Supporting Information

Palladium catalyzed β -Selective Oxidative Heck Reaction of Electron-Rich Olefin

Lingkui Meng^a, Chao Liu^a, Wei Zhang^a, Chao Zhou^a, Aiwen Lei^{a,b}*

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R.

China

E-mail: aiwenlei@whu.edu.cn

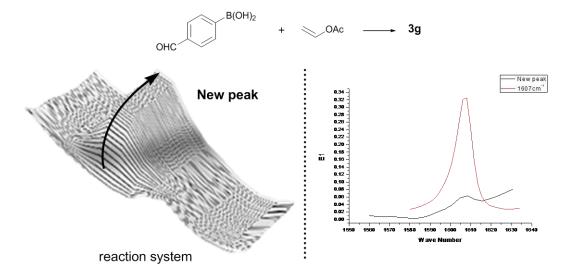
^b National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China

1. General Experimental Methods

The reactions were conducted under air atmosphere. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 100-200 mesh silica gel in petroleum (bp. 60-90 °C). NMR spectra were recorded on a Bruker Advance III spectrometers at 400 MHz (1 H NMR), 100 MHz (13 C NMR). Tetramethylsilane was used as an internal standard). All 1 H NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument, accurate masses were reported for the molecular ion ([M+H] $^{+}$).

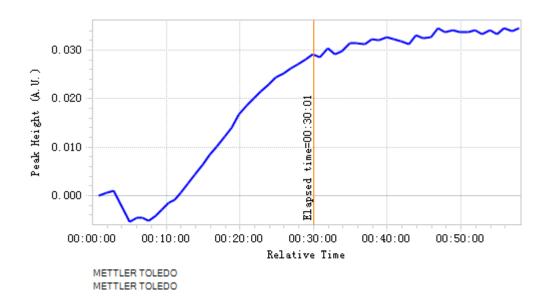
2. Proposed Mechanism for the Palladium Catalyzed arylation of vinyl acetate

3. General procedure for the Pd-catalyzed β -arylation of VA

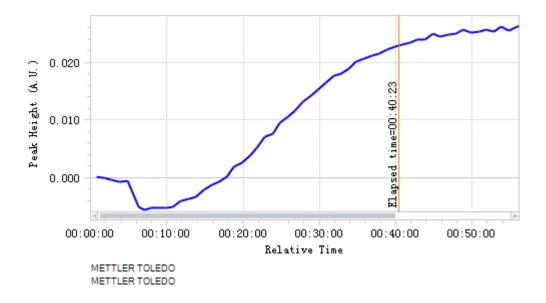

5.6 mg (0.025 mmol, 5 mol%) Pd (OAc)₂, 64.8 mg (0.6 mmol, 1.2 eq.) BQ , 0.5 mmol (1.0 eq.) ArB(OH)₂ were added in a glass tube. 10.0 mmol (20 eq.) of vinyl acetate and 1 mL of DMSO, 1mL HOAc were added in the tube consequently. Then the reaction tube was heated up to 60 °C and kept stirring 24 h. Then the reaction was quenched by saturated NaHCO₃ solution and extracted by ether (10 mL) 3 times. The organic parts were combined together and the pure product was obtained by flash column chromatography (petroleum and acetic ether).

SI-1. Arylation of different olefin

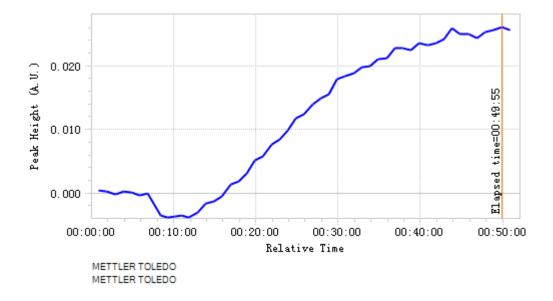
B(OH	+ / R BQ 1.2 eq	J., HOAc	or
	50 °		// `R
Entry	alkene (20 eq.)	β-arylation	α-arylation
1	0		none
2	CN		none
3	N N	none	
4	OAc	24%	
5	0	none	

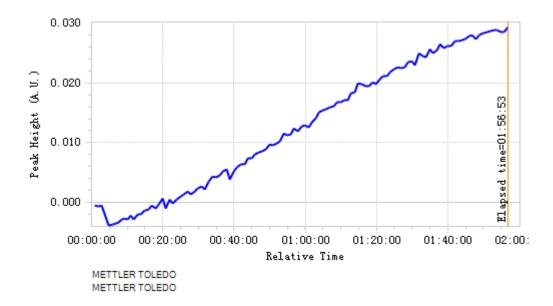

4. General procedure for in-situ IR experiment

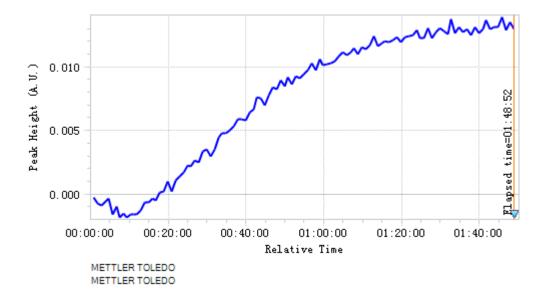
Firstly BQ with (4-formylphenyl)boronic acid was added in a three neck tube. Then the three neck tube was put onto *in-situ* IR, and sealed with septa. After that HOAc (1 mL), DMSO (1 mL) and vinyl acetate (10 mmol) were injected in the tube via syringe. At last Pd(OAc)₂ was added in and the reaction was heated up to 60 °C. The yield was determined by GC with biphenyl as internal standard.

