Supplementary Information for

Copper-catalyzed distannylation of alkynes

Hiroto Yoshida,* Ayako Shinke and Ken Takaki

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Contents

General remarks	S2
Experimental procedures and characterization data of products	S3
References	S9
¹ H and ¹³ C NMR spectra of new compounds	S10

General remarks.

All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on a Varian 400-MR (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer or a Varian System 500 (¹H, 500 MHz; ¹³C, 125 MHz; ¹¹⁹Sn, 186 MHz) spectrometer using residual chloroform (${}^{1}H$, $\delta = 7.26$) or CDCl₃ (${}^{13}C$, $\delta = 77.0$) as an internal standard, and tetramethyltin (119 Sn, $\delta = 0$) as an external standard. 1 H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration. High-resolution mass spectra (ESI or APCI/FTMS) were obtained with Thermo Fisher Scientific LTQ Orbitrap XL spectrometer. Preparative recycling gel permeation chromatography was performed with JAI LC-908 or JAI LC-9201 equipped with JAI GEL-1H and -2H columns (chloroform or toluene as an eluent). Column chromatography was carried out using Merck Aluminium oxide 90 (activity IV). Hexamethyldistannane $(2)^1$ and tris(triphenylphosphine)copper acetate² were synthesized according to literature procedures. Alkynes were purified prior to use by distillation. DMF was distilled from calcium hydride and stored over activated molecular sieves 4A.

Cu-catalyzed distannylation of alkynes: a general procedure.

A Schlenk tube equipped with a magnetic stirring bar was charged with Cs₂CO₃ (0.060 mmol) before flame-drying under vacuum. To this were added Cu(OAc)(PPh₃)₃ (6.0 µmol) and DMF (0.2 mL), and the resulting mixture was stirred at room temperature for 1 h. Then tetramethyldistannane (0.30 mmol) and an alkyne (0.45 mmol) were added, and the resulting mixture was stirred at 60 °C for the period as specified in Table 2. The mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed twice with water and dried over MgSO₄. Evaporation of the solvent followed by preparative recycling gel permeation chromatography (chloroform or toluene as an eluent) or alumina-column chromatography (hexane as an eluent) gave the corresponding product.

(Z)-Oct-1-ene-1,2-diylbis(trimethylstannane) (3a)

Isolated in 80% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.16 (s, ² $J_{\text{Sn-H}}$ = 53.0 Hz, 9H), 0.17 (s, ² $J_{\text{Sn-H}}$ = 51.5 Hz, 9H), 0.89 (t, J = 5.3 Hz, 3H), 1.27 (m, 4H), 2.33 (t, ³ $J_{\text{Sn-H}}$ = 52.0 Hz, J = 7.5 Hz, 2H), 6.61 (s, ³ $J_{\text{Sn-H}}$ = 203.4 Hz, ³ $J_{\text{Sn-H}}$ = 194.3 Hz, ² $J_{\text{Sn-H}}$ = 88.9 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.71, -7.47, 14.09, 22.62, 28.88, 29.88, 31.72, 47.67, 142.47, 169.16; ¹¹⁹Sn NMR (CDCl₃) δ -63.48, -50.93; HRMS Calcd for C₁₃H₂₉Sn₂: [M-Me]⁻, 425.03077. Found: m/z 425.03107.

(Z)-Hex-1-ene-1,2-diylbis(trimethylstannane) (3b)

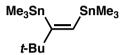
Isolated in 80% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.16 (s, ² $J_{\text{Sn-H}}$ = 52.8 Hz, 9H), 0.17 (s, ² $J_{\text{Sn-H}}$ = 51.5 Hz, 9H), 0.90 (t, J = 7.2 Hz, 3H), 1.32 (m, 4H), 2.34 (t, ³ $J_{\text{Sn-H}}$ = 50.6 Hz, J = 6.4 Hz, 2H), 6.61 (s, ³ $J_{\text{I}^{19}}$ _{Sn-H} = 202.7 Hz, ³ $J_{\text{I}^{17}}$ _{Sn-H} = 193.7 Hz, ² $J_{\text{Sn-H}}$ = 88.2 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.69, -7.47, 14.00, 22.27, 32.10, 47.35, 142.51, 169.21; ¹¹⁹Sn NMR (CDCl₃) δ -63.55, -50.90; HRMS Calcd for C₁₁H₂₅Sn₂: [M-Me]⁻, 396.99947. Found: m/z 397.00031.

(Z)-Dec-1-ene-1,2-diylbis(trimethylstannane) (3c)

Isolated in 90% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.16 (s, ² $J_{\text{Sn-H}}$ = 53.4 Hz, 9H), 0.18 (s, ² $J_{\text{Sn-H}}$ = 52.3 Hz, 9H), 0.89 (t, J = 7.0 Hz, 3H), 1.23–1.37 (m, 8H), 2.33 (t, ³ $J_{\text{Sn-H}}$ = 51.1 Hz, J = 6.7 Hz, 2H), 6.61 (s, ³ $J_{\text{I}^{119}}$ _{Sn-H} = 203.1 Hz, ³ $J_{\text{I}^{117}}$ _{Sn-H} = 194.2 Hz, ² $J_{\text{Sn-H}}$ = 89.6 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.70, -7.47, 14.12, 22.67, 29.19, 29.27, 31.87, 29.91, 29.44, 47.66, 142.46, 169.27; ¹¹⁹Sn NMR (CDCl₃) δ -63.50, -50.93; HRMS Calcd for C₁₅H₃₃Sn₂: [M-Me]⁻, 453.06207. Found: m/z 453.06271.

