Supplementary Information

Synthesis of titanium and zirconium complexes supported by a *p*-terphenoxide ligand and their reactions with N₂, CO₂ and CS₂

Takashi Kurogi, Yutaka Ishida and Hiroyuki Kawaguchi*

Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan E-mail: hkawa@chem.titech.ac.jp

Contents

Experimenral Section

- Fig. S1 Molecular structure of 1.
- Fig. S2 Molecular structure of 3.
- Fig. S3 Molecular structure of 4.
- Fig. S4 Molecular structure of 5.
- Fig. S5 Molecular structure of 6.
- Fig. S6 Molecular structure of 7.
- Fig. S7 Molecular structure of 8.
- Fig. S8 Molecular structure of 9.
- Table S1 Crystallographic data for 1, and 3–9.

Experimental Section

General procedure

All manipulations were carried out using standard Schlenk techniques or in a glove-box under an atmosphere of dinitrogen or argon. Anhydrous hexane, pentane and toluene were dried by passage through two columns of activated alumina and a Q-5 column, while anhydrous THF, Et₂O and DME were dried by passage through two columns of activated alumina. Anhydrous benzene and deuterated benzene (benzene- d_6) were dried and degassed over a potassium mirror prior to use. Deuterated THF (THF- d_8) and deuterated chloroform (chloroform- d_1) were distilled from calcium hydride prior to use. Labeled ¹⁵N₂ and ¹³CO₂ (Cambridge Isotopes) were used as received. Me₂[OO], H₂[OO] and TiCl₃(THF)₃ were prepared by the literature procedure.^{1, 2} ¹H and ¹³C NMR spectra were recorded on JEOL ECX-400 and ECX-500 spectrometer. All spectra were referenced to residual protiosolvent $({}^{1}\text{H}, \text{C}_{6}\text{D}_{5}\text{H} \text{ in } \text{C}_{6}\text{D}_{6}, {}^{1}\text{H} (\delta) = 7.15; \text{C}_{4}\text{D}_{7}\text{HO} \text{ in } \text{THF-}d_{8}, {}^{1}\text{H} (\delta) = 1.73, 3.58; \text{CHCl}_{3} \text{ in } \text{CDCl}_{3},$ ¹H (δ) = 7.24), solvent (¹³C) or nitromethane (¹⁵N) resonances. IR spectra were recorded on a JASCO FT/IR-410 spectrometer. Raman spectra were obtained on a JASCO NRS-2100 with an excitation wavelength of 514.5 nm. UV-visible spectra were obtained on a JASCO V-560 spectrometer at room temperature. Elemental analyses (C, H and N) were carried out on an Elementar VarioMicroCube. Solid-state magnetic susceptibilities were measured on a Sherwood Scientific MSB-AUTO at ambient temperature. Corrections were applied for diamagnetism calculated for Pascal constants.

Synthesis of Me₂[OO]

To a DMF (200 mL) solution of 1,4-benzene-diboronic acid (5.34 g, 32.2 mmol) and 2bromo-4-methyl-6-*tert*-butyl-anisol (19.3 g, 75.0 mmol) was added Pd(PPh₃)₄ (650 mg, 562 µmol) and K₂CO₃ (20.5 g, 148 mmol) in H₂O (15 mL). The reaction mixture was heated to 100 °C. After stirring for 20 h, water (300 mL) was added to precipitate a white solid. The precipitate was collected by filtration. Purification by column chromatography (silica; heptane/CH₂Cl₂, 7:3) afforded a white solid of Me₂[OO] (10.8 g, 25.1 mmol, 78%). ¹H NMR (500 MHz, chloroform- d_1): δ 1.42 (s, 18H, ¹Bu), 2.33 (s, 6H, Me), 3.29 (s, 6H, OMe), 7.04 (d, ⁴ J_{HH} = 2 Hz, 2H, *m*H), 7.10 (d, ⁴ J_{HH} = 2 Hz, 2H, *m*H), 7.58 (s, 4H, C₆H₄). ¹³C NMR (125 MHz, chloroform- d_1): δ 21.2 (*p*Me), 31.0 (*CMe*₃), 35.2 (*C*Me₃), 60.4 (OMe), 127.0, 129.1 (ArO), 130.2 (C_6 H₄), 132.3, 134.9 (ArO), 138.7 (C_6 H₄), 142.8, 155.4 (ArO). Anal. Calcd for C₃₀H₃₈O₂: C, 83.67; H, 8.89. Found: C, 83.67; H, 8.95.