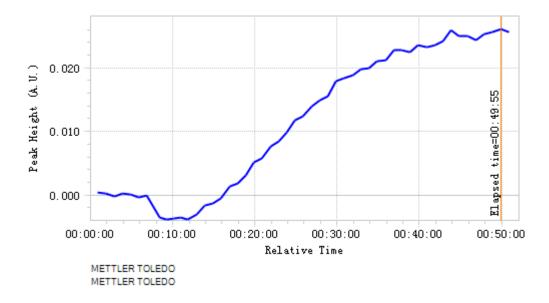


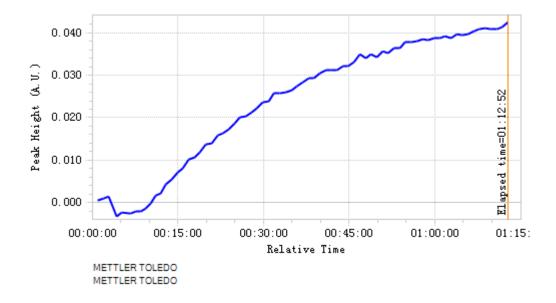
When the reaction system was monitored by in-situ IR a new peak could be found at 1607 cm⁻¹ after the reaction started. And the product **3g** has an infrared absorption peak at 1607 cm⁻¹, so the peak at 1607 cm⁻¹ was chose to monitor the kinetic of this reaction.

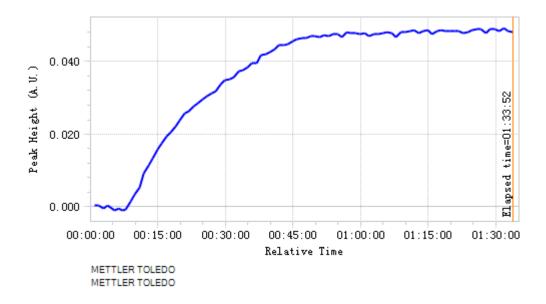

The trends of the reaction while using 10 mol% of catalyst (The reaction was carried out in 0.5 mol scale with 0.5 mmol BQ as oxidant)

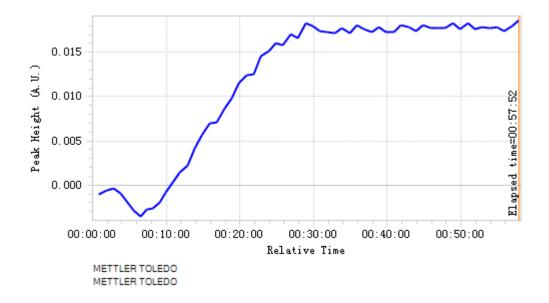

The trends of the reaction while using 7.5 mol% catalyst (The reaction was carried out in 0.5 mol scale with 0.5 mmol BQ as oxidant)

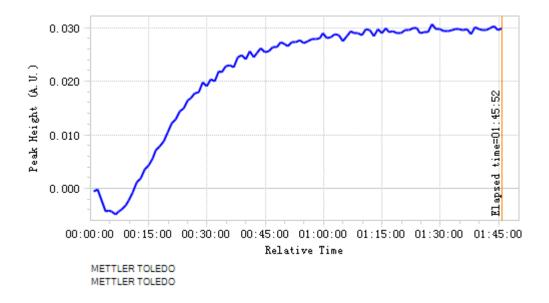

The trends of the reaction while using 5 mol% of catalyst (The reaction was carried out in 0.5 mol scale with 0.5 mmol BQ as oxidant)

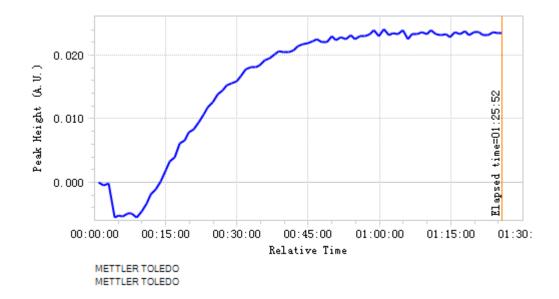

The trends of the reaction while using 2.5 mol% of catalyst (The reaction was carried out in 0.5 mol scale with 0.5 mmol BQ as oxidant)

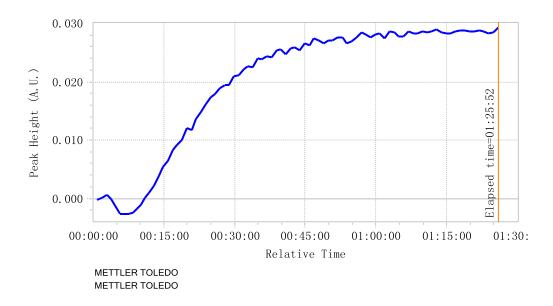

The trends of the reaction while the reaction was carried in 0.25 mmol scale (The reaction was carried out with 0.5 mol% of catalyst and 0.5 mmol BQ as oxidant)

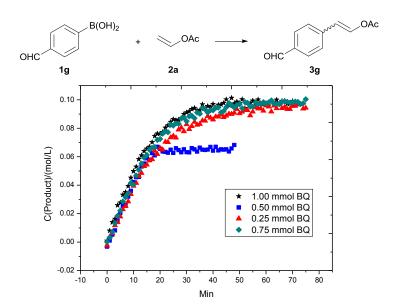

The trends of the reaction while the reaction was carried in 0.5 mmol scale (The reaction was carried out with 0.5 mol% of catalyst and 0.5 mmol BQ as oxidant)


The trends of the reaction while the reaction was carried in 0.75 mmol scale (The reaction was carried out with 0.5 mol% of catalyst and 0.5 mmol BQ as oxidant)


The trends of the reaction while the reaction was carried in 1.5 mmol scale (The reaction was carried out with 0.5 mol% of catalyst and 0.5 mmol BQ as oxidant)


The trends of the reaction while using 0.25 mmol of BQ as oxidant (The reaction was carried out in 0.5 mmol scale with 0.5 mol% of catalyst)