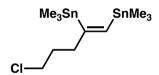
(Z)-(5-Methylhex-1-ene-1,2-diyl)bis(trimethylstannane) (3d)

Isolated in 85% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.16 (s, ² $J_{^{119}S_{\text{n-H}}} = 53.8$ Hz, ² $J_{^{117}S_{\text{n-H}}} = 51.7$ Hz, 9H), 0.17 (s, $J_{^{119}S_{\text{n-H}}} = 52.5$ Hz, ³ $J_{^{117}S_{\text{n-H}}} = 50.3$ Hz, 9H), 0.88 (d, J = 6.7 Hz, 6H), 1.22 (q, J = 6.7 Hz, 2H), 1.53 (nonet, J = 6.7 Hz, 1H), 2.25-2.40 (m, 2H), 6.62 (t, ³ $J_{^{119}S_{\text{n-H}}} = 202.7$ Hz, ³ $J_{^{117}S_{\text{n-H}}} = 193.6$ Hz, ² $J_{^{119}S_{\text{n-H}}} = 89.8$ Hz, ² $J_{^{117}S_{\text{n-H}}} = 86.1$ Hz, J = 1.2 Hz); ¹³C NMR (CDCl₃) δ -7.70, -7.41, 22.60, 27.75, 39.33, 45.58, 142.37, 169.39; ¹¹⁹Sn NMR (CDCl₃) δ -63.41, -50.60; HRMS Calcd for C₁₂H₂₇Sn₂: [M-Me]⁻, 411.01512. Found: m/z 411.01593.

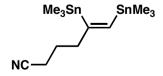

(Z)-(4-Methylpent-1-ene-1,2-diyl)bis(trimethylstannane) (3e)

Isolated in 62% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.14 (s, ² $J_{\text{Sn-H}}$ = 52.9 Hz, 9H), 0.14 (s, ² $J_{\text{Sn-H}}$ = 51.5 Hz, 9H), 0.13 (d, J = 6.6 Hz, 6H), 1.55 (nonet, J = 6.6 Hz, 2H), 2.19 (dd, ³ $J_{\text{Sn-H}}$ = 53.9 Hz, J = 7.4, 1.2 Hz, 2H), 6.52 (t, ³ $J_{\text{I}^{119}}$ _{Sn-H} = 203.4 Hz, ³ $J_{\text{I}^{117}}$ _{Sn-H} = 194.4 Hz, ² $J_{\text{I}^{119}}$ _{Sn-H} = 87.3 Hz, J = 1.2 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.70, -7.43, 22.19, 27.69, 57.52, 143.90, 168.37; ¹¹⁹Sn NMR (CDCl₃) δ -64.50, -50.93; HRMS Calcd for C₁₁H₂₅Sn₂: [M-Me]⁻, 396.99947. Found: m/z 397.00095.

(Z)-(1-Cyclopentylethene-1,2-diyl)bis(trimethylstannane) (3f)


Isolated in 78% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.16 (s, ² $J_{^{119}Sn-H}$ = 53.8 Hz, ² $J_{^{117}Sn-H}$ = 51.5 Hz, 9H), 0.18 (s, ² $J_{^{119}Sn-H}$ = 52.1 Hz, ² $J_{^{117}Sn-H}$ = 50.0 Hz, 9H), 1.33–1.78 (m, 8H), 2.57–2.73 (m, 1H), 6.63 (d, ³ $J_{^{119}Sn-H}$ = 210.0 Hz, ³ $J_{^{117}Sn-H}$ = 200.1 Hz, ² J_{Sn-H} = 88.2 Hz, $J_{^{119}Sn-H}$ = 1.3 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.38, -6.66, 32.13, 24.88, 55.93, 138.80, 172.21; ¹¹⁹Sn NMR (CDCl₃) δ -61.72, -53.93; HRMS Calcd for C₁₂H₂₅Sn₂: [M-Me]⁻, 408.99947. Found: m/z 408.99896.

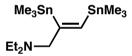
(Z)-(3,3-Dimethylbut-1-ene-1,2-diyl)bis(trimethylstannane) (3g)


Isolated in 10% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.17 (s, ² $J_{\text{Sn-H}}$ = 52.8 Hz, 9H), 0.21 (s, ² $J_{\text{Sn-H}}$ = 50.3 Hz, 9H), 1.06 (s, 9H), 6.56 (s, ³ $J_{\text{Sn-H}}$ = 218.7 Hz, ³ $J_{\text{I}^{117}}$ _{Sn-H} = 209.0 Hz, ² $J_{\text{Sn-H}}$ = 69.6 Hz, 1H); ¹³C NMR (CDCl₃) δ -6.87, -4.59, 30.02, 135.85, 178.85; ¹¹⁹Sn NMR (CDCl₃) δ -60.50, -57.91; HRMS Calcd for C₁₁H₂₅Sn₂: [M-Me]⁻, 396.99947. Found: m/z 396.99942.

