Supplementary Information

Stereocontrolled Generation of Highly Nucleophilic (*Z*)- or (*E*)- α -Fluoroalkenylchromium

Reagents via Carbon-Fluorine Bond Activation:

Highly Stereoselective Syntheses of (E)- or (Z)- β -Fluoroallylic Alcohols

Takashi Nihei, Saya Yokotani, Takashi Ishihara, and Tsutomu Konno*

Department of Chemistry and Materials Technology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan Fax: (+81) 75-724-7580, E-mail: konno@kit.ac.jp

Content	
Experimental procedure	Page 5
References	Page 14
NMR Spectra	
¹ H Spectra of <i>tert</i> -butyldiphenylsilyloxy-1-bromo-1,1-difluoropropane (1B)	Page 15
¹³ C Spectra of <i>tert</i> -butyldiphenylsilyloxy-1-bromo-1,1-difluoropropane (1B)	Page 16
¹⁹ F Spectra of <i>tert</i> -butyldiphenylsilyloxy-1-bromo-1,1-difluoropropane (1B)	Page 17
¹ H Spectra of 1,3-dibromo-1,1-difluorononane	Page 18
¹³ C Spectra of 1,3-dibromo-1,1-difluorononane	Page 19
¹⁹ F Spectra of 1,3-dibromo-1,1-difluorononane	Page 20
¹ H Spectra of 1-bromo-1,1-difluorononane (1E)	Page 21
¹³ C Spectra of 1-bromo-1,1-difluorononane (1E)	Page 22
¹⁹ F Spectra of 1-bromo-1,1-difluorononane (1E)	Page 23
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-phenyl-2-butenoyl]-2-oxazolidinone (2Aa)	Page 24
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-phenyl-2-butenoyl]-2-oxazolidinone (2Aa)	Page 25
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-phenyl-2-butenoyl]-2-oxazolidinone (2Aa)	Page 26
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methylphenyl)-2-butenoyl]-2-oxazolidinone (2Ab)	Page 27
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methylphenyl)-2-butenoyl]-2-oxazolidinone (2Ab)	Page 28
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methylphenyl)-2-butenoyl]-2-oxazolidinone (2Ab)	Page 29
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methoxylphenyl)-2-butenoyl]-2-oxazolidinone (2Ac)	Page 30
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methoxylphenyl)-2-butenoyl]-2-oxazolidinone (2Ac)	Page 31
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-4-(4-methoxylphenyl)-2-butenoyl]-2-oxazolidinone (2Ac)	Page 32
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-(4-fluorophenyl)-4-hydroxy-2-butenoyl]-2-oxazolidinone (2Ad)	Page 33
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-(4-fluorophenyl)-4-hydroxy-2-butenoyl]-2-oxazolidinone (2Ad)	Page 34

¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-(4-fluorophenyl)-4-hydroxy-2-butenoyl]-2-oxazolidinone (2Ad)				
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-2-heptenoyl]-2-oxazolidinone (2Af)	Page 36			
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-2-heptenoyl]-2-oxazolidinone (2Af)	Page 37			
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-2-heptenoyl]-2-oxazolidinone (2Af)	Page 38			
¹ H Spectra of $3-[(E)-3-fluoro-4-hydroxy-5-methyl-2-hexenoyl]-2-oxazolidinone (2Ag)$	Page 39			
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-5-methyl-2-hexenoyl]-2-oxazolidinone (2Ag)	Page 40			
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-5-methyl-2-hexenoyl]-2-oxazolidinone (2Ag)	Page 41			
¹ H Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-5,5-dimethyl-2-hexenoyl]-2-oxazolidinone (2Ah)	Page 42			
¹³ C Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-5,5-dimethyl-2-hexenoyl]-2-oxazolidinone (2Ah)	Page 43			
¹⁹ F Spectra of 3-[(<i>E</i>)-3-fluoro-4-hydroxy-5,5-dimethyl-2-hexenoyl]-2-oxazolidinone (2Ah)	Page 44			
¹ H Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-phenyl-2-buten-1-ol (2Ba)	Page 45			
¹³ C Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-phenyl-2-buten-1-ol (2Ba)	Page 46			
¹⁹ F Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-phenyl-2-buten-1-ol (2Ba)	Page 47			
¹ H Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methylphenyl)-2-buten-1-ol (2Bb)	Page 48			
¹³ C Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methylphenyl)-2-buten-1-ol (2Bb)	Page 49			
¹⁹ F Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methylphenyl)-2-buten-1-ol (2Bb)	Page 50			
¹ H Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)-2-buten-1-ol (2Bc)	Page 51			
¹³ C Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)-2-buten-1-ol (2Bc)	Page 52			
¹⁹ F Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)-2-buten-1-ol (2Bc)	Page 53			
¹ H Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-fluorophenyl)-2-buten-1-ol (2Bd)	Page 54			
¹³ C Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-fluorophenyl)-2-buten-1-ol (2Bd)	Page 55			
¹⁹ F Spectra of (Z)-4-(<i>tert</i> -butyldiphenylsilyloxy)-2-fluoro-1-(4-fluorophenyl)-2-buten-1-ol (2Bd)	Page 56			
¹ H Spectra of (Z)-1-(<i>tert</i> -butyldiphenylsilyloxy)-3-fluoro-2-hepten-4-ol (2Bf)	Page 57			
¹³ C Spectra of (Z)-1-(<i>tert</i> -butyldiphenylsilyloxy)-3-fluoro-2-hepten-4-ol (2Bf)	Page 58			

¹⁹ F Spectra of (Z)-1-(<i>tert</i> -butyldiphenylsilyloxy)-3-fluoro-2-hepten-4-ol (2Bf)				
¹ H Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2-methyl-4-buten-3-ol (2Bg)	Page 60			
¹³ C Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2-methyl-4-buten-3-ol (2Bg)	Page 61			
¹⁹ F Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2-methyl-4-buten-3-ol (2Bg)	Page 62			
¹ H Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2,2-dimethyl-4-hexen-3-ol (2Bh)	Page 63			
¹³ C Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2,2-dimethyl-4-hexen-3-ol (2Bh)	Page 64			
¹⁹ F Spectra of (Z)-6-(<i>tert</i> -butyldiphenylsilyloxy)-4-fluoro-2,2-dimethyl-4-hexen-3-ol (2Bh)	Page 65			
¹ H Spectra of (<i>Z</i>)-ethyl 4-fluoro-5-hydroxy-5-phenyl-3-pentenoate (2Da)	Page 66			
¹³ C Spectra of (<i>Z</i>)-ethyl 4-fluoro-5-hydroxy-5-phenyl-3-pentenoate (2Da)	Page 67			
¹⁹ F Spectra of (Z)-ethyl 4-fluoro-5-hydroxy-5-phenyl-3-pentenoate (2Da)	Page 68			
¹ H Spectra of (Z)-2-fluoro-1-phenyl-2-decen-1-ol ($2Ea$)	Page 69			
¹³ C Spectra of (<i>Z</i>)-2-fluoro-1-phenyl-2-decen-1-ol (2Ea)	Page 70			
¹⁹ F Spectra of (<i>Z</i>)-2-fluoro-1-phenyl-2-decen-1-ol ($2Ea$)	Page 71			
Determination of the stereochemistry for 2A	Page 72			

