. The Schulz sphere fit is described as the best fit due to low error bars on its parameters (radius, volume fraction, polydispersity, SLDs, incoherent scattering) and its lowest overall chi-squared goodness of fit. All of the fits presented have converged to the optimal, non-zero chi-squared. The chi-squared value for the Schulz spheres is in fact the lowest, and chi-squared is only one of the critera for selecting the best structural model. Some of the model fits have uncertainties in the fitted parameters that are larger than the parameter values themselves and these models were immediately rejected. Other models gave lengths for parameters that were unphysical or impossible and these were also rejected. In these rejected cases there is clearly not enough information content in the data to support the parameters for the (incorrect) structural model. We provided a note below each fit in the SI explaining why this fit is incorrect or unphysical and thus rejected. The model fits in the SI are presented to show evidence that the sphere structure is indeed the most appropriate structural model. The wide variety of structural models was tested by fitting each to the data, and interpreting the results, indicating why certain structures were rejected. In this way, the *data* selected the best structure.

Synthesis of PgC₁Ho

 $C_{32}H_{30}O_{12}$: Molar mass: 606 gms: 72 mgs or 11.31 millimols of PgC₁ is combined with 0.84 gms or 181.4 millimol of Ho(NO3)3.5H2O (molar mass:441 gms) in acetonitrile: water (20:1) mixture. i.e. 1 equivalent of PgC1 is added to 15.4 equivalents of homium nitrate. To this 5 drops of pyridine (88.65 mmoles) were added and more water was added to dissolve the material. So the combining ratios is: 1:16:8::PgC₁:Ho(NO₃)₃:Pyridine

Synthesis of PgC₃Ho

 $C_{40}H_{48}O_{12}$: Molar mass: 720 gms: 86 mgs or 11.38 millimoles mols of PgC₃ is combined with 0.84 gms or 181.4 millimoles of Ho(NO3)3.6H2O (molar mass:441 gms) in acetonitrile: water (20:1) mixture. i.e. 1 equivalent of PgC3 is added to 15.4 equivalents of homium nitrate. To this 5 drops of pyridine (88.65 mmoles) were added and few more drops of water was added to dissolve the material. So the combining ratios is:

1:16:8::PgC₁:Ho(NO₃)₃:Pyridine TABLE OF FIGURES

Figure 1 Core shell sphere fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	4
Figure 2 Core shell cylinder fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	5
Figure 3 Cylinder fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	6
Figure 4 Uniform Ellipsoid fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	7
Figure 5 Triaxial ellipsoid fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	8
Figure 6 Bimodal Schulz sphere fit (SANS) of PgC ₃ Ho nanoassembly in d6-DMSO	9
Figure 7. Schulz sphere fit (SANS) of PgC ₃ Ho-no ligand (PgC ₃ :Ho::1:4) nanoassembly in <i>d6</i> -DMSO	10
Figure 8. Schulz sphere fit (SANS) of PgC ₃ Ho-no ligand (PgC ₃ :Ho::1:2) nanoassembly in <i>d6</i> -DMSO	11
Figure 9.Schulz sphere fit (SANS) of PgC ₃ HoNO3 (PgC ₃ :Ho:NO ₃ ::1:4:4) nanoassembly in d6-DMSO	12
Figure 10. Schulz sphere fit (SANS) of PgC ₃ HoPy (PgC ₃ :Ho:Py::1:4:4) nanoassembly in <i>d6</i> -DMSO	13
Figure 11. Schulz sphere fit (SANS) of PgC ₃ HoDMSO (hydrogenated) (PgC ₃ :Ho:DMSO::1:4:4) nanoassembly in	1
d6-DMSO	14
Figure 12. Schulz sphere fit (SANS) of PgC ₃ HoDMSO (deuterated) (PgC ₃ :Ho:DMSO::1:4:4) nanoassembly in d6	<u> </u>
DMSO	15
Figure 13. Schulz sphere fit (SANS) of PgC ₃ Ho-NO ₃ (PgC ₃ :Ho:NO ₃ ::1:2:2) nanoassembly in <i>d6</i> -DMSO	16
Figure 14. Schulz sphere fit (SANS) of PgC ₃ Ho-Py (PgC ₃ :Ho:Py::1:2:2) nanoassembly in <i>d6</i> -DMSO	17
Figure 15. Schulz sphere fit (SANS) of PgC ₃ Ho-DMSO-hydrogenated (PgC ₃ :Ho:DMSO::1:2:2) nanoassembly in	
d6-DMSO	18
Figure 16. Schulz sphere fit (SANS) of PgC ₃ Ho-DMSO-deuterated (PgC ₃ :Ho:DMSO::1:2:2) nanoassembly in d6-	-
DMSO	19
Figure 17. Core shell sphere fit (SANS) of PgC ₁ Ho nanoassembly in <i>d6</i> -DMSO	20
Figure 18 Core shell cylinder fit (SANS) of PgC ₁ Ho nanoassembly in d6-DMSO	21
Figure 19 Cylinder fit (SANS) of PgC ₁ Ho nanoassembly in d6-DMSO	22
Figure 20 Uniform Ellipsoid fit (SANS) of PgC1Ho nanoassembly in d6-DMSO	23
Figure 21 Triaxial ellipsoid fit (SANS) of PgC1Ho nanoassembly in d6-DMSO	24
Figure 22 Bimodal Schulz sphere fit (SANS) of PgC ₁ Ho nanoassembly in <i>d6</i> -DMSO	25
Figure 23. Schulz sphere fit (SANS) of PgC ₁ Ho (no ligand) (PgC ₁ :Ho::1:4) nanoassembly in d6-DMSO	26
Figure 24. Schulz sphere fit (SANS) of PgC ₁ Ho-no ligand (PgC ₁ :Ho::1:2) nanoassembly in d6-DMSO	27
Figure 25. Schulz sphere fit (SANS) of PgC1HoNO3 (PgC1:Ho:NO3::1:4:4) nanoassembly in d6-DMSO	28
Figure 26. Schulz sphere fit (SANS) of PgC1HoPy (PgC1:Ho:Py::1:4:4) nanoassembly in d6-DMSO	29
Figure 27. Schulz sphere fit (SANS) of PgC1HoDMSO (hydrogenated) (PgC1:Ho:DMSO::1:4:4) nanoassembly in	l
d6-DMSO	30
Figure 28. Schulz sphere fit (SANS) of PgC1HoDMSO (deuterated) (PgC1:Ho:DMSO::1:4:4) nanoassembly in d6	ī-
DMSO	31
Figure 29. Schulz sphere fit (SANS) of PgC1Ho-NO3 (PgC1:Ho:NO3::1:2:2) nanoassembly in d6-DMSO	32
Figure 30. Schulz sphere fit (SANS) of PgC1Ho-Py (PgC1:Ho:Py::1:2:2) nanoassembly in d6-DMSO	33
Figure 31. Schulz sphere fit (SANS) of PgC ₁ Ho-DMSO-hydrogenated (PgC ₁ :Ho:DMSO::1:2:2) nanoassembly in	
d6-DMSO	34
Figure 32. Schulz sphere fit (SANS) of PgC1Ho-DMSO-deuterated (PgC1:Ho:DMSO::1:2:2) nanoassembly in d6-	-
DMSO	35