The trends of the reaction while using 0.5 mmol of BQ as oxidant (The reaction was carried out in 0.5 mmol scale with 0.5 mol% of catalyst)


The trends of the reaction while using 0.75 mmol of BQ as oxidant (The reaction was carried out in 0.5 mmol scale with 0.5 mol% of catalyst)

The trends of the reaction while using 1.0 mmol of BQ as oxidant (The reaction was carried out in 0.5 mmol scale with 0.5 mol% of catalyst)

Kinetic profiles of different oxidant concentration

The reaction conditions for 5a synthesis

- 1): **1h** 0.5 mmol, 2b 10 mmol, Pd(OAc)₂ 5 mol%, BQ 0.6 mmol, HOAc 1mL, DMSO 1mL, 60 °C, 12h.
- 2): After added 5 mL acetic ether, HOAc and DMSO were removed by washing with saturated solution of sodium hydrogen carbonate. The organic phase was collected and acetic ether was removed under vacuum. Then 1 mmol of hydrazine hydrate was added in the reaction mixture and kept them under nitrogen atmosphere. After stirring for another 2 hours 5a could be obtained. The total yield was 63%.

5. Detail descriptions of products

4-Methylstyryl acetate (**3a**)^[3](E/Z=1/0.4): Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3a** (61%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 12.8 Hz, 1H), 7.50 (d, 8.4 Hz, 0.8H), 7.29-7.14 (m, 4.8H), 6.39 (d, J = 12.8 Hz, 1H), 5.71 (d, J = 7.2 Hz, 0.4H), 2.38 (s, 1.2H), 2.36 (s, 3H), 2.29 (s, 1.2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.07, 168.56, 137.27, 137.16, 133.27, 131.18, 131.14, 129. 42, 129.13, 129.04, 126.13, 115.19, 111.81, 21.28, 21.20, 20.97, 20.80.

4-(*tert*-**Butyl**)**styryl acetate** (**3b**) ^[3] (E/Z=1/0.3)**:** Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3b** (63%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 12.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 0.6H), 7.43-7.30 (m, 4.6H), 6.42 (d, J = 12.8 Hz, 1H), 5.73 (d, J = 7.2 Hz, 0.3H), 2.30 (s, 0.9H), 2.22 (s, 3H), 1.37(s, 2.7H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.06, 167.54, 150.56, 150.39, 135.77, 133.44, 131.24, 131.21, 128.89, 125.99, 125.66, 125.37, 115.06, 111.71, 34.59, 31.29, 20.79.

4-Methoxystyryl acetate (3c) (E/Z=1/0.5): Purification by column chromatography

(Petroleum ether/EtOAc = 100/1) afforded **3c** (24%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 12.8 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.30-7.27 (m, 2H), 7.24 (d, J = 7.2 Hz, 0.5H), 6.91 (d, J = 9.2 Hz, 1H), 6.89-6.86 (m, 2H), 6.37 (d, J = 12.8 Hz, 1H), 5.67(d, J = 7.6 Hz, 0.5H), 3.85 (s, 1.5H), 3.83(s, 3H), 2.29(s, 1.5H), 2.21(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.13, 167.55, 159.07, 158.72, 134.85, 132.44, 130.43, 127.39, 126.54, 114.89, 114.18, 113.83, 111.42, 55.30, 55.27, 20.96, 20.80.

4-Fluorostyryl acetate (3d) ^[3] (E/Z=1/0.5): Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3d** (49%) as a colorless oil. ¹H NMR (400 MHz, S11

CDCl₃) δ 7.79 (d, J = 12.8 Hz, 1H), 7.60-7.56 (m, 1H), 7.33-7.28 (m, 2.5H), 7.08-7.00 (m, 3H), 6.38 (d, J = 12.8 Hz, 1H), 5.70-5.68(d, J = 7.2 Hz, 0.5H), 2.29 (s, 1.5H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.00, 167.35, 163.39, 163.00, 160. 94, 160.54, 136.00, 135.97, 133.54, 133.52, 130.80, 130.72, 130.19, 130.15, 127.76, 127.68, 115.78, 115.57, 115.44, 115.23, 114.26, 110.70, 20.71.

4-Chlorostyryl acetate (**3e**) ^[3] (E/Z=1/0.5): Purification by column chromatography

(Petroleum ether/EtOAc = 100/1) afforded **3e** (64%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84(d, J = 12.8 Hz, 1), 7.54-7.52(m, 1H), 7.34-7.27(m, 5H), 6.36(d, J = 12.8 Hz, 1H), 5.67(d, J = 7.2 Hz, 0.5H), 2.29(s, 1.5H), 2.21(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.89, 167.24, 136.59, 134.29, 133.02, 132.91, 132.86, 132.52, 130.33, 128.88, 128.57, 127.39, 114.16, 110.61, 20.71.

4-Bromostyryl acetate (**3f**) ^[3] (E/Z=1/0.5): Purification by column chromatography

(Petroleum ether/EtOAc = 100/1) afforded **3f** (64%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86(d, J = 12.8 Hz, 1H), 7.48-7.43(m, 4H), 7.34(d, J = 7.6 Hz, 0.5H), 7.22-7.20(m, 2H), 6.34(d, J = 12.8 Hz, 1H), 5.66(d, J = 7.2 Hz, 0.5H), 2.29(s, 1.5H), 2.21(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.87, 167.22, 136.65, 134.42, 133.12, 132.95, 131.82, 131.54, 130.63, 127.71, 121.11, 121.09, 114.20, 110.65, 20.91, 20.73.