Synthesis of H₂[OO]

A solution of BBr₃ (1.0M in CH₂Cl₂, 15 mL, 15 mmol) was added to Me₂[OO] (2.37 g, 5.50 mmol) in CH₂Cl₂ (50 mL) at 0 °C. After stirring for 24 h at room temperature, the reaction mixture was then quenched with 5% aqueous HCl and extracted with CH₂Cl₂ (3 x 50 mL). The organic fraction was washed with brine and dried over MgSO₄. Volatile materials were removed via rotary evaporation. The residue was washed with hexane and dried to give H₂[OO] as a white powder (1.67 g, 4.15 mmol, 76%).

¹H NMR (500 MHz, chloroform- d_1): δ 1.43 (s, 18H, ¹Bu), 2.31 (s, 6H, Me), 5.25 (s, 2H, OH), 6.92 (d, ⁴ $J_{HH} = 2$ Hz, 2H, mH), 7.12 (d, ⁴ $J_{HH} = 2$ Hz, 2H, mH), 7.55 (s, 4H, C₆H₄). ¹³C NMR (125 MHz, chloroform- d_1): δ 20.9 (pMe), 29.8 (CMe₃), 35.0 (CMe₃), 127.7, 128.1, 128.4, 129.1 (ArO), 130.6 (C₆H₄), 136.3 (ArO), 137.2 (C₆H₄), 148.9 (ArO). IR (cm⁻¹; KBr): 522 (m), 575 (m), 775 (s), 841 (s), 870 (w), 931 (w), 1023 (m), 1085 (s), 1162 (s), 1193 (s), 1126 (s), 1252 (m), 1273 (m), 1329 (s), 1361 (m), 1391 (m), 1468 (s), 1515 (m), 1602 (w), 2959 (s), 3547 (s). Anal. Calcd for C₂₈H₃₄O₂: C, 83.54; H, 8.51. Found: C, 83.29; H, 8.72.

Synthesis of Li₂[OO]

Addition of "BuLi (1.59 M in hexane, 1.10 mL, 1.75 mmol) to a solution of $H_2[OO]$ (319 mg, 729 µmol) in Et₂O (20 mL) at 0 °C gave a white suspension. After stirring for 30 min at room temperature, the reaction mixture was evaporated to dryness and washed with Et₂O to give Li₂[OO]·3Et₂O as a white powder (393 mg, 617 µmol, 85%).

¹H NMR (400 MHz, benzene- d_6): $\delta 0.76$ (t, ${}^{3}J_{HH} = 7$ Hz, 18H, Et₂O), 1.69 (s, 18H, ${}^{t}Bu$), 2.36 (s, 6H, Me), 2.93 (q, ${}^{3}J_{HH} = 2$ Hz, 12H, Et₂O), 7.24 (d, ${}^{4}J_{HH} = 2$ Hz, 2H, *m*H), 7.29 (d, ${}^{4}J_{HH} = 2$ Hz, 2H, *m*H), 8.15 (s, 4H, C₆H₄). ¹³C NMR (100 MHz, benzene- d_6): 14.1 (Et₂O), 21.0 (pMe), 31.2 (CMe₃), 35.0 (CMe₃), 65.5 (Et₂O), 127.8, 127.9, 128.9 (ArO), 129.4 (C₆H₄), 132.1, 136.8 (ArO), 139.2 (C₆H₄), 158.6 (ArO). ⁷Li NMR (152 MHz, benzene-d₆): 3.64. Anal. Calcd for C₄₀H₆₂O₅Li₂: C, 75.44; H, 9.81. Found: C, 75.75; H, 9.46.