SCATTERING LENGTH DENISTIES	(SLDs)		
PgC ₁ Ho		λ	d = 1.65
		Å	
$Ho_{48}(C_{32}H_{30}O_{12})_{12}$: $Ho_{48}C_{384}H_{360}O_{144}$	dodecamer	6	1.59×10^{-6}
$Ho_{40}(C_{32}H_{30}O_{12})_{10}$: $Ho_{40}C_{320}H_{300}O_{120}$	decamer	6	1.59×10^{-6}
$Ho_{32}(C_{32}H_{30}O_{12})_8$: $Ho_{32}C_{256}H_{240}O_{96}$	octamer	6	1.59x10 ⁻⁶
$Ho_{24}(C_{32}H_{30}O_{12})_6$: $Ho_{24}C_{192}H_{180}O_{72}$	hexamer	6	1.59×10^{-6}
PgC ₃ Ho			d = 1.65
$Ho_{48}(C_{40}H_{48}O_{12})_{12}$: $Ho_{48}C_{480}H_{576}O_{144}$	dodecamer	6	1.35×10^{-6}
$Ho_{40}(C_{40}H_{48}O_{12})_{10}$: $Ho_{40}C_{400}H_{480}O_{120}$	decamer	6	1.35x10 ⁻⁶
$Ho_{32}(C_{40}H_{48}O_{12})_8$: $Ho_{32}C_{320}H_{384}O_{96}$	octamer	6	1.35×10^{-6}
$Ho_{24}(C_{40}H_{48}O_{12})_6$: $Ho_{144}C_{240}H_{288}O_{72}$	hexamer	6	1.35×10^{-6}
d6-DMSO		6	5.28x10 ⁻⁶
$(PgC_{1})_{12}Ho_{48}(ligand)_{48}$			
$Ho_{48}(C_{32}H_{30}O_{12})_{12}(NO_3)_{48}:Ho_{48}C_{384}H_{360}O_{144}N_{48}O_{144}$	dodecamer	6	2.03×10^{-6}
$Ho_{48}(C_{32}H_{30}O_{12})_{12}(C_5H_5N)_{48}$: $Ho_{48}C_{384}H_{360}O_{144}N_{48}C_{240}H_{24}$	dodecamer	6	1.87×10^{-6}
0			
$H_{0,48}(C_{32}H_{30}O_{12})_{12}(C_2H_6SO)_{48}$; $H_{0,48}C_{38,4}H_{360}O_{1,44}S_{48}O_{48}C_{96}$	dodecamer	6	1.26×10^{-6}
H_{100}			
$H_{0.48}(C_{22}H_{20}O_{12})_{12}(C_{2}H_{2}SO)_{48}$ $H_{0.48}C_{284}H_{260}O_{144}S_{48}O_{48}C_{06}$	dodecamer	6	2.79×10^{-6}
D_{200}	uouccumer	Ŭ	2 ., 9 mi 0
$(PgC_2)_{12}Ho_{48}(ligand)_{48}$			
$H_{0.48}(C_{40}H_{48}O_{12})_{12}(NO_2)_{48}$; $H_{0.48}C_{400}H_{575}O_{144}N_{48}O_{144}$	dodecamer	6	1.8×10^{-6}
$H_{0.48}(C_{40}H_{48}O_{12})_{12}(1(C_{5}H_{5}N)_{48}) + H_{0.48}C_{480}H_{576}O_{144}N_{48}O_{144}$	dodecamer	6	1.66×10^{-6}
11048(0401148012)12(0511511)48.110480480480115780144114802401124	dodeeumer	Ŭ	1.00/10
$H_{0,48}(C_{40}H_{48}O_{12})_{12}(C_{2}H_{2}SO)_{48}$ $H_{0,48}C_{400}H_{57}O_{144}S_{48}O_{48}C_{67}$	dodecamer	6	1.09×10^{-6}
H_{200}	dodeediller	0	1.09/110
H_{288} $H_{0.49}(C_{40}H_{49}O_{12})_{12}(C_{2}H_{2}SO)_{49}$ $H_{0.49}C_{490}H_{57}O_{144}S_{49}O_{49}C_{90}C_{10}$	dodecamer	6	2.52×10^{-6}
D_{299}	dodeeumer	Ŭ	2.02/10
$PgC_{n}Ho_{2n}Ligand_{0,2n}$: n=1			
$H_{0,\alpha}(C_{2,\alpha}H_{0,\alpha}O_{1,\alpha})$	dodecamer	6	1.98×10^{-6}
$H_{0,24}(C_{3,2}H_{3,0}O_{1,2}) = H_{0,24}(C_{3,2}H_{3,0}O_{1,2}) = H_{0$	dodecamer	6	2.25×10^{-6}
$Ho_{24}(C_{32}H_{30}O_{12})_{12}(HO_{3})_{24}Ho_{24}C_{38}H_{360}O_{144}H_{24}O_{72}$	dodecamer	6	2.23×10^{-6}
11024(0321130012)12(0511514)24.110240384113600144142401201112	dodeediner	0	2.12/10
$H_{0,\alpha}(C_{\alpha},H_{\alpha},O_{\alpha},O_{\alpha},H_{\alpha},O_{\alpha},H_{\alpha},O_$	dodecamer	6	1.68×10^{-6}
H_{\dots}	dodeediner	0	1.00/10
H_{144} $H_{0} = (C_{10} H_{10} O_{10}) = (C_{10} H_{10} O_{10}) = (H_{10} O_{10} O$	dodecamer	6	2.79×10^{-6}
$110_{24}(C_{32}11_{30}O_{12})_{12}(C_{2116}SO)_{24}.110_{24}C_{384}11_{360}O_{144}S_{24}O_{24}C_{48}$	uouccamer	0	2.79810
D_{144} PaC Ho Ligand $: n=3$			
$H_{2n}(C, H, O, I) \rightarrow H_{2n}(C, H, O)$	dodagamar	6	1.63×10^{-6}
$H_{0,24}(C_{40}H_{48}O_{12})_{12}, H_{0,24}C_{480}H_{576}O_{144}$	dodecamer	6	1.03×10^{-6}
$H_{0,24}(C_{40}H_{48}O_{12})_{12}(HO_3)_{24}HO_24C_{480}H_{576}O_{144}H_{24}O_{72}$	dodecamer	6	1.91×10^{-6}
$\Pi_{24}(C_{40}\Pi_{48}O_{12})_{12}(C_{5}\Pi_{5}\Pi_{24}.\Pi_{24}C_{480}\Pi_{576}O_{144}\Pi_{24}C_{120}\Pi_{12}$	uouecamer	0	1.01X10
	dodacamar	6	1.41×10^{-6}
$\Pi U_{24}(U_{40}\Pi_{48}U_{12})_{12}(U_{2}\Pi_{6}SU)_{24}\Pi U_{24}U_{480}\Pi_{576}U_{144}S_{24}U_{24}U_{48}$	uouecamer	0	1.41X10
Π_{144}	dadacaman	6	$2.11 - 10^{-6}$
$\Pi_{024}(C_{40}\Pi_{48}O_{12})_{12}(C_{2}\Pi_{6}SO)_{24}:\Pi_{024}C_{480}\Pi_{576}O_{144}S_{24}O_{24}C_{48}$	dodecamer	0	2.41X10 °
D ₁₄₄			