4-Formylstyryl acetate (3g) (E/Z=1/0.3): Purification by column chromatography

(Petroleum ether/EtOAc = 50/1) afforded **3g** (76%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.96(s, 0.3H), 9.95(s, 1H), 7.98(d, J = 12.8 Hz, 1H), 7.86-7.80(m, 1.9H), 7.72(d, J = 8 Hz, 0.53H), 7.47-7.41(m, 1.67H), 6.89-6.81(m, 0.38H), 6.41(d, J = 12.8 Hz, 0.75H), 5.75(d, J = 8H, 0.26H), 2.30(s, 0.91H), 2.21(s, 2.09H); ¹³C NMR (100 MHz, CDCl₃) δ 191.75, 191.58, 167.74, 167.08, 140.70, 140.21, 138.53, 136.19, 135.21, 134.81, 130.23, 129.86, 129.52, 126.57, 122.41, 118.78, 116.12, 114.22, 110.61, 93.33, 20.87, 20.66.

Methyl 4-(2-acetoxyvinyl)benzoate (**3h**) ^[3] (E/Z=1/0.4): Purification by column chromatography (Petroleum ether/EtOAc = 50/1) afforded **3h** (77%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.92(m, 3.8H), 7.63(d, J = 8.8 Hz, 0.8H), 7.39-7.36(m, 2.4H), 6.39(d, 12.8 Hz, 1H), 5.73(d, 7.6 Hz, 0.4H), 3.91(s, 1.2H), 3.90(s, 3H), 2.29(s, 1.2H), 2.20(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.74, 166.70, 138.95, 138.57, 137.89, 135.53, 130.01, 129.65, 128.92, 128.83, 128.55, 125.98, 114.33, 110.79, 52.06, 52.04, 20.85, 20.66.

4-Cyanostyryl acetate (3i) [3] (E/Z=1/0.4): Purification by column chromatography

(Petroleum ether/EtOAc = 50/1) afforded **3i** (86%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95(d, J = 12.8 Hz, 1H), 7.66-7.58(m, 3.6H), 7.44-7.40(m, 2.4H), 6.38(d, J = 12.8 Hz, 1H), 5.72(d, J = 7.2 Hz, 0.4H), 2.31(s, 1H), 2.22(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.65, 166.91, 139.17, 138.69, 138.63, 136.41, 132.49, 132.16, 129.48, 126.59, 118.91, 118.83, 113.71, 110.59, 110.41, 110.04, 20.86, 20.66.

4-(Trifluoromethyl)styryl acetate (**3j**)^[3] (E/Z=1/0.4): Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3j** (76%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95(d, J = 12.8 Hz, 1H), 7.71-7.69(m, 0.8H), 7.63-7.56(m, 2.8H), 7.45-7.41(m, 2.4H), 6.43(d, J = 12.8 Hz, 1H), 5.75(d, J = 7.6 Hz, 0.4H), 2.31(s, 1.2H), 2.23(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.79, 167.12, 137.94, 137.92, 137.84, 135.56, 129.38, 129.19, 129.06, 126.29, 125.66, 125.62, 125.27, 122.78, 113.95, 110.38, 20.81, 20.64.

3-Iodostyryl acetate (3k) (E/Z=1/0.5): Purification by column chromatography

(Petroleum ether/EtOAc = 100/1) afforded **3k** (45%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.97(m, 0.5H), 7.85(d, J = 12.8 Hz, 1H), 7.70-7.69(m, 1H), 7.60-7.54(m, 2H), 7.34-7.29(m, 1.5H), 7.12-7.03(m, 1.5H), 6.30(d, J = 12.8 Hz, 1H), 5.62(d, J = 7.2 Hz, 0.5H),

2.30(s, 1.5H), 2.22(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.84, 167.20, 137.96, 137.01, 136.43, 136.25, 136.11, 135.02, 134.81, 130.33, 130.05, 128.19, 125.36, 113.78, 110.26, 94.69, 94.37, 20.74.

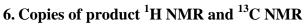
4-Acetylstyryl acetate (3i) (E/Z=1/0.5): Purification by column chromatography

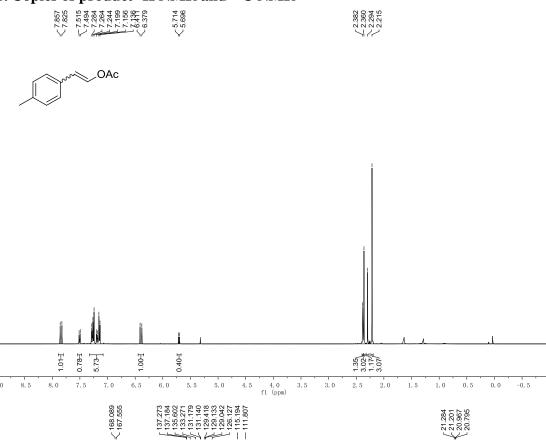
(Petroleum ether/EtOAc = 50/1) afforded **3i** (67%) as a colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.19(s, 0.5H), 7.93-7.89(m, 2H), 7.84-7.77(m, 2H), 7.53-7.35(m, 3H), 6.43(d, J = 12.8 Hz, 1H), 5.75(d, 8Hz, 0.5H), 2.62(s, 1.5H), 2.60(s, 3H), 2.30(s, 1.5H), 2.21(s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 198.03, 197.98, 167.90, 167.21, 137.52, 137.21, 137.09, 134.83, 134.74, 134.49, 133.47, 130.47, 128.96, 128.68, 127.28, 127.06, 125.99, 118.77, 116.12, 114.39, 110.85, 93.28, 26.67, 26.61, 20.86, 20.69. HRMS (ESI) calcd for $C_{12}H_{13}O_{3}$ [M+H] $^{+}$: 205.0865; found: 205.0859.