Determination of the stereochemistry for ${\bf 2B}$

Page 72 Page 73

General methods

Infrared spectra (IR) were determined in a liquid film on a NaCl plate or KBr disk method with a JASCO FT/IR-4100 typeA spectrometer. ¹H and ¹³C NMR spectra were measured with a JEOL JNM-AL 400 NMR spectrometer in a chloroform-*d* (CDCl₃) solution with CHCl₃ (7.26) and CDCl₃ (77.0) as an internal reference. A JEOL JNM-EX90A (84.21 MHz) FT-NMR spectrometer and a JEOL JNM-AL 400 NMR spectrometer were used for determining the yield of the products with hexafluorobenzene (C_6F_6). ¹⁹F NMR (376.05 MHz) spectra were measured with a JEOL JNM-AL 400 NMR spectrometer in a chloroform-*d* (CDCl₃) solution with trichlorofluoromethane (CFCl₃) as an internal standard. High-resolution mass spectra (HRMS) were taken on a JEOL JMS-700MS spectrometer by electron impact (EI), chemical ionization (CI), and fast atom bombardment (FAB) methods.

All reactions were routinely monitored by ¹⁹F NMR spectroscopy or TLC, and carried out under an atmosphere of argon.

Materials

DMF were fleshly distilled from calcium hydride (CaH₂). All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use. Thin-layer chromatography (TLC) was done with Merck silica gel 60 F_{254} plates, and column chromatography was carried out with Wako gel C-200. The compounds, **1A**, ¹**1C**, ² and **1D**³ were prepared according to the literature.

Preparation of *tert*-butyldiphenylsilyloxy-1-bromo-1,1-difluoropropane (1B) :

Under an argon atmosphere, a solution of ethyl 3-bromo-3,3-difluoropropanoate² (0.65 g, 3.0 mmol) in CH₂Cl₂ was dropwise added to diisobutylaluminium hydride (DIBAL-H) (1.0 M Hexane solution, 6.9 mL, 6.9 mmol) at -78 °C. After stirring at that temperature for 2 h, the mixture was stirred at 0 °C for 3 h. The reaction was quenched with 10% HCl aq., and the mixture was extracted with CH₂Cl₂. The organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduce pressure. The resulting residue was used without purification. A mixture of the crude materials, *tert*-buthyldiphenylchlorosilane (1.65 g, 6.0 mmol), and imidazole (0.41 g, 6.0 mmol) in THF (6.0 mL) was stirred at room temperature for 20 h. Addition of water followed by extractive workup and purification by column chromatography (Hexane/AcOEt = 80:1) afforded the desired product (0.60 g, 1.46 mmol, 49% yield).

tert-Butyldiphenylsilyloxy-1-bromo-1,1-difluoropropane (1B)

 $F_{Br} = 0$ $F_{OTBDPS} = 1.07 (9H, s), 2.63-2.69 (2H, m), 3.93 (2H, t, J = 6.59 Hz), 7.39-7.46 (6H, m), 7.67-7.69 (4H, m); {}^{13}C_{I} = 0$ $NMR (CDCl_3) \delta = 19.1, 26.7, 46.7 (t, J = 20.6 Hz), 58.8 (t, J = 4.1 Hz), 121.2 (t, J = 304.2 Hz), 127.8, 129.8, 133.1, 135.5; {}^{19}F_{I} = 0$ $NMR (CDCl_3) \delta = -42.39 (1F, t, J = 13.35 Hz); IR (neat) : 3428, 3072, 3000, 2932, 2858, 1960, 1590, 1472, 1428, 1362, 1283, 1188, 1114, 998, 880, 823, 702, 613 cm^{-1}; HRMS (FAB) calcd for C_{19}H_{24}BrF_2OSi (M+H) 413.0748, found 413.0751.$

Preparation of 1-bromo-1,1-difluorononane (1E) :

Under an argon atmosphere, a three-necked, round-bottomed flask equipped with an efficient magnetic stirring bar was charged with copper(I) chloride (0.040 g, 0.4 mmol), ethanol amine (1.22 g, 20.0 mmol), *tert*-butanol (6.6 mL), 1-octene (4.49 g, 40 mmol), and dibromodifluoromethane (16.79 g, 80 mmol). After stirring of the reaction mixture at 85 °C for 48 h, all organic materials were filtered through silica gel, which was rinsed with hexanes. Then the resulting colorless filtrate was concentrated by evaporation. The residure was subjected to fractional distillation to afford 1,3-dibromo-1,1-difluorononane (8.86 g, 27.7 mmol, 69% yield) as a colorless liquid.

Under an argon atmosphere, a three-necked round-bottomed flask equipped with an ice-H₂O condenser was charged with the above obtained 1,3-dibromo-1,1-difluorononane and 28 mL of anhydrous DMSO. Sodium borohydride (1.51 g, 40 mmol) was then added in small portions with vigorous stirring over the course of 15 min. After addition was complete, the bath temperature was raised to 70 °C and the reaction mixture was stirred at the temperature for 6 h. Then, the reaction was cooled to room temperature, and the contents were transferred to erlenmeyer flask, the reaction being quenched with chips of ice. The resulting mixture was carefully acidified with conc. HCl aq., and the aqueous DMSO layer was extracted with Et_2O three times. The combined Et_2O layers were washed with H₂O, dried over anhydrous Na₂SO₄, and subjected to ambient pressure fractional distillation to afford 1-bromo-1,1-difluorononane (contaminated with a small amount of 1,1-difluorononane) (1.87 g, 7.7 mmol, 38% yield) as a colorless liquid.