Synthesis of [OO]TiCl(DME) (1)

To a suspension of TiCl₃(THF)₃ (436 mg, 1.18 mmol) in THF (15 mL) was added $Li_2[OO]\cdot 3Et_2O$ (750 mg, 1.18 mmol) in THF (10 mL) at -35 °C. The mixture was stirred for 3 h at room temperature, during which time a color of the solution changed from blue to green. The reaction mixture was evaporated to dryness and extracted with toluene (10 mL). After centrifugation to remove insoluble materials, the green supernatant was evaporated to dryness. The residue was dissolved in DME (3 mL) and stored at room temperature, yielding **5** as pale red crystals (368 mg, 641 µmol, 54%).

IR (cm⁻¹; KBr): 566 (s), 619 (m), 644 (m), 771 (m), 838 (s), 857 (s), 933 (m), 980 (m), 1008 (m), 1032 (s), 1074 (s), 1187 (s), 1208 (s), 1241 (s), 1290 (m), 1322 (m), 1354 (m), 1384 (m), 1407 (s), 1509 (m), 1610 (w), 2947 (s). Anal. Calcd for $C_{32}H_{42}O_4CITi$: C, 66.96; H, 7.38. Found: C, 66.68; H, 7.70. $\mu_{eff} = 1.71 \ \mu_{B}$.

Synthesis of $[(OO)Ti(DME)]_2(\mu-N_2)$ (2)

To a suspension of **1** (105 mg, 183 μ mol) in toluene (20 mL) was added KC₈ (30.0 mg, 222 μ mol) in toluene (5 mL) at -30 °C under N₂. The mixture was allowed to warm to room temperature and stirred for 18 h, during which time a color of the solution changed from pale red to dark yellow. The reaction mixture was centrifuged to remove insoluble materials, giving a dark yellow supernatant. After removal of all volatiles, the residue was washed with hexane to give **2** as dark yellow powder (44.8 mg, 40.5 μ mol, 44%).

¹H NMR (500 MHz, benzene- d_6): δ 1.72 (s, 36H, ¹Bu), 2.39 (s, 12H, Me), 2.57 (br, 6H, DME), 2.67 (br, 4H, DME), 2.94 (br, 4H, DME), 3.11 (br, 6H, DME), 7.02 (s, 4H, mH), 7.15 (s, overlapped, mH and benzene- d_6), 7.33 (br, 4H, C₆H₄), 7.49 (br, 4H, C₆H₄). ¹³C NMR (125 MHz, benzene- d_6): δ 21.1 (pMe), 30.3 (CMe₃), 35.4 (CMe₃), 58.6, 67.9, 68.2, 72.0 (DME), 125.9, 127.6, 127.8 (ArO), 128.0 (C₆H₄), 131.0 (ArO), 132.9 (C₆H₄), 135.3, 164.9 (ArO). IR

(cm⁻¹; KBr): 570 (s br), 769 (m), 832 (s br), 863 (s), 933 (m), 1054 (m), 1083 (m), 1185 (s), 1244 (s br), 1318 (w), 1358 (m), 1388 (m), 1413 (s br), 1510 (w), 1602 (w), 2952 (s). IR (cm⁻¹; benzene): 566 (w), 846 (m br), 1249 (s), 1409 (m), 2954 (s). Raman (cm⁻¹): 1394 (ν_{N-N}). Anal. Calcd for C₆₄H₈₄N₂O₈Ti₂: C, 69.56; H, 7.66; N, 2.53. found: C, 70.15 H, 7.73; N, 0.51. The amount of nitrogen present in **2** was not determined by elemental analysis.