(Z)-(5-Chloropent-1-ene-1,2-diyl)bis(trimethylstannane) (3h)

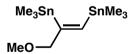
Isolated in 76% yield as a yellow oil: ${}^{1}H$ NMR (CDCl₃) δ 0.16 (s, ${}^{2}J^{_{19}}{}_{Sn-H} = 54.3$ Hz, ${}^{2}J^{_{117}}{}_{Sn-H} = 51.6$ Hz, 9H), 0.18 (s, ${}^{2}J^{_{19}}{}_{Sn-H} = 53.0$ Hz, ${}^{2}J^{_{117}}{}_{Sn-H} = 50.1$ Hz, 9H), 1.82 (quint, J = 6.6 Hz, 2H), 2.48 (t, ${}^{3}J_{Sn-H} = 48.2$ Hz, J = 7.7 Hz, 2H), 3.50 (t, J = 7.0 Hz, 2H), 6.67 (s, ${}^{3}J^{_{119}}{}_{Sn-H} = 195.4$ Hz, ${}^{3}J^{_{117}}{}_{Sn-H} = 189.6$ Hz, ${}^{2}J_{Sn-H} = 84.5$ Hz, 1H); ${}^{13}C$ NMR (CDCl₃) δ -7.70, -7.50, 32.45, 44.15, 44.36, 144.75, 166.61; ${}^{119}Sn$ NMR (CDCl₃) δ -62.44, -49.22; HRMS Calcd for $C_{10}H_{22}ClSn_2$: [M-Me], 416.94485. Found: m/z 416.94467.

(Z)-5,6-Bis(trimethylstannyl)hex-5-enenitrile (3i)

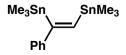

Isolated in 51% yield as a brown oil: ¹H NMR (CDCl₃) δ 0.17 (s, ²J¹¹⁹_{Sn-H} = 54.0 Hz, ²J¹¹⁷_{Sn-H} = 52.1 Hz, 9H), 0.19 (s, ²J¹¹⁹_{Sn-H} = 52.9 Hz, ²J¹¹⁷_{Sn-H} = 50.5 Hz, 9H), 1.72 (quint, J = 7.4 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 2.38–2.55 (m, 2H), 6.69 (s, ³J¹¹⁹_{Sn-H} = 194.1 Hz, ³J¹¹⁷_{Sn-H} = 185.8 Hz, ²J¹¹⁹_{Sn-H} = 83.3 Hz, ²J¹¹⁷_{Sn-H} = 80.8 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.69, -7.50,

16.29, 25.00, 45.69, 119.67, 146.03, 165.67; ¹¹⁹Sn NMR (CDCl₃) δ -61.85, -48.64; HRMS Calcd for C₁₁H₂₂NSn₂: [M-Me]⁻, 407.97907. Found: m/z 407.98001.

(Z)-N,N-Dimethyl-2,3-bis(trimethylstannyl)prop-2-en-1-amine (3j)


Isolated in 54% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.13 (s, ² J^{119}_{Sn-H} = 53.5 Hz, ² J^{117}_{Sn-H} = 51.6 Hz, 9H), 0.17 (s, ² J^{119}_{Sn-H} = 54.1 Hz, ² J^{117}_{Sn-H} = 52.1 Hz, 9H), 2.12 (s, 6H), 3.01 (d, ³ J_{Sn-H} = 48.1 Hz, J = 1.4 Hz, 2H), 6.73 (t, ³ J^{119}_{Sn-H} = 201.3 Hz, ³ J^{117}_{Sn-H} = 192.4 Hz, ² J^{119}_{Sn-H} = 90.5 Hz, ² J^{117}_{Sn-H} = 87.1 Hz, J = 1.4 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.71, -7.23, 45.03, 75.52, 142.83, 169.79; ¹¹⁹Sn NMR (CDCl₃) δ -62.24, -54.24; HRMS Calcd for C₁₀H₂₄NSn₂: [M-Me]⁻, 397.99472. Found: m/z 397.99518.

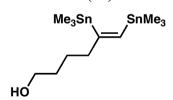
(Z)-N,N-Diethyl-2,3-bis(trimethylstannyl)prop-2-en-1-amine (3k)


Isolated in 54% yield as a colorless oil: 1 H NMR (CDCl₃) δ 0.18 (s, $^{2}J_{Sn-H}$ = 53.2 Hz, 18H), 3.29 (s, 3H), 4.02 (s, $^{3}J_{Sn-H}$ = 39.3 Hz, 2H), 6.89 (s, $^{3}J_{Sn-H}$ = 190.3 Hz, $^{3}J_{Sn-H}$ = 183.1 Hz, $^{2}J_{Sn-H}$ = 84.1 Hz, 1H); 13 C NMR (CDCl₃) δ -7.61, -7.13, 10.50, 44.92, 70.14, 142.75, 169.83; 119 Sn NMR (CDCl₃) δ -63.05, -55.94; HRMS Calcd for C₁₂H₂₈NSn₂: [M-Me]⁻, 426.02602. Found: m/z 426.02637.

(Z)-(3-Methoxyprop-1-ene-1,2-diyl)bis(trimethylstannane) (3l)

Isolated in 41% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.17 (s, ² $J_{\text{Sn-H}}$ = 52.8 Hz, 9H), 0.21 (s, ² $J_{\text{Sn-H}}$ = 50.3 Hz, 9H), 1.06 (s, 9H), 6.56 (s, ³ $J_{\text{I}^{119}\text{Sn-H}}$ = 218.7 Hz, ³ $J_{\text{I}^{117}\text{Sn-H}}$ = 209.0 Hz, ² $J_{\text{Sn-H}}$ = 69.6 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.78, -7.68, 57.66, 84.37, 144.71, 165.17; ¹¹⁹Sn NMR (CDCl₃) δ -59.42, -48.53; ¹¹⁹Sn NMR (CDCl₃) δ -62.24, -54.24; HRMS Calcd for C₉ H_{21} OSn₂: [M-Me]⁻, 384.96309. Found: m/z 384.96249.