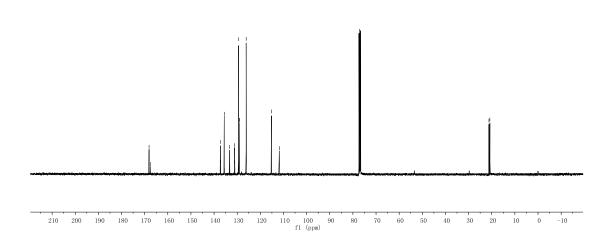
3,5-Dichlorostyryl acetate (3l) (E/Z=1/0.5): Purification by column chromatography

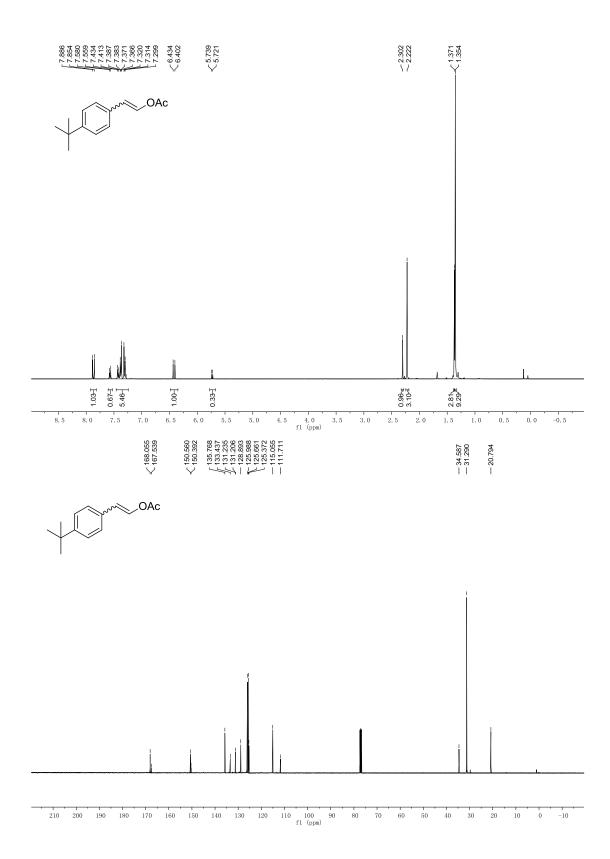
(Petroleum ether/EtOAc = 100/1) afforded **31** (75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88(d, J = 12.8 Hz, 1H), 7.48-7.47(m, 1.0H), 7.38(d, J = 7.2 Hz, 0.5H), 7.26-7.21(m, 3.5H), 6.28(d, J = 12.8 Hz, 1Hz), 5.60(d, J = 7.2Hz, 0.5H), 2.32(s, 1.5H), 2.23(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.67, 166.97, 138.03, 137.34, 136.81, 135.82, 135.24, 134.82, 127.29, 127.18, 127.11, 124.46, 112.95, 109.27, 20.87, 20.68. HRMS (ESI) calcd for C₁₀H₉Cl₂O₂ [M+H]⁺: 230.9980; found: 230.9974.

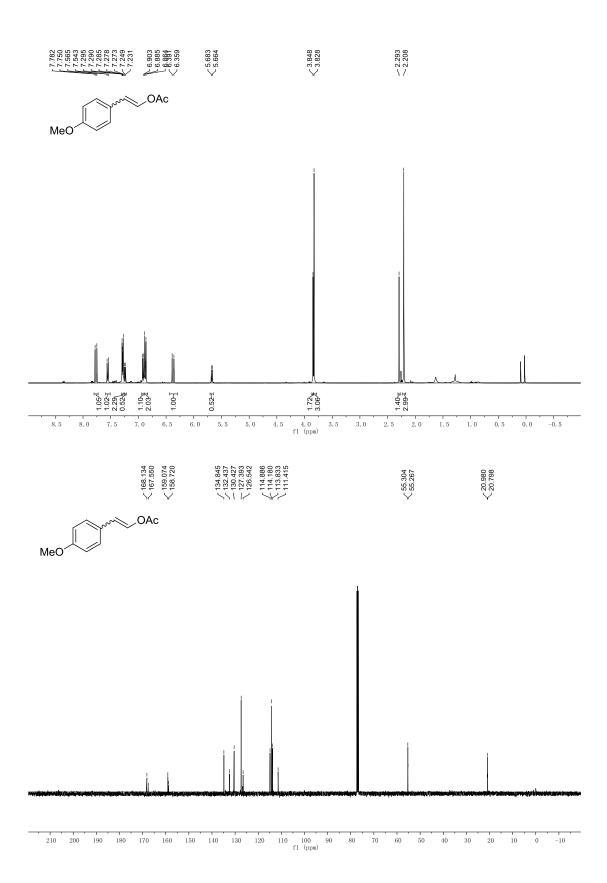
$$Aa^1$$
 Aa^2 OAc Aa^2

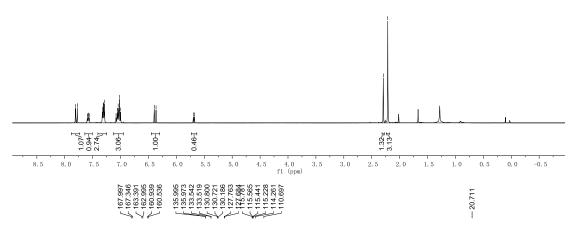

1-(4-(*tert*-Butyl)phenyl)prop-1-en-2-yl acetate (4a¹) [1] (E/Z=2/1) with 3-(4-(*tert*-Butyl)phenyl)prop-1-en-2-yl acetate (4a²)(4a¹/4a²=1.2/1): Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded 3l (92%) as a colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.40-7.18(m, 8.8H), 6.26(s, 0.8H), 5.95(s, 0.4H), 4.85-4.73(m, 2H),

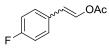

 $3.54(s, 2H), 2.24-2.11(m, 10.2H), 1.35-1.34(m, 19.8H); ^{13}C NMR (100 MHz, CDCl₃) & 169.49, 169.09, 168.64, 155.58, 149.92, 149.86, 149.58, 147.40, 145.70, 133.73, 131.91, 131.57, 128.74, 128.45, 127.87, 125.40, 125.28, 125.24, 118.49, 116.24, 102.87, 39.28, 34.53, 34.44, 31.39, 31.30, 31.27, 21.13, 21.07, 20.69, 17.20. HRMS (ESI) calcd for <math>C_{15}H_{21}O_{2}$ [M+H]⁺: 233.1542; found: 233.1539.