1,3-Dibromo-1,1-difluorononane

Br 1 H NMR (CDCl₃) $\delta = 0.89$ (3H, t, J = 6.79 Hz), 1.27–1.58 (8H, m), 1.82–1.89 (2H, m), 2.92–3.10 (2H, m), 4.22–4.25 (1H, m); 13 C NMR (CDCl₃) $\delta = 14.0, 22.5, 27.0 28.4, 31.6, 38.4, 46.9, 52.6$ (t, J = 21.08 Hz), 120.6 (t, J = 305.8 Hz); 19 F NMR

 $(CDCl_3) \delta = -43.24 (2F, t, J = 13.35 Hz);$ IR (neat) : 2929, 2859, 1466, 1430, 1378, 1198, 1129, 1091, 979, 925, 769, 725 cm⁻¹; HRMS (EI) calcd for $C_9H_{16}Br_2F_2(M^+)$ 319.9587, found 319.9594.

1-Bromo-1,1-difluorononane (1E)

¹H NMR (CDCl₃) $\delta = 0.89$ (3H, t, J = 6.79 Hz), 1.26–1.38 (10H, m), 1.57–1.65 (2H, m), 2.28–2.35 (2H, m); ¹³C NMR (CDCl₃) $\delta = 14.1$, 22.7, 23.9 (t, J = 2.81 Hz), 28.5, 29.1, 29.2, 31.8, 44.3 (t, J = 21.08 Hz), 123.3 (t, J = 303.8 Hz); ¹⁹F NMR (CDCl₃) $\delta = -43.82$ (2F, t, J = 14.67 Hz); IR (neat) : 2927, 2858, 1467, 1378, 1197, 1129, 1092, 962, 912 cm⁻¹

Typical procedure for the *E*-selective chromium(II)-mediated reductive coupling of 3-(3-bromo-3,3-difluoropropanoyl)-2-oxazolidinone (1A) with benzaldehyde

To a suspentiion of $CrCl_2$ (0.25 g, 2.0 mmol) and LiI (0.013 g, 0.1 mmol) in DMF (1.5 mL) were added benzaldehyde (0.11 g, 1.0 mmol) and 3-(3-bromo-3,3-difluoropropanoyl)-2-oxazolinone (**1A**) (0.13 g, 0.5 mmol) at 0 °C. After stirring at that temperature for 4 h, the reaction was quenched with ice-cold water. The whole was extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (Benzen/AcOEt = 3/1) to afford the pure product **2Aa** (0.11 g, 0.42 mmol, 84% yield).

3-[(E)-3-Fluoro-4-hydroxy-4-phenyl-2-butenoyl]-2-oxazolidinone (2Aa)

Yield : 84%; ¹H NMR (Acetone-d₆) δ = 4.12 (2H, t, *J* = 8.03 Hz), 4.48–4.52 (2H, m), 5.31 (1H, d, *J* = 6.00 Hz), 6.47 (1H, dd, *J* = 6.00, 27.23 Hz), 7.04 (1H, d, *J* = 21.33 Hz), 7.31–7.59 (5H, m); ¹³C NMR (Acetone-d₆) δ = 43.6, 63,2, 69.0 (d, *J* = 22.0 Hz), 101.8 (d, *J* = 30.2 Hz), 127.2, 128.7, 129.1, 140.5 (d, *J* = 1.3 Hz), 154.4, 164.5 (d, *J* = 24.7 Hz), 175.4 (d, *J* = 280.6 Hz); ¹⁹F NMR (Acetone-d₆) δ = –97.43 (1F, dd, *J* = 21.33, 27.23 Hz); HRMS (FAB) calcd for C₁₃H₁₂FNO₄ (M⁺) 265.0750, found

265.0750.

3-[(*E*)-3-Fluoro-4-hydroxy-4-(4-methylphenyl)-2-butenoyl]-2-oxazolidinone (2Ab)

Yield : 64%; ¹H NMR (Acetone-d₆) δ = 2.36 (3H, s), 4.13 (2H, t, *J* = 8.06 Hz), 4.48–4.52 (2H, m), 5.26 (1H, d, *J* = 6.11 Hz), 6.47 (1H, dd, *J* = 6.11, 27.13 Hz), 7.11 (1H, d, *J* = 21.36 Hz), 7.22 (2H, d, *J* = 7.97 Hz), 7.51 (2H, d, *J* = 7.97 Hz); ¹³C NMR (Acetone-d₆) δ = 21.1, 43.6, 63.1, 69.0 (d, *J* = 22.1 Hz), 101.6 (d, *J* = 30.2 Hz), 127.2, 129.7, 137.5, 138.3, 154.4, 164.5 (d, *J* = 24.7 Hz), 175.6 (d, *J* = 280.6 Hz); ¹⁹F NMR (Acetone-d₆) δ = -98.73 (1F, dd, *J* = 21.36, 27.13 Hz); HRMS (FAB) calcd for C₁₄H₁₄FNO₄ (M⁺) 279.0907, found 279.0916.

3-[(E)-3-Fluoro-4-hydroxy-4-(4-methoxylphenyl)-2-butenoyl]-2-oxazolidinone (2Ac)

Yield : 69%; ¹H NMR (Acetone-d₆) δ = 3.79 (3H, s), 4.11 (2H, t, *J* = 8.05 Hz), 4.46–4.51 (2H, m), 5.18 (1H, d, *J* = 6.00 Hz), 6.39 (1H, dd, *J* = 6.00, 27.01 Hz), 6.92 (2H, d, *J* = 8.58 Hz), 7.04 (1H, d, *J* = 21.31 Hz), 7.49 (d, *J* = 8.58 Hz); ¹³C NMR (Acetone-d₆) δ = 43.6, 55.5, 63.1, 68.7 (d, *J* = 22.0 Hz), 101.4 (d, *J* = 30.2 Hz), 114.5, 128.5, 132.5, 154.4, 160.5, 164.1 (d, *J* = 24.7 Hz), 175.6 (d, *J* = 280.6 Hz); ¹⁹F NMR (Acetone-d₆) δ = -98.67 (1F, dd, *J* = 21.31, 27.01 Hz); HRMS (FAB) calcd for C₁₄H₁₄FNO₅ (M⁺) 295.0856, found 295.0863.

3-[(*E*)-3-Fluoro-(4-fluorophenyl)-4-hydroxy-2-butenoyl]-2-oxazolidinone (2Ad)

Yield : 90%; ¹H NMR (Acetone-d₆) δ = 4.13 (2H, t, *J* = 8.17 Hz), 4.47–4.53 (2H, m), 5.37 (1H, d, *J* = 5.84 Hz), 6.46 (1H, dd, *J* = 5.84, 27.09 Hz), 7.06 (1H, d, *J* = 21.29 Hz), 7.14 (2H, m), 7.58–7.63 (2H, m); ¹³C NMR (Acetone-d₆) δ = 43.6, 63.2, 68.3 (d, *J* = 21.9 Hz), 101.9 (d, *J* = 29.8 Hz), 115.8 (d, *J* = 21.6 Hz), 129.17 (d, *J* = 8.2 Hz), 136.6, 154.4, 163.3 (d, *J* = 244.4 Hz), 164.5 (d, *J* = 24.4 Hz), 175.6 (d, *J* = 280.4 Hz); ¹⁹F NMR (Acetone-d₆) δ = –115.06 to –114.87 (1F, m), –98.29 (1F, dd, *J* = 21.29, 27.09 Hz); HRMS (FAB) calcd for C₁₃H₁₂F₂NO₄ (M⁺) 284.0734, found 284.0726.