Synthesis of $[(OO)Ti(py)_2]_2(\mu-N_2)$ (3)

To a toleuene (5 mL) solution of 2 (40.0 mg) was added pyridine (1 mL). A color of the solution changed from dark yellow to purple. The mixture was evaporated to dryness to afford 3 as a purple solid quantitatively.

¹H NMR (500 MHz, benzene- d_6): δ 1.43 (s, 36H, ¹Bu), 2.29 (s, 12H, Me), 6.27 (s, 8H, C₆H₄), 6.51 (t, ³J_{HH} = 2 Hz, 8H, py), 6.85 (t, ³J_{HH} = 2 Hz, 4H, py), 7.19 (d, ⁴J_{HH} = 7 Hz, 4H, *m*H), 7.42 (d, ⁴J_{HH} = 7 Hz, 4H, *m*H), 9.09 (d, ³J_{HH} = 7 Hz, 8H, py). ¹³C NMR (125 MHz, benzene- d_6): δ 21.0 (*p*Me), 30.3 (*CMe*₃), 35.8 (*C*Me₃), 123.6 (py), 125.4, 128.0 (ArO), 129.7 (C_6 H₄), 134.7 (ArO), 136.4 (py), 138.1, 138.7 (ArO), 138.9 (C_6 H₄), 150.8 (py), 160.6 (ArO). Raman (cm⁻¹): 1362 (v_{N-N}). Anal. Calcd for C₆₄H₈₄N₆O₈Ti₂: C, 73.54; H, 6.82; N, 6.77. Found: C, 72.47; H, 6.96; N, 4.37. The amount of nitrogen present in **3** did not agree to the calculated value and it agreed to the amount of pyridine.

Synthesis of $[(OO)Ti(L)]_2(\mu^{-15}N_2)$ (L = DME, 2⁻¹⁵N₂; py, 3⁻¹⁵N₂)

To a mixture of **1** (500 mg, 873 μ mol) and KC₈ (120 mg, 887 μ mol) was added toluene (30 mL) *via* vacuum transfer at -196 °C. The reaction mixture was allowed to slowly warm to room temperature under an atmosphere of ¹⁵N₂. After stirring for 24 h at room temperature, insoluble materials were removed by centrifugation. The dark yellow supernatant was evaporated to dryness. The residue was washed with hexane to give **2**-¹⁵N₂ as a dark yellow powder (248 mg, 224 μ mol, 51%).

Addition of pyridine (1 mL) to $2^{-15}N_2$ in toluene (5 mL) followed by evaporation to dryness afforded $3^{-15}N_2$.

2-¹⁵N₂: ¹⁵N NMR (50 MHz, C₆D₆): δ 114.7 (μ -¹⁵N₂). Raman (cm⁻¹): 1352 (v_{N-N})

3-¹⁵N₂: ¹⁵N NMR (50 MHz, C₆D₆): δ 178.1 (μ -¹⁵N₂). Raman (cm⁻¹): 1320 (ν _{N-N}).

Synthesis of [OO]Zr(CH₂Ph)₂ (4)

To a solution of $Zr(CH_2Ph)_4$ (803 mg, 1.76 mmol) in toluene (10 mL) was added H₂[OO] (715 mg, 1.78 mmol) at room temperature. The mixture was stirred for 1 h at room temperature to give a yellow suspension. After removal of volatiles under vacuum, the residue was washed with hexane to give **4** as a yellow powder (850 mg, 1.26 mmol, 72%).