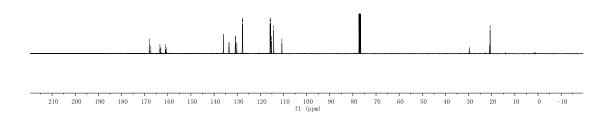

$$OAc$$
 CI
 OAc
 OAc
 OAc
 OAc
 OAc
 OAc

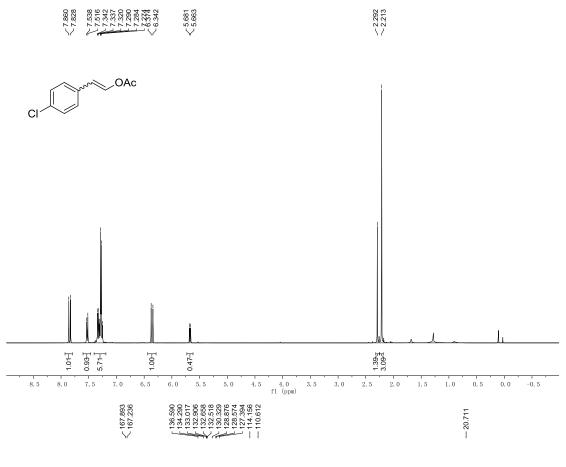

1-(4-chlorophenyl)prop-1-en-2-yl acetate (**4b**¹) (E/Z=1.5/1) with **3-(4-chlorophenyl)prop-1-en-2-yl** acetate (**4b**²) (4b¹/4b²⁼1/1): Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3l** (74%) as a colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.33-7.17(m, 8.0H), 6.22(s, 0.6H), 5.92(s, 0.4H), 4.86-4.71(m, 2H), 3.52(s, 2H), 2.20-2.19(m, 3H), 2.10-2.09(m, 6H); 13 C NMR (100 MHz, CDCl₃) δ 169.35, 168.95, 168.36, 154.82, 148.36, 146.93, 135.24, 133.33, 132.94, 132.67, 132.61, 132.56, 130.48, 130.02, 129.39, 128.63, 128.62, 128.50, 117.72, 115.42, 103.30, 39.16, 21.07, 20.96, 20.67, 17.14.

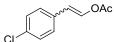

Methyl 4-(2-oxopropyl)benzoate (**5a**)^[2]: Purification by column chromatography (Petroleum ether/EtOAc = 100/1) afforded **3l** (63%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.00(d, J = 8.4 Hz, 2H), 7.27(d, J = 8 Hz, 2H), 3.90(s, 3H), 3.76(s, 2H), 2.18(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.24, 166.79, 139.35, 129.93, 129.51, 129.95, 52.08, 50.65, 29.55