(Z)-(1-Phenylethene-1,2-diyl)bis(trimethylstannane) (3m)

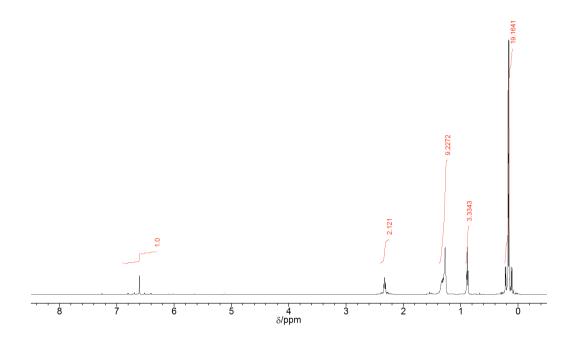


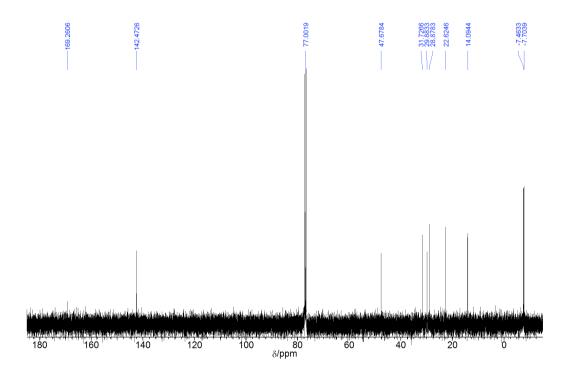
Isolated in 64% yield as a yellow oil: 1 H NMR (CDCl₃) δ 0.19 (s, $^{2}J^{_{119}}_{Sn-H} = 53.4$ Hz, $^{2}J^{_{117}}_{Sn-H} = 51.1$ Hz, 9H), 0.24 (s, $^{2}J^{_{119}}_{Sn-H} = 54.5$ Hz, $^{2}J^{_{117}}_{Sn-H} = 52.0$ Hz, 9H), 6.95 (s, $^{3}J^{_{119}}_{Sn-H} = 188.1$ Hz, $^{3}J^{_{117}}_{Sn-H} = 179.9$ Hz, $^{2}J^{_{119}}_{Sn-H} = 82.7$ Hz, $^{2}J^{_{117}}_{Sn-H} = 79.0$ Hz, 1H), 7.02–7.03 (m, 2H), 7.13–7.18 (m, 1H), 7.24–7.30 (m, 2H); 13 C NMR (CDCl₃) δ -7.47, -6.70, 125.79, 125.85, 128.07, 148.97, 150.30, 168.43; 119 Sn NMR (CDCl₃) δ -58.47, -44.84; HRMS Calcd for C₁₃H₂₁Sn₂: [M-Me]⁻, 416.96817. Found: m/z 416.96741.

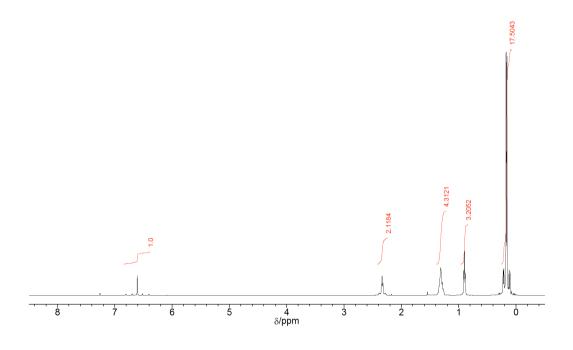
(Z)-(3-((Tetrahydro-2H-pyran-2-yl)oxy)prop-1-ene-1,2-diyl)bis(trimethylstannane) (3n)

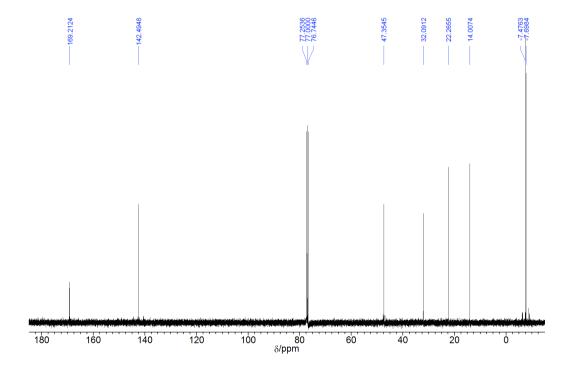
Isolated in 58% yield as a yellow green oil: ¹H NMR (CDCl₃) δ 0.18 (s, ² $J_{\text{Sn-H}}$ = 53.2 Hz, 9H), 0.18 (s, ² $J_{\text{Sn-H}}$ = 52.9 Hz,9H), 1.47–1.65 (m, 4H), 1.66–1.75 (m, 1H), 1.70 (tt, J = 13.1, 3.3 Hz, 1H), 3.47–3.54 (m, 1H), 3.86 (ddd, J = 11.8, 8.7, 3.0 Hz, 1H), 4.06 (dd, ³ $J_{\text{119}}^{\text{I19}}$ _{Sn-H} = 34.2 Hz, J = 12.1, 1.6 Hz, 1H), 4.36 (dd, ³ $J_{\text{119}}^{\text{I19}}$ _{Sn-H} = 39.6 Hz, J = 12.0, 1.6 Hz, 1H), 4.62 (t, J = 3.3 Hz, 1H), 6.69 (t, ³ $J_{\text{119}}^{\text{I19}}$ _{Sn-H} = 192.6 Hz, ³ $J_{\text{117}}^{\text{I17}}$ _{Sn-H} = 184.1 Hz, ² $J_{\text{119}}^{\text{I19}}$ _{Sn-H} = 85.2 Hz, ² $J_{\text{117}}^{\text{I17}}$ _{Sn-H} = 81.7 Hz, J = 1.4 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.65, 7.50, 19.29, 25.42, 25.45, 30.55, 61.93, 78.74, 97.81, 144.00, 164.75; ¹¹⁹Sn NMR (CDCl₃) δ -59.66, -46.49; HRMS Calcd for C₁₄H₃₀O₂NaSn₂: [M+Na]⁺, 493.01820. Found: m/z 493.01810.