¹H NMR (500 MHz, benzene- d_6): δ 1.81 (s, 18H, ¹Bu), 2.26 (s, 6H, Me), 3.30 (s, 4H, CH₂), 6.56 (s, 4H, C₆H₄), 6.65 (t, ³J_{HH} = 8 Hz, 2H, Bn), 6.71 (t, ³J_{HH} = 8 Hz, 4H, Bn), 7.05 (d, ⁴J_{HH} = 2 Hz, 2H, *m*H), 7.18 (d, ³J_{HH} = 8 Hz, 4H, Bn). ¹³C NMR (125 MHz, benzene- d_6): δ 20.9 (*p*Me), 31.3 (*CMe*₃), 35.2 (*C*Me₃), 69.1 (CH₂, ¹J_{CH} = 135 Hz), 124.3 (ArO), 124.4 (*p*-Bn), 128.1 (ArO), 128.5 (*m*-Bn), 129.0 (C₆H₄), 129.2 (*o*-Bn), 131.4 (*ipso*-Bn), 134.9, 136.0, 137.0 (ArO), 139.4 (C₆H₄), 156.9 (ArO). Anal. Calcd for C₄₂H₄₆O₂Zr: C, 74.84; H, 6.88. Found: C, 74.44; H, 6.88.

Synthesis of [OO]ZrCl₂(THF) (5)

To a solution of **4** (500 mg, 742 μ mol) in THF (10 mL) was added NEt₃HCl (208 mg, 1.51 mmol) in THF (30 mL) at room temperature. After stirring for 1 h at room temperature, a color of the reaction mixture changed from yellow to colorless. After removal of volatiles under vacuum, the residue was extracted with toluene and centrifuged to remove insoluble materials. The colorless supernatant was evaporated to dryness. The resulting solid was washed with hexane to give **9** as a white powder (399 mg, 629 mmol, 85%).

¹H NMR (500 MHz, chloroform- d_1): δ 1.49 (s, 18H, ¹Bu), 1.84 (m, 4H, THF), 2.39 (s, 6H, Me), 3.74 (m, 4H, THF), 7.14 (d, ⁴ J_{HH} = 2 Hz, 2H, *m*H), 7.22 (d, ⁴ J_{HH} = 2 Hz, 2H, *m*H), 7.49 (s, 2H, C₆H₄), 7.70 (s, 2H, C₆H₄). ¹³C NMR (125 MHz, chloroform- d_1): δ 21.2 (*p*Me), 30.3 (*CMe*₃), 35.1 (*CMe*₃), 41.7, 73.2 (THF), 124.4, 127.7, 130.3 (ArO), 130.4, 132.2 (C₆H₄), 133.7, 138.3 (ArO), 139.6 (C₆H₄), 156.4 (ArO). IR (cm⁻¹; KBr): 563 (s), 620 (m), 643 (m), 732 (m), 768 (m), 839 (s), 934 (s), 1008 (s), 1083 (s), 1186 (s), 1228 (s br), 1323 (m), 1361 (m), 1389

(m), 1409 (s), 1460 (s), 1507 (w), 1607 (w), 2957 (s). Anal. Calcd for $C_{32}H_{40}O_3Cl_2Zr$: C, 60.55; H, 6.35. Found: C, 60.32; H, 6.75.

Synthesis of [OO]Zr(THF)₃ (6)

To a suspension of **5** (300 mg, 473 μ mol) in THF (15 mL) was added KC₈ (130 mg, 962 μ mol) in THF (5 mL) at -35 °C. The reaction mixture was allowed to warm to room temperature, and a color of the solution changed from colorless to dark green. After stirring for 1 h at room temperature, the solution was centrifuged to remove insoluble materials. The dark green supernatant was concentrated to ca. 1 mL and layered with hexane (3 mL) to give **6** as green crystals (168 mg, 237 μ mol, 50%).

¹H NMR (400 MHz, THF- d_8 , 298 K): δ 1.32 (s, 18H, 'Bu), 1.78 (m, 12H, THF), 2.11 (s, 6H, Me), 3.62 (m, 12H, THF), 5.61 (s, 4H, C₆H₄), 6.55 (s, 2H, *m*H), 6.56 (s, 2H, *m*H). ¹³C NMR (100 MHz, THF- d_8 , 298K): δ 20.3 (*p*Me), 25.4 (THF), 29.7 (CMe₃), 35.1 (CMe₃), 67.3 (THF), 105.3 (C₆H₄), 122.0 (C₆H₄, ¹J_{CH} = 162 Hz), 123.3, 124.0, 124.3, 133.6, 141.7, 162.6 (ArO). UV-Vis (λ_{max} , nm (ε , M⁻¹cm⁻¹), THF), 659 (343). Anal. Calcd for C₄₀H₅₆O₅Zr: C, 67.85; H, 7.97. Found: C, 67.83; H, 8.08.