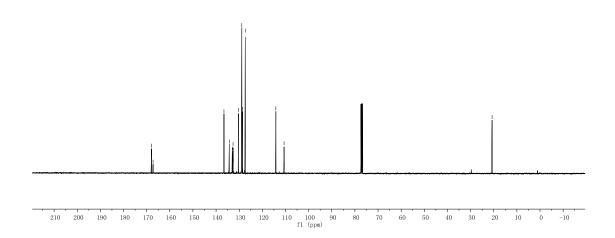


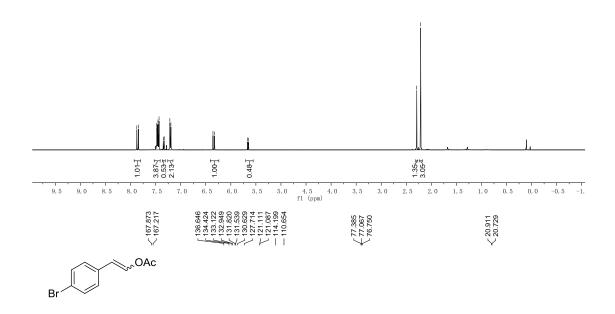


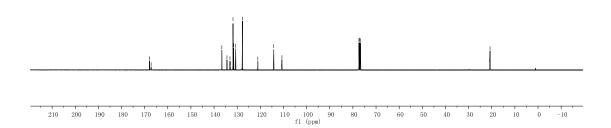


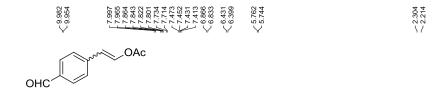


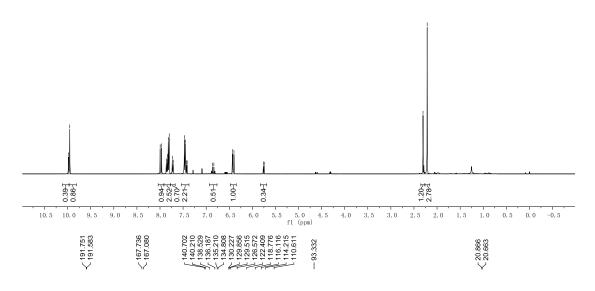


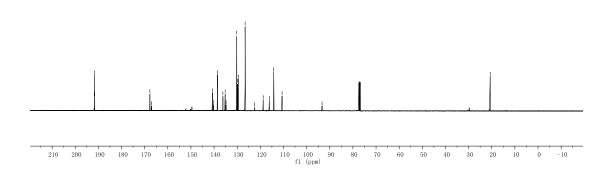


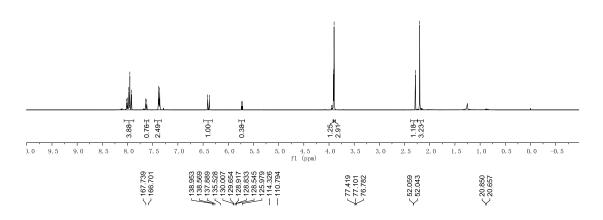


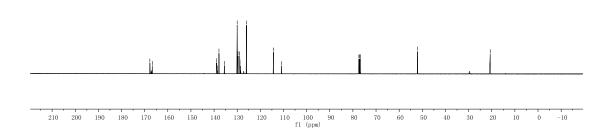


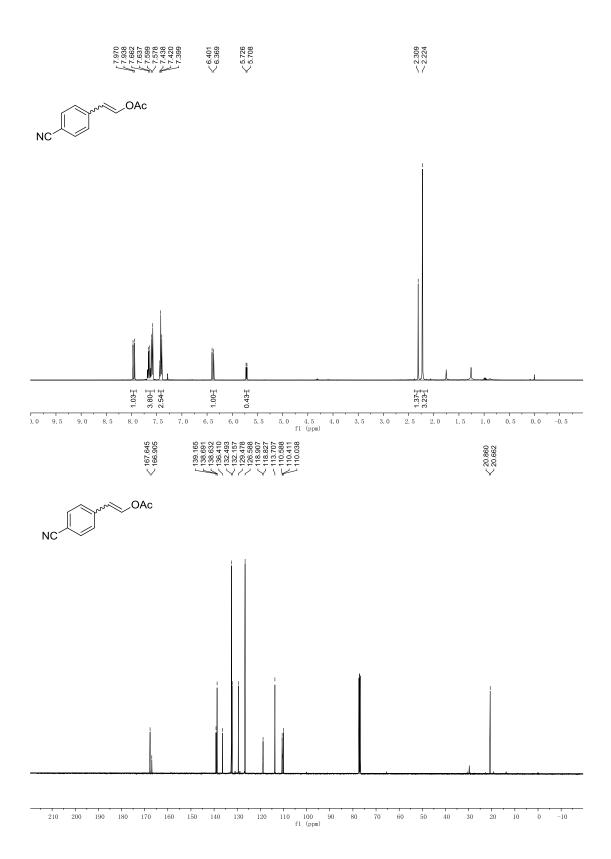


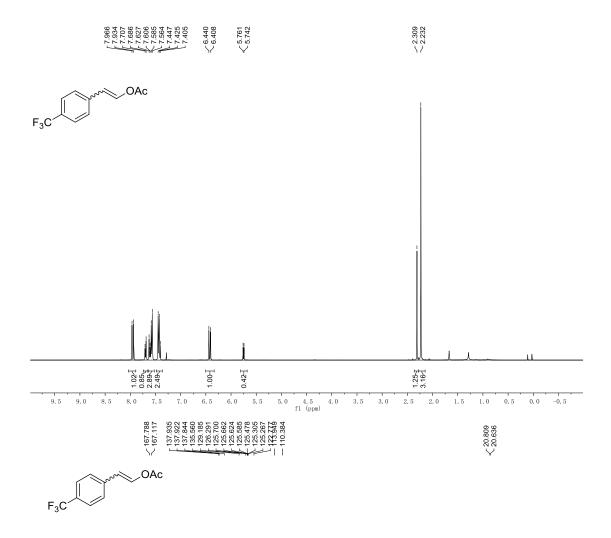


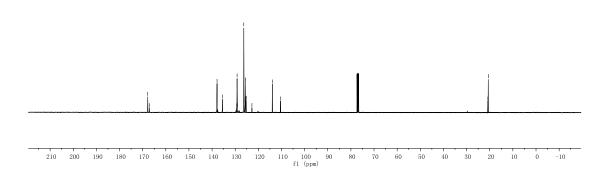


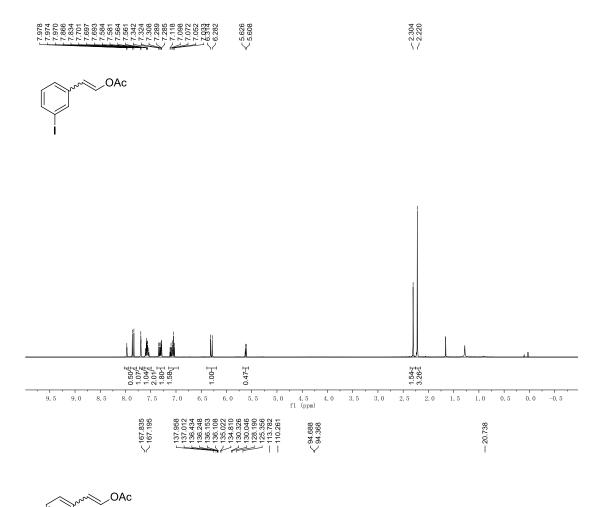


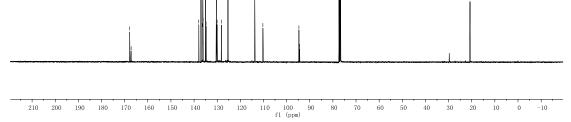


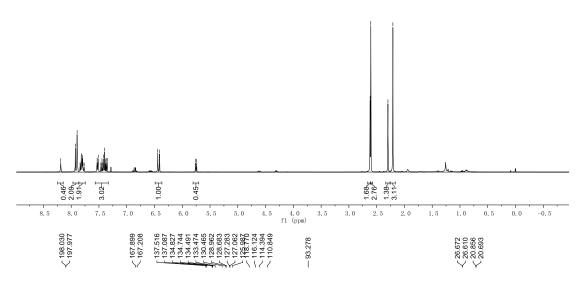


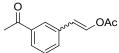