3-[(*E*)-3-Fluoro-4-hydroxy-2-heptenoyl]-2-oxazolidinone (2Af)

Yield : 68%; ¹H NMR (Acetone-d₆) $\delta = 0.94$ (3H, t, J = 7.38 Hz), 1.35–1.78 (4H, m), 4.07 (2H, t, J = 8.05 Hz), 4.43–4.49 (3H, m), 5.10–5.25 (1H, m),

6.99 (1H, d, J = 22.83 Hz); ¹³C NMR (Acetone-d₆) $\delta = 14.1$, 19.3, 36.6, 43.5, 63.1, 67.6 (d, J = 22.9 Hz), 101.3 (d, J = 30.9 Hz), 154.4, 164.2 (d, J = 25.02 Hz), 177.5 (d, J = 280.4 Hz); ¹⁹F NMR (Acetone-d₆) $\delta = -97.38$ (1F, dd, J = 22.83, 26.89 Hz).

3-[(E)-3-Fluoro-4-hydroxy-5-methyl-2-hexenoyl]-2-oxazolidinone (2Ag)

Yield : 77%; ¹H NMR (Acetone-d₆) $\delta = 0.92$ (3H, d, J = 6.82 Hz), 1.05 (3H, d, J = 6.66 Hz), 1.91–1.99 (1H, m), 4.06 (2H, t, J = 8.03 Hz), 4.48 (2H, t, J = 8.03 Hz), 4.57 (1H, d, J = 7.08 Hz), 4.80–4.90 (1H, m), 7.05 (d, J = 21.83 Hz); ¹³C NMR (Acetone-d₆) $\delta = 18.85$, 18.86, 32.4, 43.5, 63.0, 73.1 (d, J = 22.5 Hz), 102.2 (d, J = 30.7 Hz), 154.3, 164.4 (d, J = 25.5 Hz), 177.0 (d, J = 280.6 Hz); ¹⁹F NMR (Acetone-d₆) $\delta = -95.00$ (1F, dd, J = 21.83, 29.33 Hz); HRMS (FAB) calcd for C₁₀H₁₅FNO₄ (M+H) 232.0985,

found 232.0984.

t-Bu.

3-[(*E*)-3-Fluoro-4-hydroxy-5,5-dimethyl-2-hexenoyl]-2-oxazolidinone (2Ah)

 $\begin{array}{l} \text{Yield}: 77\%; ^{1}\text{H NMR (Acetone-d_{6}) } \delta = 1.00 \ (9\text{H}, \text{s}), 4.07 \ (2\text{H}, \text{dt}, J = 2.11, 8.00 \text{ Hz}), 4.48 \ (2\text{H}, \text{t}, J = 8.00 \text{ Hz}), 4.63 \ (1\text{H}, \text{d}, J = 6.93 \text{ Hz}), 5.04 \ (1\text{H}, \text{dd}, J = 6.93, 30.24 \text{ Hz}), 7.09 \ (1\text{H}, \text{d}, J = 23.08 \text{ Hz}); ^{13}\text{C NMR (Acetone-d_{6}) } \delta = 26.5, 36.3, 43.6, 63.0, 74.4 \ (\text{d}, J = 20.5 \text{ Hz}), 103.0 \ (\text{d}, J = 31.3 \text{ Hz}), 154.4, 164.5 \ (\text{d}, J = 25.9 \text{ Hz}), 176.6 \ (\text{d}, J = 282.8 \text{ Hz}); ^{19}\text{F NMR (Acetone-d_{6}) } \delta = -87.58 \ (1\text{F}, \text{dd}, J = 23.08, 30.24 \text{ Hz}); \text{HRMS (FAB) calcd for } C_{11}\text{H}_{17}\text{FNO}_4 \ (\text{M}+\text{H}) \ 246.1142, \text{found } 246.1141. \end{array}$

Typical procedure for the Z-selective chromium(II)-mediated reductive coupling of 3-(*tert*-butyldiphenylsilyloxy) -1-bromo-1,1-difluoropropane (1B) with benzaldehyde

To a suspension of $CrCl_2$ (0.22 g, 1.8 mmol) and LiI (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and 3-(*tert*-butyldiphenylsilyloxy)-1-bromo-1,1-difluloropropane (**1B**) (0.12 g, 0.3 mmol) at 0 °C. After stirring at room temperature for 4 h, the reaction was quenched with water. The whole was extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄,

filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (Hexane/AcOEt = 5/1) to afford the pure product (0.071 g, 0.17 mmol, 56% yield).

(Z)-4-(tert-Butyldiphenylsilyloxy)-2-fluoro-1-phenyl-2-buten-1-ol (2Ba)

Yield : 56%; ¹H NMR (CDCl₃) δ = 0.95 (9H, s), 2.01 (1H, br), 4.26 (2H, dd, *J* = 2.00, 6.79 Hz), 5.03 (1H, d, *J* = 11.91 Hz), 5.09 (1H, dt, *J* = 36.72, 6.79 Hz), 7.20–7.34 (11H, m), 7.56–7.57 (4H, m); ¹³C NMR (CDCl₃) δ = 19.1, 26.8, 57.1 (d, *J* = 6.6 Hz), 72.3 (d, *J* = 32.2 Hz), 107.0, (d, *J* = 10.7 Hz), 126.7, 127.6, 128.4, 128.5, 129.6, 133.5, 135.5, 139.1, 158.79 (d, *J* = 260.3 Hz); ¹⁹F NMR (CDCl₃) δ = –119.05 (1F, dd, *J* = 11.91, 36.72 Hz); IR (neat) : 3392, 3070, 2931, 2858, 1709, 1589,

1494, 1472, 1428, 1262, 1164, 1111, 1060, 885, 740, 701, 612 cm⁻¹; HRMS (FAB) calcd for C₂₆H₂₉FNaO₂Si (M+Na) 443.1819, found 443.1815.