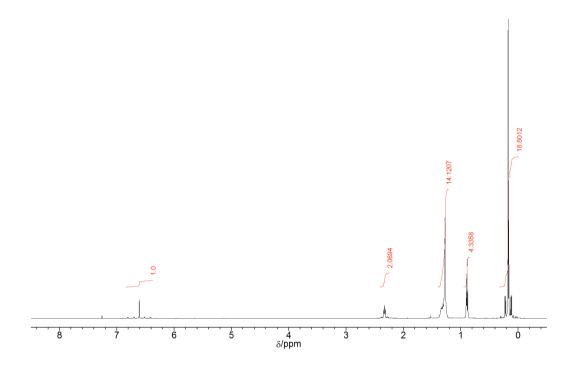
(Z)-5,6-Bis(trimethylstannyl)hex-5-en-1-ol (3o)

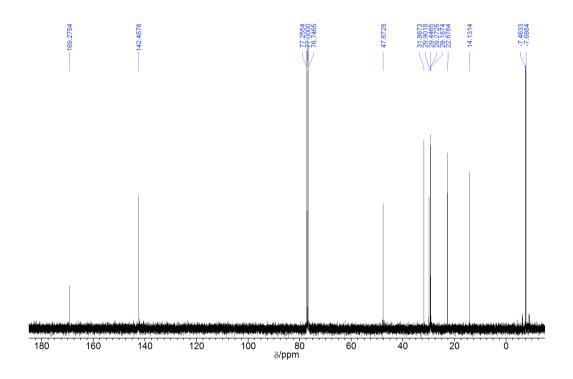

Isolated in 13% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.15 (s, ² $J_{\text{Sn-H}}$ = 52.8 Hz, 9H), 0.17 (s, ² $J_{\text{Sn-H}}$ = 51.5 Hz, 9H), 1.22 (t, J = 4.2 Hz, 1H), 1.41 (quint, J = 7.3 Hz, 2H), 1.55 (quint, J = 7.3 Hz, 2H), 2.35 (t, ³ $J_{\text{Sn-H}}$ = 50.1, J = 7.6 Hz, 2H), 3.64 (q, J = 5.4 Hz, 2H), 6.62 (s, ³ $J_{\text{Sn-H}}$ = 199.8 Hz, ³ $J_{\text{Sn-H}}$ = 193.7 Hz, ² $J_{\text{Sn-H}}$ = 86.6 Hz, 1H); ¹³C NMR (CDCl₃) δ - 7.72, -7.49, 25.82, 32.23, 47.21, 62.84, 143.22, 168.51; ¹¹⁹Sn NMR (CDCl₃) δ -63.09, -50.40; HRMS Calcd for C₁₁H₂₅OSn₂: [M-Me]⁺, 412.99439. Found: m/z 412.99545.

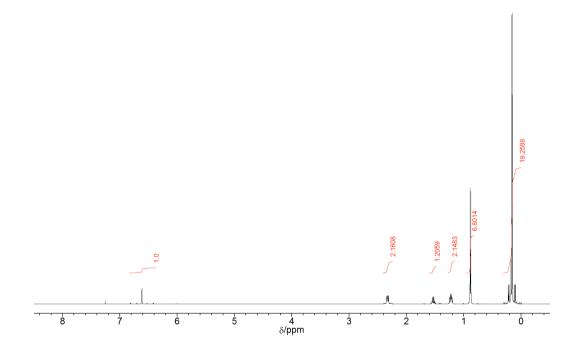

(1Z,7Z)-Octa-1,7-diene-1,2,7,8-tetrayltetrakis(trimethylstannane) (3p)


Isolated in 66% yield as a colorless oil: ¹H NMR (CDCl₃) δ 0.15 (s, ² J^{119}_{Sn-H} = 54.1 Hz, ² J^{117}_{Sn-H} = 51.7 Hz, 18H), 0.16 (s, ² J^{119}_{Sn-H} = 52.7 Hz, ² J^{117}_{Sn-H} = 50.3 Hz, 18H), 1.33 (quint, J = 3.5 Hz, 4H), 2.33 (t, ³ J_{Sn-H} = 50.7 Hz, J = 6.2 Hz, 4H), 6.60 (s, ³ J^{119}_{Sn-H} = 202.2 Hz, ³ J^{117}_{Sn-H} = 193.3 Hz, ² J^{119}_{Sn-H} = 89.7 Hz, ² J^{117}_{Sn-H} = 86.2 Hz, 2H); ¹³C NMR (CDCl₃) δ -7.68, -7.41, 29.45, 47.44, 142.84, 168.91; ¹¹⁹Sn NMR (CDCl₃) δ -63.33, -50.65; HRMS Calcd for C₁₉ H_{43} Sn₄: [M-Me]⁻, 750.94472. Found: m/z 750.94637.