Fit to Smeared Core Shell Sphere Data file: PgC₃Ho

Figure 1 Core shell sphere fit (SANS) of PgC₃Ho nanoassembly in *d6*-DMSO

scale	0.000449673	±	0.000497995
core radius (Å)	-13.2562	±	12.9019
shell thickness (A)	36.2241	±	14.7905
Core SLD (Å-2)	5.28e-06	±	(held fixed)
Shell SLD (Å-2)	1.35e-06	±	(held fixed)
Solvent SLD (Å-2)	5.28e-06	±	(held fixed)
bkg (cm-1)	0.00127343	±	8.09698e-05
chisq = 764.859	Npnts =	115	
$Sqrt(\chi^2/N) = 2.57894$	_		
Fitted range = [13,127] =	= 0.01915 < Q < 0.3	396	

NOTE: SANS data fitted as a core shell sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly does not fit well. The high chi-sqrt value of 2.6, high error bars on core and shell

parameters indicate poor statistics. Also the negative value of core radius curve gives an unphysical representation of a nanoassembly in solution.

Figure 2 Core shell cylinder fit (SANS) of PgC₃Ho nanoassembly in *d6*-DMSO

0.00108203	±	0.000373388
0.73473	±	17.528
12.379	±	18.3543
40.1633	±	34.8413
5.28e-06	±	(held fixed)
1.35e-06	±	(held fixed)
5.28e-06	±	(held fixed)
0.000566621	±	8.57532e-05
	0.00108203 0.73473 12.379 40.1633 5.28e-06 1.35e-06 5.28e-06 0.000566621	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

chisq = 164.373 Npnts = 115Sqrt(χ^2/N) = 1.19555Fitted range = [13,127] = 0.01915 < Q < 0.3396 NOTE: SANS data fitted as a core shell cylinder for holmium-containing C-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly does not fit well. Albeit the chi-sqrt value is low, the high error bars on length, core and shell parameters indicate poor statistics.