(Z)-4-(tert-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methylphenyl)-2-buten-1-ol (2Bb)

(neat) : 3395, 3071, 2930, 2858, 1079, 1513, 1472, 1428, 1362,1163, 1111, 1062, 800, 740, 702 cm⁻¹; HRMS (FAB) calcd for C₂₇H₃₁FNaO₂Si (M+Na) 457.1975, found 457.1972.

(Z)-4-(tert-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)-2-buten-1-ol (2Bc)

Yield : 52%; ¹H NMR (CDCl₃) δ = 1.04 (9H, s), 2.00 (1H, br), 3.82 (3H, s), 4.36 (2H, dd, *J* = 2.20, 6.59 Hz), 5.09 (1H, dd, *J* = 3.20, 10.09 Hz), 5.19 (1H, dt, *J* = 36.63, 6.59 Hz), 6.88–6.90 (2H, m), 7.23–7.44 (8H, m), 7.63–7.68 (4H, m); ¹³C NMR (CDCl₃) δ = 19.1, 26.8, 55.3, 57.8 (d, *J* = 6.6 Hz), 72.0 (d, *J* = 32.2 Hz), 106.8 (d, *J* = 11.6 Hz), 113.9, 127.6, 128.1, 129.6, 131.3, 133.6, 135.6, 158.9 (d, *J* = 259.5 Hz), 159.7; ¹⁹F NMR (CDCl₃) δ = –118.95 (1F,

dd, J = 10.09, 36.63 Hz); IR (neat) : 3419, 3071, 2931, 2857, 1709, 1611, 1512, 1464, 1428, 1250, 1111, 1036, 739, 703 cm⁻¹; HRMS (FAB) calcd for

C₂₇H₃₀FO₃Si (M-H) 449.1948, found 449.1938.

(Z)-4-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-fluorophenyl)-2-buten-1-ol (2Bd)

Find the formula of the formula of

703 cm⁻¹; HRMS (FAB) calcd for $C_{26}H_{28}F_2O_2Si(M^+)$ 438.1827, found 438.1833.

(Z)-1-(*tert*-Butyldiphenylsilyloxy)-3-fluoro-2-hepten-4-ol (2Bf)

 $\begin{array}{c} \label{eq:horizondelta} F\\ OTBDPS\\ OH\\ \end{array} \begin{array}{c} \mbox{Yield}: 57\%; \ ^1\mbox{H NMR (CDCl_3)} \ \delta = 0.95 \ (3\mbox{H}, t, J = 7.39 \ \mbox{Hz}), \ 1.07 \ (9\mbox{H}, s), \ 1.26-1.70 \ (4\mbox{H}, m), \ 1.79 \ (1\mbox{H}, br), \ 4.00-4.07 \ (1\mbox{H}, m), \ 4.37 \ (2\mbox{H}, dd, J = 2.20, \ 6.59 \ \mbox{Hz}), \ 5.07 \ (1\mbox{H}, dt, J = 37.41, \ 6.59 \ \mbox{Hz}), \ 7.36-7.47 \ (6\mbox{H}, m), \ 7.68-7.73 \ (4\mbox{H}, m); \ ^{13}\ C \ NMR \ (CDCl_3) \ \delta = 13.8, \ 18.5, \ 19.1, \ 26.8, \ 35.8, \ 57.0 \ (d, J = 7.43 \ \mbox{Hz}), \ 70.2 \ (d, J = 29.8 \ \mbox{Hz}), \ 106.1 \ (d, J = 11.7 \ \mbox{Hz}), \ 127.6, \ 129.6, \ 133.6, \ 135.5, \ 159.8 \ (d, J = 261.24 \ \mbox{Hz}); \ ^{19}\ F \ NMR \ (CDCl_3) \ \delta = -122.19 \ (1\ \mbox{H}, dd, J = 15.61, \ 37.41 \ \mbox{Hz}); \ IR \ (neat) : \ 3389, \ 3071, \ 3050, \ 2999, \ 2959 \ , \ 2932, \ 2859, \ 1709, \ 1589, \ 1471, \ 1428, \ 1305, \ 1264, \ 1185, \ 1112, \ 939, \ 852, \ 822, \ 740, \ 702 \ \ cm^{-1}; \ HRMS \ (FAB) \ calcd \ for \ C_{23}\ \ H_{31}\ FNaO_2\ Si \ (M+Na) \ 409.1975, \ found \ 409.1976. \end{array}$

(Z)-6-(tert-Butyldiphenylsilyloxy)-4-fluoro-2-methyl-4-buten-3-ol (2Bg)

F OTBDPS Vield : 59%; ¹H NMR (CDCl₃) $\delta = 0.92$ (3H, d, J = 6.79 Hz), 0.97 (3H, d, J = 6.79 Hz), 1.07 (9H, s), 1.69 (1H, br), 1.87-1.91 (1H, m), 3.73 (1H, dd, J = 6.59, 17.05 Hz), 4.37 (2H, d, J = 6.49 Hz), 5.07 (1H, dt, J = 37.12, 6.49 Hz), 7.37–7.46 (6H, m), 7.69–7.71 (4H, m); ¹³C NMR (CDCl₃) $\delta = 17.5$, 18.8, 19.1, 26.5, 26.8, 57.0 (d, J = 7.4 Hz), 75.8 (d, J = 28.9 Hz), 107.1 (d, J = 11.6 Hz), 127.7, 129.7, 133.7, 135.6, 159.1 (d, J = 261.1 Hz); ¹⁹F NMR (CDCl₃) $\delta = -121.25$ (1F, dd, J = 17.05, 37.12 Hz); IR : (neat) 3404, 3071, 3050, 2960, 2931, 2858, 1708, 1471, 1428, 1264, 1112, 1059, 1026, 939, 876, 822, 782, 740, 702 cm⁻¹; HRMS (FAB) calcd for C₂₃H₃₁FNaO₂Si (M+Na) 409.1975, found 409.1976.

(Z)-6-(tert-Butyldiphenylsilyloxy)-4-fluoro-2,2-dimethyl-4-hexen-3-ol (2Bh)

Figure F t-Bu f OTBDPS t Wield : 63%; ¹H NMR (CDCl₃) $\delta = 0.94$ (9H, s), 1.05 (9H, s), 1.71 (1H, br), 3.68 (1H, d, J = 18.81 Hz), 4.35–4.36 (2H, m), 5.03 (1H, dt, J = 37.38, 6.79 Hz), 7.37–7.44 (6H, m), 7.67–7.71 (4H, m); ¹³C NMR (CDCl₃) $\delta = 19.1$, 25.8, 26.8, 34.78, 60.0 (d, J = 7.43 Hz), 78.2 (d, J = 27.31 Hz), 107.5 (d, J = 11.7 Hz), 127.7, 129.6, 133.6, 133.7, 159.1 (d, J = 262.0 Hz); ¹⁹F NMR (CDCl₃) $\delta = -144.51$ (1F, dd, J = 18.81, 37.38 Hz); IR (neat) : 3442, 3071, 2957, 2958, 1702, 1671, 1472, 1428, 1264, 1186, 1070, 1014, 937, 822, 788, 740, 612 cm⁻¹; HRMS (FAB) calcd for C₂₄H₃₂FO₂ Si (M-H) 399.2156, found 399.2152.