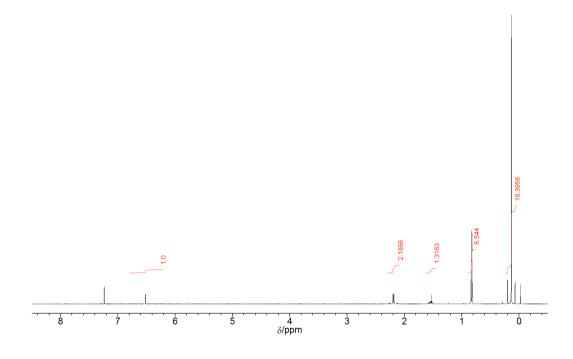

References

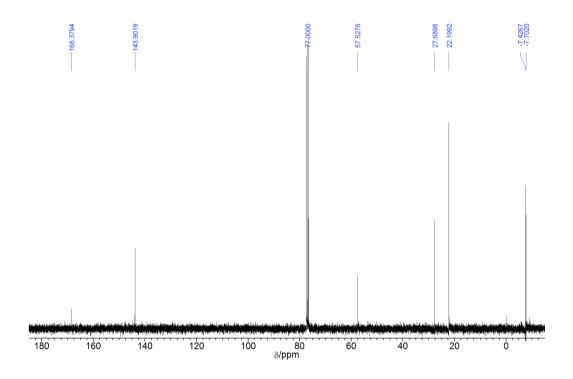

- 1 G. F. Smith, H. G. Kuivila, R. Simon and L. Sultan, *J. Am. Chem. Soc.*, 1981, **103**, 833.
- B. Hammond, F. H. Jardine and A. G. Vohra, *J. Inorg. Nucl. Chem.*, 1971, **33**, 1017.