¹H NMR (500 MHz, THF- d_8 , 193 K): δ 1.32 (s, 18H, 'Bu), 1.78 (m, 12H, THF), 2.11 (s, 6H, Me), 3.62 (m, 12H, THF), 5.61 (br, $\Delta v_{1/2} = 60$ Hz, 4H, C₆H₄), 6.55 (s, 2H, *m*H), 6.56 (s, 2H, *m*H).

Synthesis of $[OO]_2[(C_6H_3)(ArO)_2]_2Zr_4(\mu-H)_2(THF)_2$ (7)

Complex 6 (115 mg, 162 μ mol) was dissolved in toluene (5 mL). A color of the solution changed from green to brown. After stirring for 15 min at room temperature, the reaction mixture was evaporated to dryness to yield 7 (83.2 mg, 39.4 μ mol, 98%) as a brown solid.

¹H NMR (500 MHz, benzene- d_6): δ 1.16 (br, 8H, THF), 1.51 (s, 18H, ¹Bu), 1.52 (s, 18H, ¹Bu), 1.62 (s, 18H, ¹Bu), 1.93 (s, 18H, ¹Bu), 2.26 (s, 6H, Me), 2.30 (s, 6H, Me), 2.31 (s, 6H, Me), 2.48 (s, 6H, Me), 3.56 (br, 8H, THF), 5.59 (d, ³J_{HH} = 12 Hz, 2H, C₆H₃), 5.75 (d, ³J_{HH} = 12 Hz, 2H, C₆H₃), 6.86 (d, ³J_{HH} = 12 Hz, 2H, ZrH), 6.90 (d, ³J_{HH} = 2 Hz, 2H, mH), 6.94 (d, ⁴J_{HH} = 2 Hz, 4H, mH), 6.97 (d, ³J_{HH} = 12 Hz, 2H, C₆H₃), 7.12 (d, ⁴J_{HH} = 2 Hz, 2H, mH), 7.15

(overlapped, C₆H₄ and benzene-*d*₆), 7.22 (d, ⁴*J*_{HH} = 2 Hz, 2H, *m*H), 7.24 (d, ⁴*J*_{HH} = 2 Hz, 2H, *m*H), 7.30 (d, ⁴*J*_{HH} = 2 Hz, 2H, *m*H), 7.35 (d, ⁴*J*_{HH} = 2 Hz, 2H, *m*H), 7.39 (dd, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 2 Hz, 2H, C₆H₄), 7.42 (d, ⁴*J*_{HH} = 2 Hz, 2H, *m*H), 7.78 (dd, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 2 Hz, 2H, C₆H₄), 7.99 (dd, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 2 Hz, 2H, C₆H₄). ¹³C NMR (125 MHz, thf-*d*₈): δ 21.1, 21.2, 21.3, 21.4 (*p*Me), 25.2 (THF), 30.2, 30.4, 30.6, 32.0 (*CMe*₃), 34.8, 35.1, 35.2, 35.9 (*CMe*₃), 71.6 (THF), 103.0 (*C*₆H₃), 122.9, 123.0 (ArO), 124.3 (*C*₆H₄), 124.7, 125.8 (ArO), 126.5 (*C*₆H₃), 126.8, 127.2, 127.4, 127.6, 128.0, 128.4, 128.6, 128.7, 129.2 (ArO), 129.3 (*C*₆H₄), 129.8 (ArO), 131.9 (*C*₆H₃), 132.3 (*C*₆H₄), 133.8, 133.9, 134.2 (ArO), 136.3 (*C*₆H₄), 136.8, 136.9, 137.9 (ArO), 138.2 (*C*₆H₃), 141.7, 143.3 (*C*₆H₄), 152.0, 158.5, 159.1, 163.4 (ArO), 171.8, 202.7 (*C*₆H₃). Selected HH COSY NMR chemical shifts (500 MHz, benzene*d*₆): δ ¹H (δ ¹H) 5.59 (6.86), 5.75 (6.97). Selected ¹H-¹³C HMQC NMR chemical shifts (500 MHz, benzene-*d*₆): δ ¹H (δ ¹³C) 5.59 (103.0), 5.75 (171.7), 6.97 (131.9). Anal. Calcd for C₁₂₀H₁₄₄O₁₀Zr₄: C, 68.26; H, 6.87. Found: C, 68.40; H, 7.14.