Synthetic procedure for the Z-selective chromium(II)-mediated reductive coupling reaction of ethyl 4-bromo-4,4-difluorobutyrate (1D) with benzaldehyde

To a suspension of $CrCl_2$ (0.22 g, 1.8 mmol) and LiI (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and ethyl 4-bromo-4,4-difluorobutylate (**1D**) (0.065 g, 0.3 mmol) at 0 °C. After stirring at room temperature for 4 h, the reaction was quenched with water. The whole was extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (Hexane/AcOEt = 3/1) to afford (*Z*)-ethyl 4-fluoro-5-hydroxy-5-phenyl-3-pentenoate (**2Da**) (0.040 g, 0.17 mmol, 55% yield).

(Z)-Ethyl 4-fluoro-5-hydroxy-5-phenyl-3-pentenoate (2Da)

OH

Yield : 55%; ¹H NMR (CDCl₃) δ = 1.26 (3H, t, *J* = 7.09 Hz), 2.50 (1H, br s), 3.17 (2H, d, *J* = 7.19 Hz), 4.15 (2H, q, *J* = 7.09 Hz), 5.22 (1H, dt, *J* = 35.26, 7.19 Hz), 5.24 (1H, d, *J* = 11.25 Hz), 7.29–7.45 (5H, m); ¹³C NMR (CDCl₃) δ = 14.1, 29.2, 60.9, 72.4 (d, *J* = 31.4 Hz), 99.5 (d, *J* = 9.8 Hz), 126.7, 128.4, 128.5, 139.1, 160.4 (d, *J* = 260.3 Hz), 171.2; ¹⁹F NMR (CDCl₃) δ = -119.34 (1F, dd, *J* = 11.25, 35.26 Hz); IR (neat) : 3448, 3032, 2983, 1736, 1495, 1454, 1372, 1266, 1189, 1094,

1060, 1027, 955, 887, 804, 701 cm⁻¹; HRMS (FAB) calcd for $C_{13}H_{15}FO_3$ (M⁺) 238.1005, found 238.1009.

Typical procedure for the Z-selective chromium(II)-mediated reductive coupling of 1-bromo-1,1-difluorononane (1E) with benzaldehyde

To a suspension of $CrCl_2$ (0.22 g, 1.8 mmol) and LiI (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and 1-bromo-1,1-difluorononane (**1E**) (0.073 g, 0.3 mmol) at 0 °C. After stirring at room temperature for 4 h, the reaction was quenched with water. The whole was extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The resulting residue was purified by silica gel column chromatography (Hexane/AcOEt = 3/1) to afford the pure product **2Ea** (0.056 g, 0.22 mmol, 76% yield).

(Z)-2-Fluoro-1-phenyl-2-decen-1-ol (2Ea)

¹H NMR (CDCl₃) $\delta = 0.88$ (3H, t, J = 6.79 Hz), 1.27–1.39 (10H, m), 2.08–2.18 (3H, m), 4.90 (1H, dt, J = 37.87, 7.19 Hz), 5.21 (1H, d, J = 13.17 Hz), 7.31–7.45 (5H, m); ¹³C NMR (CDCl₃) $\delta = 14.1, 22.6, 23.3, 29.0, 29.1, 29.2, 31.8, 72.8$ (t, J = 32.2 Hz), 107.8 (d, J = 13.3 Hz), 126.6, 128.2, 128.5, 139.7, 158.3 (t, J = 255.4 Hz); ¹⁹F NMR (CDCl₃) $\delta = -124.22$ (1F, dd, J = 13.17, 37.87 Hz); IR (neat) : 3364, 3032, 2926, 2856, 1708, 1495, 1455, 1379, 1273, 1192,

1111, 1024, 700 cm⁻¹; HRMS (FAB) calcd for $C_{16}H_{23}FO$ (M⁺) 250.1733, found 250.1729.

Reference

- 1) Shimada, T.; Konno, T.; Ishihara, T. Chem. Lett. 2007, 36, 636-637.
- 2) Peng, S.; Qing, F.; Li, Y.; Hu, C. J. Org. Chem. 2000, 65, 694-700.
- 3) Chen, J.; Hu, C.-M. J. Chem. Soc., Perkin Trans. 1 1994, 1111-1114.

٩, Ν MENUF 19F -42.349 -42.388 -42.420 OBNUC 19F 376.05 MHz 139.60 KHz OFR OBSET OBFIN 36.10 Hz PW1 6.00 usec DEADT 10.00 usec PREDL 0.20000 msec 1.0000 msec 32768 32768 IWT POINT SPO TIMES 16 DUMMY 1 FREQU 80000.00 Hz FLT 40000 Hz DELAY 5.00 usec ACQTM 0.4096 sec PD 4.9500 sec ADBIT 16 RGAIN 14 BF T1 T2 T3 T4 0.10 Hz 0.00 90.00 100.00 . EXMOD NON EXPCM NON:Single.coupled:PW1_ACQTM_PE IRNUC 1H 399.65 MHz 124.00 KHz IFR IRSET IRFIN 10500.00 Hz IRRPW 45 usec 40 US 511 原料 F.als TH5ATFG2 61.60 KHz 79.0 Hz 180 22 250 795 12 L² IRATN DFILE \$F LKSET LKLEV LGAIN LKPHS LKSIG CSPED 12 Hz FILDC FILDF demonstration and the second second second second and the second se **`OTBDPS** Br 20.0 10.0 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0

auto		.))		
0000	-43.206			MENUF OBNUC OFR OBSET OBSET OBSET OBSET PW1 DEADT PREDL WT POINT SPO TIMES DUMMY FREQU FLT DELAY ACQTM PD ADBIT RGAIN BF T1 T2 T3 T4 EXPCM IRRUC IFR EXPCM IRRIN DFILE SF LKFIN LKFIN LKSIG CSPED CSPED C	19F 19F 19F 376.05 MHz 139.60 KHz 36.10 Hz 6.00 usec 1.000 msec 1.000 msec 32768 32768 32768 32768 16 1 80000.00 Hz 40000 Hz 5.00 usec 0.4096 sec 4.9500 sec 16 14 0.00 Hz 0.00 90.00 100.00 NON NON:Single.coupled:PW1_ACQTM_PE 1H 399.65 MHz 124.00 KHz 10500.00 Hz 45 usec 511 Rxn.459 nonene TH5ATFG2 61.60 KHz 79.0 Hz 180 23 240 1098 13 Hz
			 	FILDF	Br