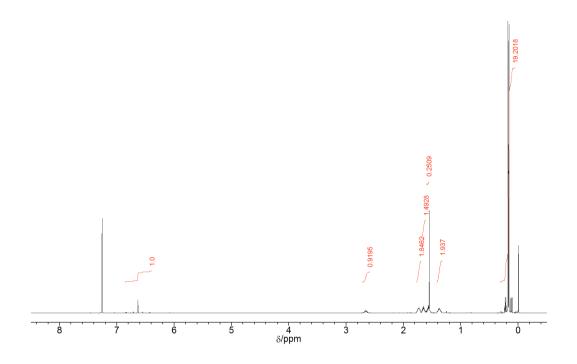


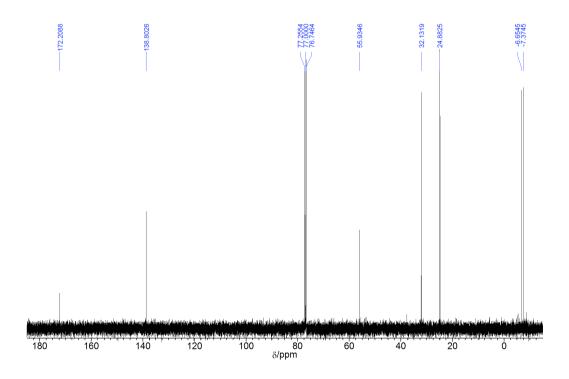


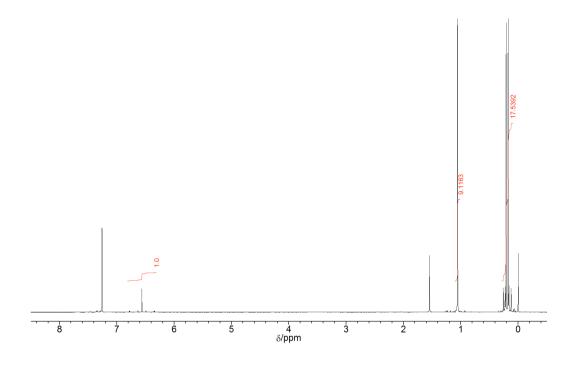


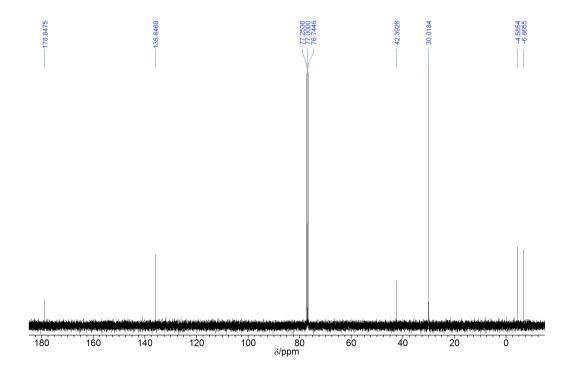


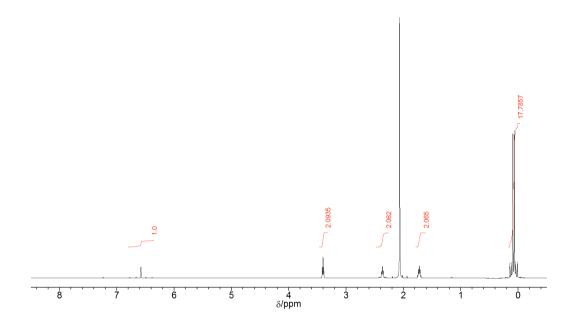


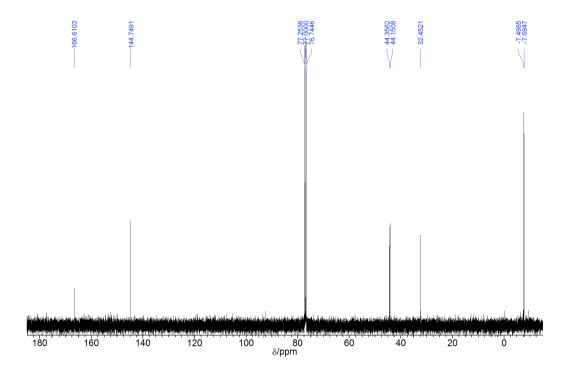


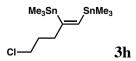


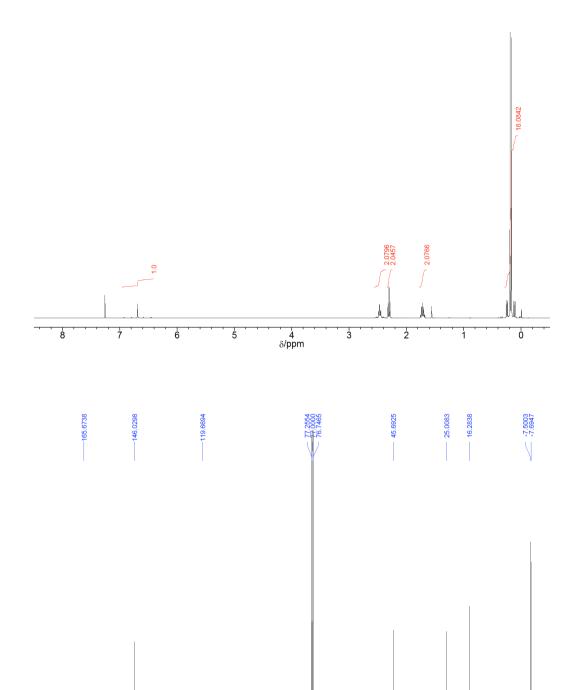


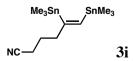


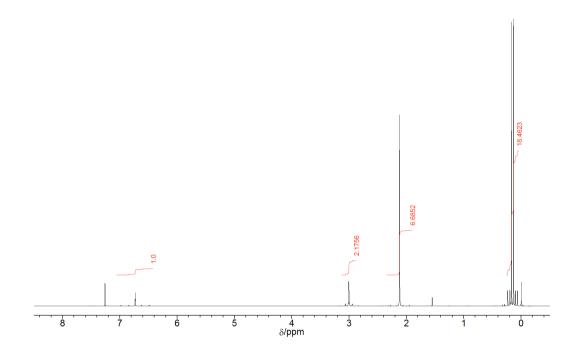

$$\begin{array}{c} \text{Me}_3\text{Sn} \\ \\ \end{array} \begin{array}{c} \text{SnMe}_3 \\ \\ 3e \end{array}$$