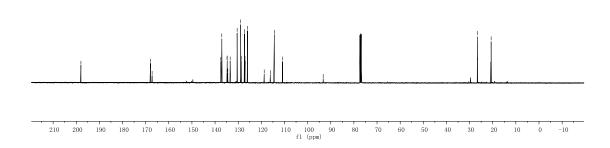


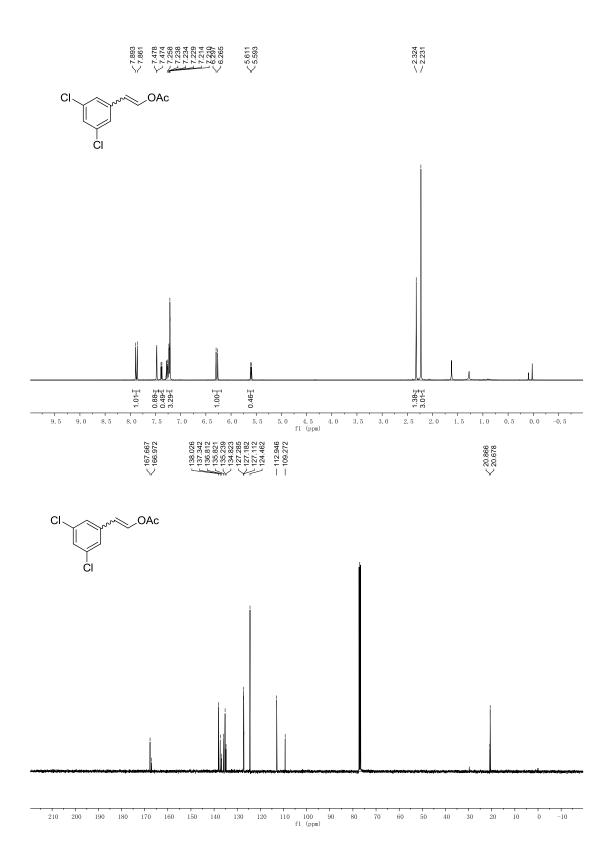


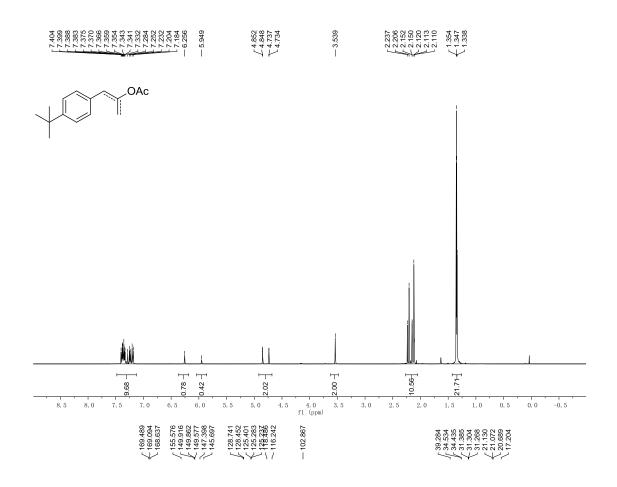


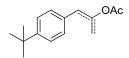


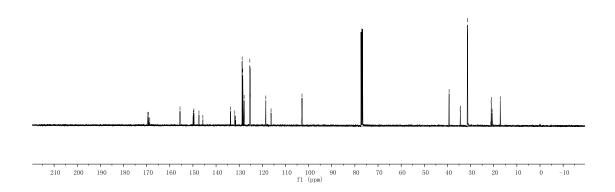


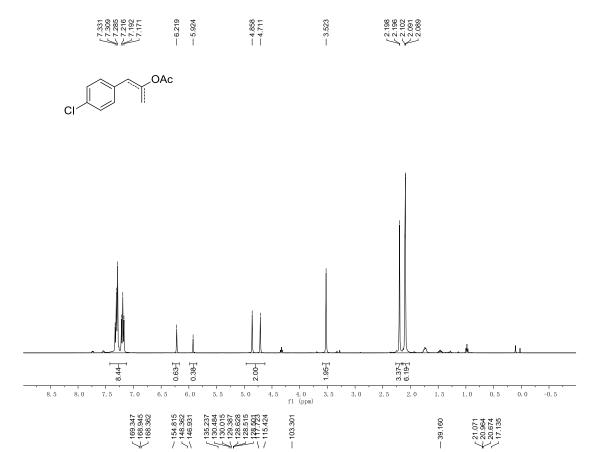


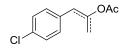


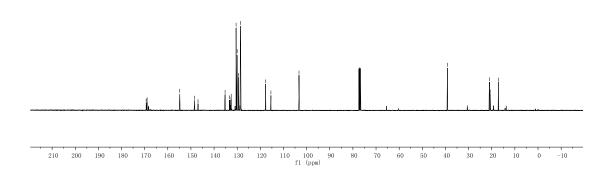


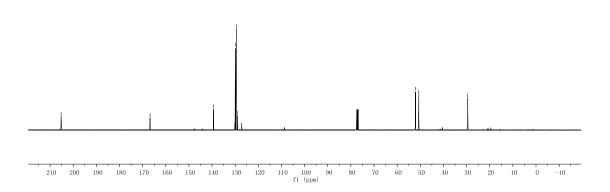












- [1] Floris, B., Tassoni, E., Organometallics 1994, 13, 4746
- [2] Durandetti, M., N éd dec, J.-Y., P érichon, J., J Org Chem 1996, 61, 1748
- [3] Poladura, B., Mart ńez-Casta ředa, Á., Rodr ģuez-Solla, H., Llavona, R., Concell ón, C., del Amo, V., *Org Lett* **2013**, *15*, 2810