Fit to Smeared Cylinder Form Data file: PgC₃Ho

Figure 3 Cylinder fit (SANS) of PgC₃Ho nanoassembly in *d6*-DMSO

scale	0.00147008	±	8.73962e-05
radius (Å)	$27.894 \pm$	0.18	2962
length (Å)	11.1999±	0.71	1672
SLD cylinder (Å ⁻²)	1.35e-06	±	(held fixed)
SLD solvent (Å ⁻²)	5.28e-06	±	(held fixed)
incoh. bkg (cm^{-1})	6.87101e-05	±	7.88896e-05
chisq = 6872.95	Npnts $= 168$		
$Sqrt(\chi^2/N) = 6.39613$	*		
Fitted range = $[0.167] = (0.167]$	0.008085 < O < 0.5	14	

NOTE: SANS data fitted as a uniform ellipsoid for holmium-containing *C*-propylpyrogallol[4]arene (PgC_3Ho) nanoassembly does not fit well. The high chi-sqrt value of 6.4 indicates poor statistics. Also the Ra of 28 Å or diameter of 56 Å gives an unphysical representation of nanoassembly in solution.

Fit to Smeared Ellipsoid Form Data file: PgC₃Ho

Figure 4 Uniform Ellipsoid fit (SANS) of PgC₃Ho nanoassembly in *d6*-DMSO

scale	0.00127104	±	2.36716e-05
R a (rotation axis) (Å)	71.7721	\pm	1.04621
R b (Å)	11.9864	\pm	0.127295
SLD ellipsoid (Å ⁻²)	1.35e-06	±	(held fixed)
SLD solvent (Å ⁻²)	5.28e-06	±	(held fixed)
incoh. bkg (cm ⁻¹)	0.000181762	±	4.69562e-05

chisq = 5959.99 Npnts = 168 Sqrt(χ^2/N) = 5.95619 Fitted range = [0,167] = 0.008085 < Q < 0.514 NOTE: SANS data fitted as a uniform ellipsoid for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly does not fit well. The high chi-sqrt value of 6 indicates poor statistics. Also the Ra of 71 Å or diameter of 142 Å gives an unphysical representation of nanoassembly in solution.

Fit to Smeared Triaxial Ellipsoid Data file: PgC₃Ho

Scale Factor 0.00123971 3.57061e-05 ± Semi-axis A [smallest](Å) 10.5056 ± 0.699147 Semi-axis B (Å) 15.8698 0.783635 \pm Semi-axis C [largest](Å) 47.2744 0.843326 \pm SLD ellipsoid (Å^-2) 1.35e-06 ± (held fixed) SLD solvent (Å^-2) 5.28e-06 \pm (held fixed) Incoherent Bgd (cm-1) 0.00021946 \pm 5.2908e-05

chisq = 490.427 Npnts = 160 Sqrt(χ^2/N) = 1.75076 Fitted range = [8,167] = 0.01489 < Q < 0.514 NOTE: SANS data fitted as triaxial ellipsoid for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly does not fit well. Albiet the chi-sqrt value of 1.75 is low, semi-axis C of radius 47 Å or diameter 94Å gives an unphysical representation of nanoassembly in solution.

volume fraction(1)	0.00160739	\pm	9.9919e-05
Radius (1) (Å)	6.37586	±	0.0145592
polydispersity(1)	0.182558	\pm	0.000297204
$SLD(1) (Å^{-2})$	1.35e-06	\pm	(held fixed)
volume fraction(2)	0.000696281	\pm	1.94178e-05
Radius (2)	19.5493	\pm	0.593127
polydispersity(2)	0.2	\pm	0.017936
SLD(2)	1.35e-06	\pm	(held fixed)
SLD (solvent)	5.28e-06	\pm	(held fixed)
background ($cm^{-1} sr^{-1}$)	-0.000394893	\pm	7.12749e-05

Fit to SmearedSchulzSpheres,

Data file: PgC₃Ho

chisq = 841.908 Npnts = 160 Sqrt(χ^2/N) = 2.29389 Fitted range = [8,167] = 0.01489 < Q < 0.514

NOTE: SANS data fitted as a bimodal Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃Ho) nanoassembly does not fit well. The high chi-sqrt value of 2.3 indicates poor statistics. Also the radius value of 6.3 is even smaller than that of a dimer (7 Å) and hence gives an unphysical representation of nanoassembly in solution.

Figure 7. Schulz sphere fit (SANS) of PgC₃Ho-no ligand (PgC₃:Ho::1:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000780501	±	3.1307e-05
mean radius (Å)	18.2128±	0.8	93493
polydisp (sig/avg)	$0.22 \pm$	0.0	267319
SLD sphere (Å ⁻²)	1.35e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.00221596	±	0.000173089

chisq = 178.74 Npnts = 89 Sqrt(X^2/N) = 1.41715 Fitted range = [17,105] = 0.02255 < Q < 0.2323 NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC_3Ho) nanoassembly with pyrogallol[4]arene:metal ratio of 1:4 gives good statistics. The small chisqrt value of 1.4 and small error bars on all parameters indicate good statistics. The presence or absence of ligand or the change in macrocylce to metal ratio does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 8. Schulz sphere fit (SANS) of PgC₃Ho-no ligand (PgC₃:Ho::1:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000904922	±	3.65842e-05
mean radius (Å)	18.2121±	0.90	2841
polydisp (sig/avg)	$0.22 \pm$	0.02	70515
SLD sphere (Å ⁻²)	1.63e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.00221559	±	0.000174078
chisq = 178.74			
Npnts $= 89$	$Sqrt(\chi^2/N) = 1.41715$		
Fitted range = $[17, 105]$ =	0.02255 < Q < 0.2323		