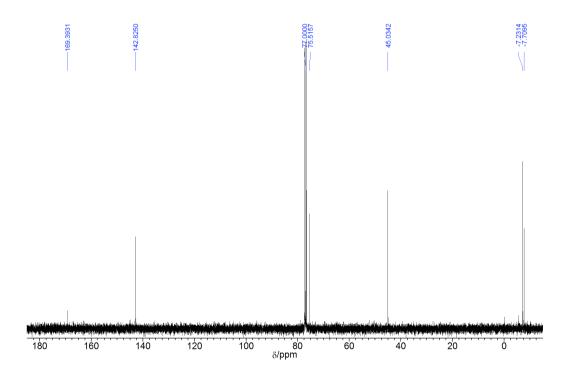


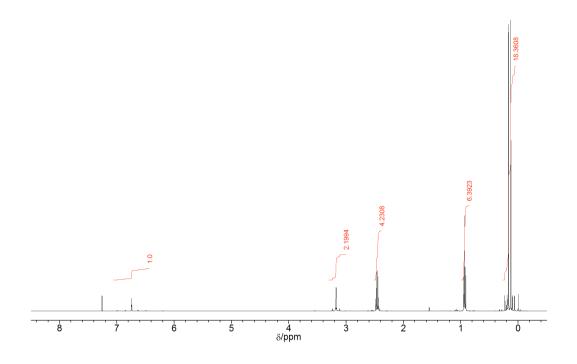


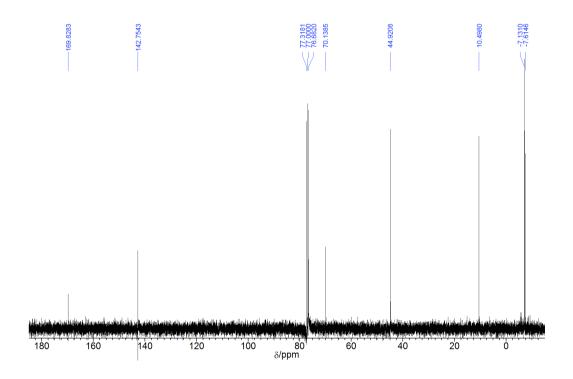




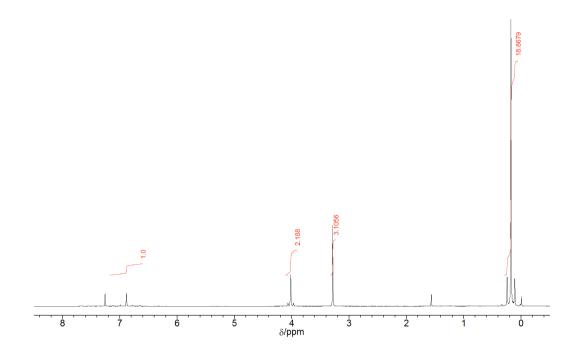


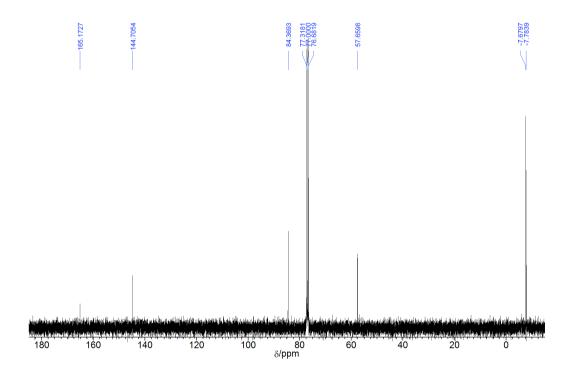


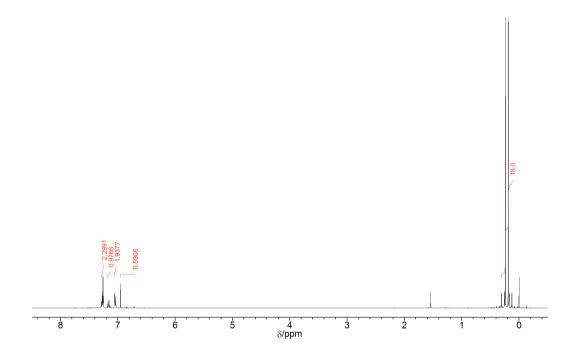


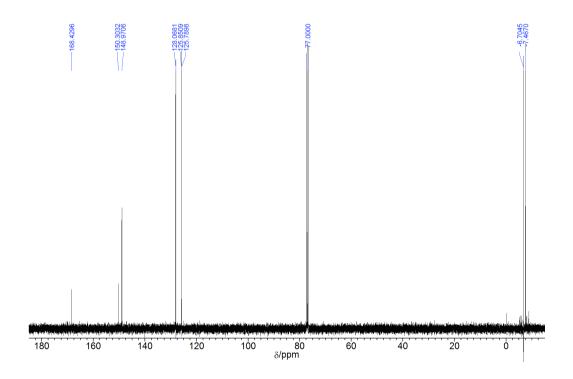


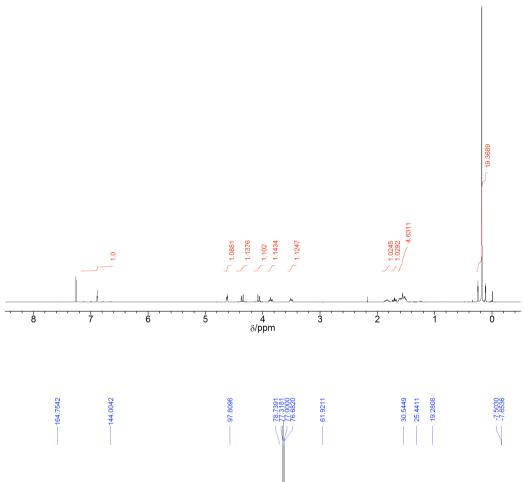
δ/ppm

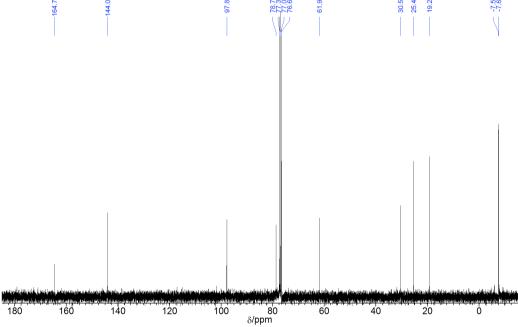


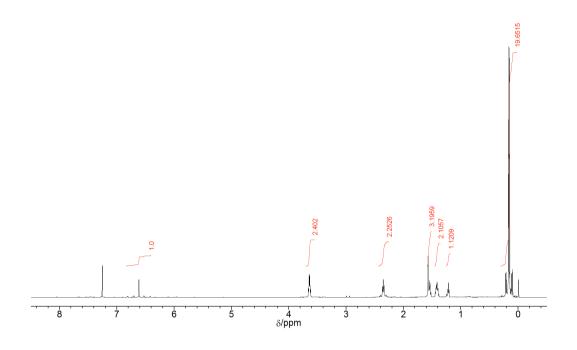





$$\begin{array}{c} \text{Me}_3\text{Sn} \\ \text{Et}_2\text{N} \end{array} \begin{array}{c} \text{SnMe}_3 \\ \\ 3k \end{array}$$






$$\begin{array}{c} \text{Me}_3\text{Sn} \\ \text{MeO} \end{array} \begin{array}{c} \text{SnMe}_3 \\ \end{array}$$