Synthesis of $[(OO)_2(CO_2)]Zr_2(THF)_4$ (8)

A 50 mL flask was charged with **6** (80.0 mg, 113 μ mol) and THF (20 mL). The headspace was evacuated, and an atmosphere of CO₂ (1 atm) was introduced. A color of the solution changed from green to yellow. After stirring for 30 min at room temperature, the reaction mixture was evaporated to dryness. The residue was washed with pentane to give **8** as yellow powder (63.2 mg, 48.0 μ mol, 85%).

¹H NMR (500 MHz, THF- d_8): δ 1.23 (s, 18H, ¹Bu), 1.62 (s, 18H, ¹Bu), 1.78 (br, 16H, THF), 2.14 (s, 6H, Me), 2.29 (s, 6H, Me), 3.62 (br, 16H, THF), 4.12 (s, 2H, C₆H₄), 4.62 (d, ³ $J_{HH} = 6$ Hz, 2H, C₆H₄), 5.62 (s, 2H, C₆H₄), 5.86 (d, ³ $J_{HH} = 6$ Hz, 2H, C₆H₄), 6.58 (d, ⁴ $J_{HH} = 2$ Hz, 2H, mH), 6.73 (d, ⁴ $J_{HH} = 2$ Hz, 4H, mH), 6.75 (d, ⁴ $J_{HH} = 2$ Hz, 2H, mH). ¹³C NMR (125 MHz, THF- d_8): δ 20.01, 20.2 (pMe), 25.4 (THF), 29.5, 29.8 (CMe₃), 34.2, 34.3 (CMe₃), 53.0 (C₆H₄), 67.3 (THF), 91.2, 121.4 (C₆H₄), 122.9, 123.6, 124.4, 124.5, 124.8, 125.6 (ArO), 129.5, 133.6 (C₆H₄), 134.3, 134.6 (ArO), 135.4 (C₆H₄), 135.6, 136.0, 163.1, 163.3 (ArO). Selected ¹H–¹³C HMQC NMR chemical shifts (500 MHz, THF- d_8): δ ¹H (δ ¹³C) 4.12 (53.0),

4.62 (91.2), 5.62 (129.5), 5.86 (133.6). Anal. Calcd for $C_{73}H_{96}O_{10}Zr_2$: C, 66.63; H, 7.35. Found: C, 66.56; H, 7.67.

NMR experiment for the reaction of 6 with ¹³CO₂

A J. Young valve NMR tube was charged with **6** (10.0 mg, 14.1 μ mol) and THF- d_8 (0.5 mL). The headspace was evacuated, and an atmosphere of ${}^{13}CO_2$ (1 atm) was introduced. The mixture was stored at room temperature for 30 min. The ¹H NMR spectrum indicated that the reaction afforded **8**- ${}^{13}C$ quantitatively.

¹³C NMR (125 MHz, THF- d_8): δ 173.0 ([C₆H₄]₂CO₂).

Synthesis of $[(OO)Zr(THF)]_2(C_2S_4)$ (9)

To a solution of **6** (30.0 mg, 42.4 μ mol) in THF (5 mL) was added CS₂ (10.0 μ L, 165 μ mol) at room temperature. A color of the solution changed from green to yellowish orange. After stirring for 30 min at room temperature, the reaction mixture was evaporated to dryness. The residue was washed with hexane to give a pale orange powder of **9** (20.1 mg, 15.7 μ mol, 74%). The pale orange powder was dissolved in benzene (2 mL) and stored at room temperature, yielding **9**·2benzene as green crystals.