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC_3Ho) nanoassembly with pyrogallol[4]arene:metal ratio of 1:2gives good statistics. The small chisqrt value of 1.4 and small error bars on all parameters indicate good statistics. The presence or absence of ligand or the change in macrocylce to metal ratio does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 9.Schulz sphere fit (SANS) of PgC₃HoNO3 (PgC₃:Ho:NO₃::1:4:4) nanoassembly in d6-DMSO

Volume Fraction (scale)	0.000995452	±	4.02916e-05
mean radius (Å)	18.2124±	0.9	905065
polydisp (sig/avg)	$0.22 \pm$	0.0	0271483
SLD sphere (Å ⁻²)	$1.8e-06 \pm$	0	
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.00221576	±	0.000174191

chisq = 178.74

Npnts = 89 Sqrt(χ^2/N) = 1.41715 Fitted range = [17,105] = 0.02255 < Q < 0.2323 NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC_3HoNO_3) nanoassembly gives good statistics. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DSMO (hydrogenated/deuterated) does not affect the overall radius of observed spherical species in solution (see subsequent fits).

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 10. Schulz sphere fit (SANS) of PgC₃HoPy (PgC₃:Ho:Py::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000920119	±	3.72675e-05
mean radius (Å)	$18.211 \pm$	0.9	904338
polydisp (sig/avg)	$0.22 \pm$	0.0	027093
SLD sphere (Å ⁻²)	1.66e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.00221489	±	0.000174342

chisq = 178.74 Npnts = 89 Sqrt(χ^2/N) = 1.41715

Fitted range = [17, 105] = 0.02255 < Q < 0.2323

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃HoPy) nanoassembly gives good statistics. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DSMO (hydrogenated/deuterated) does not affect the overall radius of observed spherical species in solution (see subsequent fits).

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 11. Schulz sphere fit (SANS) of PgC₃HoDMSO (hydrogenated) (PgC₃:Ho:DMSO::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00068668	±	2.77699e-05
mean radius (Å)	18.2123±	0.902	951
polydisp (sig/avg)	$0.22 \pm$	0.027	0519
SLD sphere (Å ⁻²)	1.09e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.00221571	±	0.000174111
chisq = 178.74			
Npnts $= 89$	$Sqrt(\chi^2/N) = 1.41715$		

Fitted range = [17,105] = 0.02255 < Q < 0.2323

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃HoDMSO) nanoassembly gives good statistics. The metal-coordinated DSMO ligand on the is modeled as hydrogenated ligands whereas the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DSMO (hydrogenated/deuterated) does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 12. Schulz sphere fit (SANS) of PgC₃HoDMSO (deuterated) (PgC₃:Ho:DMSO::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.0015829	±	6.40481e-05
mean radius (Å)	$18.2107 \pm$	0.9	03453
polydisp (sig/avg)	$0.22 \pm$	0.0	027069
SLD sphere (Å ⁻²)	2.52e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.00221478	±	0.000174215

chisq = 178.74

Npnts = 89 Sqrt(χ^2/N) = 1.41715 Fitted range = [17,105] = 0.02255 < Q < 0.2323 NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃HoDMSO-d6) nanoassembly gives good statistics. The metal-coordinated DSMO ligand is modeled as deuterated ligands as well as the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DSMO (hydrogenated/deuterated) does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 13. Schulz sphere fit (SANS) of PgC₃Ho-NO₃ (PgC₃:Ho:NO₃::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00106128	±	4.30709e-05
mean radius (Å)	$18.214 \pm$	0.90	07416
polydisp (sig/avg)	$0.22 \pm$	0.02	271979
SLD sphere (Å ⁻²)	1.91e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.00221668	±	0.000174556
chisq = 178.74			
Npnts $= 89$	$Sqrt(\chi^2/N) = 1.41715$		

Fitted range = [17,105] = 0.02255 < Q < 0.2323

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃HoNO3) nanoassembly with pyrogallol[4]arene:metal:NO3 ratio of 1:2:2 gives good statistics. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DMSO or the change in macrocylce to metal to ligand ratio does not affect the overall radius of observed spherical species in solution (fits below).

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 14. Schulz sphere fit (SANS) of PgC₃Ho-Py (PgC₃:Ho:Py::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00100111	±	4.02602e-05
mean radius (Å)	18.2131±	0.89	6459
polydisp (sig/avg)	$0.22 \pm$	0.02	68353
SLD sphere (Å ⁻²)	1.81e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.00221616	±	0.000173398
chisq = 178.74			
Npnts = 89	$Sqrt(\chi^{2}/N) = 1.41715$		
Fitted range = $[17, 105]$ =	0.02255 < Q < 0.2323		

Fit to SmearedSchulzSpheres,

Data file: PgC₃Ho

NOTE: SANS data fitted as a Schulz sphere for holmium-containing C-propylpyrogallol[4]arene (PgC₃HoPy) nanoassembly with pyrogallol[4]arene:metal:DMSO ratio of 1:2:2 gives good statistics. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine or the change in macrocylce to metal to ligand ratio does not affect the overall radius of observed spherical species in solution.