20.0 10.0 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0-110.0-120.0-130.0-140.0-150.0-160.0-170.0-180.0-190.0

auto			<u>э</u>)		
	0000	43.82				MENUF OBNUC OFR OBSET OBFIN PW1 DEADT PREDL IWT	19F 19F 376.05 MHz 139.60 KHz 38.10 Hz 6.00 usec 10.00 usec 0.20000 msec 1.000 msec
1						SPO TIMES DUMMY FREQU FLT DELAY ACQTM PD	32768 16 1 80000.00 Hz 40000 Hz 5.00 usec 0.4096 sec 4.950 sec
						ADBIT RGAIN BF T1 T2 T3 T4 EXMOD	16 14 0.10 Hz 0.00 0.00 90.00 100.00 NON
						EXPCM IRNUC IFR IRSET IRFIN IRFIN IRRPW IRATN DFILE SF	NON:Single.coupled:PW1_ACQTM_PE 1H 399.65 MHz 124.00 KHz 10500.00 Hz 45 usec 511 C9 原料 F.els TH5ATFG2
						LKSET LKFIN LKLEV LGAIN LKPHS LKSIG CSPED FILDC FILDC FILDF	61.60 KHz 79.0 Hz 180 22 240 693 11 Hz
20.0 10.0	0.0 -10.0 -20.0 -30.0		80.0 -90.0 -100.0-110.0-120.0	0-130.0-1 40 .0-150.0-160.0-	РРМ принитрипалир 170.0-180.0-190.	0 , ^E	

Ph-CHOH)CF=CHCO-Oxazolidone_19F	 DFILE COMNTDEFAULT.ALS Ph-CHOH)CP=CHCO-Ox DATIM
20.0 0.0 -20.0 -40.0 -60.0	 PPM

2

è.

4

6

p-FC6H4CH0HCF=CHC0-0xa_13C

0.01

n-Pr-CH(OH)CF=CHCO-oxazolidone_1H

Ĉ.
n-Pr-CH(DH)CF=CHCO-oxazolidone_13C

Current Data Parameters NAME shima-050929

4

EXPN0 PRDCN0

		F2 - Acqui	Sition Parameters
		Date_	20060930
		Time	0.15
		INSTRUM	drx500
	Υ.	PR08HD 5	nn Multinucl
		PULPROG	2000.30
		TD	65536
		SOLVENT	CDC13
		NE	296
		no DE	200
		DB	20020 020 H+
		540	30030.029 Hz
		FIDHES	0.458222 Hz
		AL	1.0912244 Sec
		RG	2048
		D'N	16.550 usec
1		DE	6.00 usec
		TE	297.8 K
		01	0.50000000 sec
n-Prs OH		d11	0.03000000 sec
		MCREST	0.0000000 sec
		MEWRK	0.01500000 sec
		sersers ()	HANNEL fi =====++
		NUC1	130
		P1	11.00 usec
		PL1	-3.00 dB
		SF01	125.7703643 MHz
		C	HANNEL 62
		CPhPPAG2	waltzt5
		NLC2	11
		DCDC2	100 00 0000
		DLD	-E 00 48
		FLC DL 4 2	47.00 dB
		PL12	17.00 08
		PL13	19.00 dB
		SF 02	500.1320005 MHZ
		F2 - Proce	ssing parameters
		SI	32768
		SF	125.7576800 MHz
		NON	ÊM
		SSB	0
		8	1.00 Hz
		38	0
		PC	0.00
		1D NMR plo	t parameters
		CX	20.00 cm
		CY	10.17 cm
		F1P	220.259 ppm
		F 1	27699.29 Hz
		F2P	-18.534 ppm
	outrooperates, enverts creak after esti-	-2	-2330.75 Hz
pps 200 176 150 125 100	75 50 26 0	PPMCM	11.93964 ppm/cm
		HZĊM	1501.50159 Hz/cm

Current Data Parameters NAME shima-060927 EXPND 1 PROCN0 1 F2 - Acquisition Parameters Date_ 20060928 Time 0.25 INSTRUM drx500 PROBHD 5 mm Multinucl PULPROG zg30 TD 65536 SOLVENT Acetone NS 40 3S 2 10330.578 Hz SWH i-Pr FIDRES 0.157632 Hz AQ 3.1719923 sec RG 80.6 DW 48.400 usec DE 6.00 usec TE 297.6 K 1.00000000 sec 01 MCREST 0.00000000 sec MOWRK 0.01500000 sec ---- CHANNEL fi -----NUC1 1 H 21 10.00 usec -6.00 dB DL 1 SF01 500.1330885 MHz =2 - Processing parameters SI 32768 ŚŔ 500.1300099 MHz NDW EM SSB 0 _B 0.30 Hz GB 0 ъC 0.00 1D NMR plot parameters CX 20.00 cm CY 8.75 cm F1P 10.000 ppm 0520 0315 1482 3039 1.0000 1469 Integral 1690 = 1 5001.30 Hz =Sb ~1.000 ppm F2 -500.13 Hz cù. $\mathbf{v} \in \{1, \dots, n\}$ mm PPMCM 0.55000 ppm/cm HZCM 275.07150 Hz/cm · · · · · 8

2

4

6

1-Pr-CH(OH)CF=CHCD-Oxazolidone_13C

	Durrent Dote Parameters NAME shima-061016 EXEND 2 PROCNO 1
	F2 - Acquisition Panameters Jate_ 20061016 Time 12.39 INSTRUM drx500 PR00HD 5 mm Multinuc1 PULPR06 zgpg30 TD 65536 SQLVENT CDC13 NS 548
	DS 2 SWH 30030.029 Hz FIDRES 0.458222 Hz AG 1.912244 sec AG 2048 DM 16.650 usec DE 6.00 usec TE 295.9 K D1 0.5000000 sec d11 0.0300000 sec
	MCHEST 0.00000000 sec MCHPK 0.01500000 sec ======== CHANNEL f1 ======= NUC1 13C P1 11.00 usec PL1 -3.00 dB SF01 125.7703643 MHz
	CHANNEL f2 CPOPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -6.00 dB PL12 17.00 dB PL13 19.00 dB SF02 500.1320005 MHz
	F2 - Processing parameters SI 22768 SF 125.7576773 MHz MDW EM SSB 0 UB 1.00 Hz GB 0 PC 0.00
200 175 150 125 100 75 50 25 0	10 NMR plot parameters CX 20.00 cm CY 23.63 cm F1P 220.281 ppm F1 27702.04 Hz F2P -18.512 ppm F2 -2327.99 Hz PPMCM 11.93964 opm/cm HZCM 1501.50146 Hz/cm