Figure 15. Schulz sphere fit (SANS) of PgC₃Ho-DMSO-hydrogenated (PgC₃:Ho:DMSO::1:2:2) nanoassembly in d6-DMSO

Volume Fraction (scale)	0.000805042	±	3.24516e-05
mean radius (Å)	18.2113±	0.8	398547
polydisp (sig/avg)	$0.22 \pm$	0.0	0268881
SLD sphere (Å ⁻²)	1.41e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.0022151	±	0.000173741
chisq = 178.74			

Npnts = 89

 $Sqrt(\chi^2/N) = 1.41715$ Fitted range = [17, 105] = 0.02255 < Q < 0.2323 NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-propylpyrogallol[4]arene (PgC₃HoDMSO) nanoassembly with pyrogallol[4]arene:metal:DMSO ratio of 1:2:2 gives good statistics. The external DSMO ligand is modeled as hydrogenated ligands whereas the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DMSO or the change in macrocylce to metal to ligand ratio does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₃Ho

Figure 16. Schulz sphere fit (SANS) of PgC₃Ho-DMSO-deuterated (PgC₃:Ho:DMSO::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00146349	±	5.92196e-05
mean radius (Å)	18.2129±	0.904	4128
polydisp (sig/avg)	$0.22 \pm$	0.02	70938
SLD sphere (Å ⁻²)	2.41e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.00221602	±	0.000174196
chisq = 178.74			
Npnts = 89	$Sqrt(\chi^2/N) = 1.41715$		
Fitted range = $[17, 105] =$	0.02255 < Q < 0.2323		

NOTE: SANS data fitted as a Schulz sphere for holmium-containing C-propylpyrogallol[4]arene (PgC₃HoDMSO) nanoassembly with pyrogallol[4]arene:metal:DMSO ratio of 1:2:2 gives good statistics. The external DSMO ligand is modeled as deuterated ligands and the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.4 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DMSO or the change in macrocylce to metal to ligand ratio does not affect the overall radius of observed spherical species in solution.

Fit to Smeared Core Shell Sphere Data file: PgC₁Ho

Figure 17. Core shell sphere fit (SANS) of PgC₁Ho nanoassembly in *d6*-DMSO

	scale	0.000745498	±	3.40446e-05
	core radius (Å)	1.64887	±	12.1295
	shell thickness (Å)	19.4832	±	12.3012
	Core SLD (Å ⁻²)	5.28e-06	±	(held fixed)
	Shell SLD (Å ⁻²)	1.6e-06	\pm	(held fixed)
	Solvent SLD (Å ⁻²)	5.28e-06	±	(held fixed)
	bkg (cm ⁻¹)	0.000298118	±	4.16328e-05
chisq = 776.634				
Npnts $= 158$				
$Sart(\gamma^{2}/N) = 2.21$	707			

Fitted range = [10, 167] = 0.01659 < Q < 0.514

NOTE: SANS data fitted as a core shell sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly does not fit well. The high chi-sqrt value of 2.2, large error bars on core and shell parameters and the poor visual fit indicate that the model function is a poor description of the solution structures.

Figure 18 Core shell cylinder fit (SANS) of PgC₁Ho nanoassembly in *d6*-DMSO

scale	0.00100627	±	0.000241265
core radius (Å)	0.673498	±	12.9203
shell radius (Å)	12.4153	±	13.5327
length (Å)	38.8482	±	25.9597
SLD core $(Å^{-2})$	5.28e-06	±	(held fixed)
SLD shell (Å ⁻²)	1.6e-06	±	(held fixed)
SLD solvent (Å ⁻²)	5.28e-06	±	(held fixed)
incoh. bkg (cm^{-1})	1.09253e-05	±	7.63735e-05

Fit to Smeared Cylinder Form

chisq = 227.473 Npnts = 158 **Sqrt(\chi^2/N) = 1.19988** Fitted range = [10,167] = 0.01659 < Q < 0.514

NOTE: SANS data fitted as a core shell cylinder for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly does not fit well. The large error bars on length, core and shell parameters suggest that the model function is not an appropriate description of the structures in solution.

scale	0.00185289	±	0.000348218
radius (Å)	27.4845	±	0.212189
length (Å)	8.16355	±	1.56026
SLD cylinder (Å ⁻²)	1.6e-06	±	(held fixed)
SLD solvent ($Å^{-2}$)	5.28e-06	±	(held fixed)
incoh. bkg (cm^{-1})	-0.000521729	±	0.000146033
chisq = 1868.12	Npnts $= 168$	3	
$Sqrt(\chi^2/N) = 3.33463$	1		
Fitted range = $[0, 167] = 0$.	008085 < Q < 0.5	14	

NOTE: SANS data fitted as a cylinder for holmium-containing *C*-methylpyrogallol[4]arene (PgC_1Ho) nanoassembly does not fit well. The high chi-sqrt value of 3.3 and large error bars on the fitted length indicate a poor fit. Also, the radius of 27 Å is an unphysically large structure.

Figure 20 Uniform Ellipsoid fit (SANS) of PgC₁Ho nanoassembly in *d6*-DMSO

scale	0.00158737	±	0.000190387
R a (rotation axis) (Å)	$5.61568 \pm$	0.6989	34
R b (Å)	$30.9802 \pm$	0.2468	87
SLD ellipsoid (Å ⁻²)	1.6e-06	±	(held fixed)
SLD solvent (Å ⁻²)	5.28e-06	±	(held fixed)
incoh. bkg (cm ⁻¹)	-0.000351561	±	9.91991e-05
-1.5 = -1.026.4	$N_{\rm math} = 1.0$		
cnisq = 1836.4	Npnts = 168		

Sqrt(χ^2/N) = 3.3062 Fitted range = [0,167] = 0.008085 < Q < 0.514

NOTE: SANS data fitted as a uniform ellipsoid for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly does not fit well. The high chi-sqrt value of 3.3 indicates poor quality fit. Further, Ra is smaller than the bowl size of a single pyrogallol[4]arene unit and hence is an unphysical representation of nanoassembly in solution.

Fit to Smeared Triaxial Ellipsoid Data file: PgC₁Ho

Scale Factor	0.00121444	±	5.35927e-05
Semi-axis A [smallest] (Å)	9.10131	±	0.665282
Semi-axis B (Å)	16.7588	±	0.718958
Semi-axis C [largest] (Å)	52.2814	±	1.03132
SLD ellipsoid (Å ⁻²)	1.6e-06	±	(held fixed)
SLD solvent (Å ⁻²)	5.28e-06	\pm	(held fixed)
Incoherent Bgd (cm ⁻¹)	-0.000172957	±	5.79477e-05

chisq = 1635.95 Npnts = 168Sqrt(χ^2/N) = 3.12054Fitted range = [0,167] = 0.008085 < Q < 0.514

NOTE: SANS data fitted as a triaxial ellipsoid for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly does not fit well. The high chi-sqrt value of 3.3 indicate a poor quality fit.

Fit to SmearedBimodalSchulzSpheres Data file: PgC₁Ho

volume fraction(1)	0.00139499	±	7.67148e-05
Radius (1) (Å)	6.86627	±	0.0158154
polydispersity(1)	0.174856	±	0.000297927
SLD(1) (Å ⁻²)	1.6e-06	\pm	(held fixed)
volume fraction(2)	0.000591734	±	1.15867e-05
Radius (2) (Å)	20.4393	±	0.189617
polydispersity(2)	0.2	±	0.00301689
SLD(2) (Å ⁻²)	1.6e-06	±	(held fixed)

SLD (solvent) ($Å^{-2}$)	5.28e-06	±	(held fixed)
background (cm-1 sr-1)	-0.000600753	±	6.20329e-05
chisq = 1915.26	Npnts $= 168$		
$Sqrt(\chi^{2}/N) = 3.37644$	-		
Fitted range = $[0, 167] = 0.008$	085 < Q < 0.514		

NOTE: SANS data fitted as a bimodal Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly does not fit well. The high chi-sqrt value of 3.4 indicates that this is not the best model description of PgC_1 Ho nanoassembly.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 23. Schulz sphere fit (SANS) of PgC₁Ho (no ligand) (PgC₁:Ho::1:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000782746	±	1.81346e-05
mean radius (A)	$18.1972 \pm$	0.565	5971
polydisp (sig/avg)	$0.2 \pm$	0.019	90903
SLD sphere (A-2)	1.59e-06	±	0
SLD solvent (A-2)	5.28e-06	±	0

	bkg (cm-1 sr-1)	0.00058722	±	5.95925e-05
chisq = 305.419				
Npp $t_{s} = 117$	$Sart(X^2/N) = 1$	61568		

Npnts = 117 Sqrt(X^2/N) = 1.61568 Fitted range = [11,127] = 0.01744 < Q < 0.3396

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly with pyrogallol[4]arene to metal ratio of 1:4 gives good statistics. The small chisqrt value of 1.6 and small error bars on all parameters indicate good statistics. The presence or absence of ligand does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 24. Schulz sphere fit (SANS) of PgC1Ho-no ligand (PgC1:Ho::1:2) nanoassembly in d6-DMSO

Volume Fraction (scale)	0.000982848	±	2.35449e-05
mean radius (Å)	18.1395±	0.58	8992
polydisp (sig/avg)	0.2 ±	0.01	999
SLD sphere (Å ⁻²)	1.98e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000584461	±	6.12215e-05
	291.711		
Npnts = 113	$Sqrt(\chi^{2/N}) = 1.60671$		

Fit to SmearedSchulzSpheres,

Fitted range = [14, 126] = 0.02 < Q < 0.3349

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁Ho) nanoassembly with pyrogallol[4]arene to metal ratio of 1:2 gives good statistics. The small chisqrt value of 1.6 and small error bars on all parameters indicate good statistics. The presence or absence of ligand does not affect the overall radius of observed spherical species in solution.

Figure 25. Schulz sphere fit (SANS) of PgC₁HoNO₃ (PgC₁:Ho:NO₃::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00101364	±	2.38813e-05
mean radius (Å)	18.1389±	0.5	579579
polydisp (sig/avg)	$0.2 \pm$	0.0)197359
SLD sphere (Å ⁻²)	2.03e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
bkg (cm ⁻¹ sr ⁻¹)	0.000579353	±	5.99716e-05

chisq = 292.18 Npnts = 114 Fitted range = [14, 127] = 0.02 < Q < 0.3396 NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC_1HoNO_3) nanoassembly gives good statistics. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 26. Schulz sphere fit (SANS) of PgC1HoPy (PgC1:Ho:Py::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000919807	±	2.18857e-05
mean radius (Å)	$18.1455 \pm$	0.5	86517
polydisp (sig/avg)	0.2 ±	0.0	199982
SLD sphere (Å ⁻²)	1.87e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000585782	±	6.10389e-05

chisq = 291.711 Npnts = 113 Sqrt(χ^2/N) = 1.60671 Fitted range = [14,126] = 0.02 < Q < 0.3349

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoPy) nanoassembly gives good statistics. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine does not affect the overall radius of observed spherical species in solution.