		MENUC 13C OBNUC 13C OFR 100.40 MHz OBSET 125.00 KHz OBFIN 10500.00 Hz PW1 6.20 usec DEADT 19.00 usec PREDL 0.20000 msec IWT 1.0000 msec POINT 32768 TIMES 10000 DUMMY 1 FREQU 27118.64 Hz FLT 13550 Hz DELAY 14.80 usec ACQTM 1.2083 sec PD 1.7920 sec ADBIT 16 RGAIN 25 BF 0.10 Hz T1 0.00 T2 0.00 T3 90.00 T4 100.00 EXMOD BCM EXPCM Bilevel.complete.decoupling:Set_IRRF IRNUC 1H IFR 399.65 MHz IRSET 124.00 KHz IRRIN 10500.00 Hz IRRPW 45 usec IRATN 511 <td< th=""></td<>
	<u>li</u>	

160.158 130.053	71.221 77.000 76.09 71.126 71.126 71.126 57.105 57.065 57.065	26.772 26.772 19.124	MENUF 13C OBNUC 13C OFR 100.40 MHz OBSET 125.00 KHz OBFIN 10500.00 Hz PW1 6.20 usec DEADT 19.00 usec PREDL 0.20000 msec WT 1.0000 msec POINT 32768 SPO 32768 TIMES 1000000 DUMMY 1 FREQU 27118.64 Hz FLT 13550 Hz DELAY 14.80 usec ACQTM 1.2083 sec PD 1.7920 sec ADBIT 16 RGAIN 26 BF 0.00 Hz T1 0.00 T2 0.00 T3 90.00 T4 100.00 EXPCM Bilevel.complete.decoupling:Set_IRRF IRNUC 1H IFR 399.65 MHz IRSET 124.00 KHz IRRFN 10500.00 Hz IRRPW

	135.88 134.78 135.534 135.534 134.78 134.	77.206	26.748	MENUF OBNUC OFR OBSET OBFIN PW1 DEADT PREDL WT POINT SPO TIMES DUMMY FREQU FLT DELAY ACQTM PD ADBIT RGAIN BF T1 T2 T3 T4 EXMOD EXPCM IRNUC IFR IRSET IRFIN IRRPW IRATN DFILE SF LKSET LKSET LKFIN LKLEV LGAIN LKPHS LKSIG CSPED FILDC FILDF	13C 13C 13C 100.40 MHz 125.00 KHz 10500.00 Hz 6.20 usec 19.00 usec 0.20000 msec 1.0000 msec 32768 32768 20000 1 27118.64 Hz 13550 Hz 14.80 usec 1.2083 sec 1.7920 sec 16 25 0.10 Hz 0.00 0.00 90.00 100.00 BCM Bilevel.complete.decoupling:Set_IRRF 1H 399.65 MHz 124.00 KHz 10500.00 Hz 45 usec 511 359 Faldehyde 再C.als TH5ATFG2 61.60 KHz 79.0 Hz 180 23 240 804 13 Hz
10000000000000000000000000000000000000	Contraction of the second s	annunununununununununununununununununun	40.0 30.0 20.0 10.0 0.0	РРМ -10.0-20.0-30.0	OTBDPS

	161.097	135.543	106.028	77.313 77.000 76.679 70.000 70.0010			MENUF OBNUC OFR OBSET OBFIN PW1 DEADT PREDL WT POINT SPO TIMES DUMMY FREQU FLT DELAY ACQTM PD ADBIT RGAIN BF T1 T2 T3 T4 EXMOD EXPCM IRNUC IFR IRSET IRFIN IRRPW IRATN DFILE SF LKSET LKSET LKSET LKSET LKSET LKSIG CSPED FILDC FILDF	13C 13C 100.40 MHz 125.00 KHz 10500.00 Hz 6.00 usec 19.10 usec 0.20000 msec 32768 32768 32768 256 1 27118.64 Hz 13550 Hz 14.80 usec 1.2083 sec 1.7920 sec 16 24 0.10 Hz 0.00 0.00 90.00 100.00 BCM Bilevel.complete.decoupling:Set_IRRF 1H 399.65 MHz 124.00 KHz 10500.00 Hz 45 usec 511 butyralde C 342.als TH5ATFG2 61.60 KHz 79.0 Hz 180 22 229 687 12 Hz
230.0220.0210.0200.0190.0180.0170	.0160.0	150.0140.0130.0120.0110.0	1 00.0 90 .	.0 80.0 70.0 60	0.0 50 .	0 40.0 30.0 20.0 10.0 0.0 -	-10.0-20.0-30.0	OH

			EXMOD EXPCM IRNUC IFR IRSET IRFIN IRATN DFILE SF LKSET LKFIN LKLEV LGAN LKPHS LKSIG CSPED FILDC FILDF	BCM Bilevel.complete.decoupling:Set_IRRF 1H 399.65 MHz 124.00 KHz 10500.00 Hz 45 usec 511 iーPr 362 のからむ (アモノC.als TH5ATFG2 61.60 KHz 79.0 Hz 180 22 231 719 10 Hz
()				[

	139.684	107.889	71313	MENUF 13C OFR 100.40 MHz OBSET 125.00 KHz OBFIN 10500.00 Hz PW1 6.20 usec DEADT 19.00 usec PREDL 0.20000 msec IVT 1.0000 msec POINT 32768 SPO 32768 TIMES 20000 DUMMY 1 FREQU 27118.64 Hz FLT 13550 Hz DELAY 14.80 usec ACQTM 1.2083 sec PD 1.7920 sec ADBIT 16 RGAIN 25 BF 0.10 Hz T1 0.00 T2 0.00 T3 90.00 T4 100.00 EXMOD BCM EXPCM Bilevel.complete.decoupling.Set_IRRF IRNUC 1H IFR 399.65 MHz IRSET 124.00 KHz IRRFW 45 usec IRATN 511 DFILE DEFAULT.ALS

Determination of the Stereochemistry for 2A
Determination of the Stereochemistry for 2B