Figure 27. Schulz sphere fit (SANS) of PgC₁HoDMSO (hydrogenated) (PgC₁:Ho:DMSO::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000662117	±	1.54747e-05
mean radius (Å)	$18.142 \pm$	0.5	566351
polydisp (sig/avg)	0.2 ±	0.0)191278
SLD sphere (Å ⁻²)	1.26e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000585012	±	6.07215e-05

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho chisq = 291.711 Npnts = 113 Sqrt(χ^2/N) = 1.60671 Fitted range = [14,126] = 0.02 < Q < 0.3349

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoDMSO) nanoassembly gives good statistics. The metal-coordinated DSMO ligand is modeled as hydrogenated ligands whereas the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DMSO does not affect the overall radius of observed spherical species in solution.

Figure 28. Schulz sphere fit (SANS) of PgC₁HoDMSO (deuterated) (PgC₁:Ho:DMSO::1:4:4) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00172571	±	4.09626e-05
mean radius (Å)	$18.1426 \pm$	0.5	80717
polydisp (sig/avg)	$0.2 \pm$	0.0	196678
SLD sphere (Å ⁻²)	2.79e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000585056	±	6.10305e-05

chisq = 291.711

Npnts = 113 Sqrt(χ^2/N) = 1.60671 Fitted range = [14,126] = 0.02 < Q < 0.3349

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoDMSO) nanoassembly gives good statistics. The metal-coordinated DSMO ligand is modeled as deuterated ligands and the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to (hydrogenated / deuterated) DMSO does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 29. Schulz sphere fit (SANS) of PgC1Ho-NO3 (PgC1:Ho:NO3::1:2:2) nanoassembly in d6-DMSO

Volume Fraction (scale)	0.00116523	±	2.79777e-05
mean radius (Å)	18.1438±	0.5	594467
polydisp (sig/avg)	0.2 ±	0.0)20288
SLD sphere (Å ⁻²)	2.25e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000585395	±	6.12309e-05

chisq = 291.711

Fit to SmearedSchulzSpheres,

Npnts = 113 Sqrt(χ^2/N) = 1.60671 Fitted range = [14,126] = 0.02 < Q < 0.3349

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoNO3) nanoassembly with pyrogallol[4]arene:metal:nitrate ratio of 1:2:2 gives good statistics. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics.

Figure 30. Schulz sphere fit (SANS) of PgC₁Ho-Py (PgC₁:Ho:Py::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00107011	±	2.57986e-05
mean radius (Å)	18.1512±	0.5	89767
polydisp (sig/avg)	0.2 ±	0.0	199667
SLD sphere (Å ⁻²)	2.12e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000592469	±	6.26307e-05
chisq = 291.325			

Npnts = 112 Sqrt(χ^2/N) = 1.6128

Fitted range = [14, 125] = 0.02 < Q < 0.3302

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoPy) nanoassembly with pyrogallol[4]arene:metal:pyridine ratio of 1:2:2 gives good statistics. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 31. Schulz sphere fit (SANS) of PgC₁Ho-DMSO-hydrogenated (PgC₁:Ho:DMSO::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.000824628	±	1.98492e-05
mean radius (Å)	18.15 ±	0.589	9588
polydisp (sig/avg)	0.2 ±	0.020	00058
SLD sphere (Å ⁻²)	1.68e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000592199	±	6.25925e-05
chisq = 291.325			
NT / 110			

Npnts = 112 Sqrt($\chi^{2/N}$) = 1.6128

Fitted range = [14, 125] = 0.02 < Q < 0.3302

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoDMSO) nanoassembly with pyrogallol[4]arene:metal:DMSO ratio of 1:2:2 gives good statistics. The metal-coordinated DSMO ligand is modeled as hydrogenated ligands whereas the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to DMSO does not affect the overall radius of observed spherical species in solution.

Fit to SmearedSchulzSpheres, Data file: PgC₁Ho

Figure 32. Schulz sphere fit (SANS) of PgC1Ho-DMSO-deuterated (PgC₁:Ho:DMSO::1:2:2) nanoassembly in *d6*-DMSO

Volume Fraction (scale)	0.00172241	±	4.17201e-05
mean radius (Å)	18.1563±	0.5	95255
polydisp (sig/avg)	0.2 ±	0.0	201983
SLD sphere (Å ⁻²)	2.79e-06	±	0
SLD solvent (Å ⁻²)	5.28e-06	±	0
$bkg (cm^{-1} sr^{-1})$	0.000593633	±	6.27133e-05
chisq = 291.328			
Npnts = 112	$Sqrt(\chi^2/N) = 1.61281$		

Fitted range = [14, 125] = 0.02 < Q < 0.3302

NOTE: SANS data fitted as a Schulz sphere for holmium-containing *C*-methylpyrogallol[4]arene (PgC₁HoDMSO) nanoassembly with pyrogallol[4]arene:metal:DMSO ratio of 1:2:2 gives good statistics. The metal-coordinated DSMO ligand is modeled as deuterated ligands as well as the bulk solvent is modeled as deuterated DMSO. The small chi-sqrt value of 1.6 and small error bars on all parameters indicate good statistics. The change in ligand from nitrate to pyridine to hydrogenated DMSO to deuterated DMSO does not affect the overall radius of observed spherical species in solution.