¹H NMR (500 MHz, benzene- d_6): δ 1.23 (br, 8H, THF), 1.40 (s, 36H, ¹Bu), 2.31 (s, 12H, Me), 3.73 (br, 8H, THF), 6.94 (d, ⁴ J_{HH} = 2 Hz, 4H, mH), 7.17 (d, ⁴ J_{HH} = 2 Hz, 4H, mH), 7.25 (s, 4H, C₆H₄), 8.42 (s, 4H, C₆H₄). Anal. Calcd for C₇₈H₉₂O₆S₄Zr₂: C, 65.23; H, 6.46. Found: C, 65.09; H, 6.60. Solubility constraints prevent us from aquiring the ¹³C NMR spectrum of **9**.

X-ray Crystallography

Crystallographic data for are summarized Table S1. Single crystals of 1, 3, 4, 5, 6, 7, 8 and 9 were obtained from DME, toluene/hexane, toluene/hexane, chloroform, THF/hexane, toluene/pentane, THF/hexane and toluene/pentane respectively. Crystals of these complexes immersed in mineral oil on nylon loop and transferred to a Rigaku Saturn CCD system for 1, 2, 3, 6, 7, 8 and 9, and to a Rigaku Mercury CCD system for 4 and 5 equipped with a Rigaku

GNNP low-temperature device. Data were collected under cold nitrogen stream (123 K) using graphite-monochromated Mo-K α radiation ($\lambda = 0.7107$ Å). Equivalent reflections were merged, and the images were processed with the CrystalClear (Rigaku) Program. Corrections for Lorentz-polarization effects and absorption were performed.

All calculations were performed using SHELXS³ and SHELXL⁴. The structures were solved by Patterson and Fourier transform methods. For 1, two crystallograhically independent, but chemically equivalent molecules are present in the asymmetric unit. For 7, the methylene groups of the THF molecule were disordered over two positions. Three sites occupied by THF were identified in the asymmetric unit. Two of these sites were fully occupied by two THF molecules. The other site contains considerably disordered THF molecules and were treated by SQUEEZE as a diffuse contribution.^{5,6} In the void space, a contribution of 53 e⁻ per unit cell was found and taken to represent 0.5 THF molecules for each Zr_2 complex, giving a total of 2.5 THF in the asymmetric unit. For 9, the methylene groups of the THF molecule and the toluene molecule were disordered over two positions. The disordered toluene molecule was fixed with a rigid group model. All non-hydrogen atoms are refined anisotropically, with exception of disordered atoms, which were refined isotropically. All carbon-bound hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. In the case of 7, the positions of metalbound hydride and the protons of C_6H_3 unit were found in the Fourier map.

These results were checked using the IUCR's CheckCIF routine. The alerts in the output are related to the disordered groups and crystal solvents. The large values of the second parameter on the SHELXL weighting are due to the poor quality of crystals.

References

- M. M. Gruza, J.-C. Chambron, E. Espinosa and E. Aubert, *Eur. J. Org. Chem.* 2009, 6318-6327.
- (2) N. A. Jones, S. T. Liddle, C. Wilson and P. L. Arnold, *Organometallics* 2007, 26, 755-757.

- (3) SHELXS-97, G. M. Sheldrick, Program for Crystal Structure Determination; University of Göttingen, Göttingen, Germany (1997).
- (4) SHELXL-97, G. M. Sheldrick, Program for Crystal Structure Determination; University of Göttingen, Göttingen, Germany (1997).
- (5) A. L. Spek, Acta Cryst. 2009, D65, 148-155.
- (6) P. van der Sluis, A. L. Spek, Acta Cryst. 1990, A46, 194-201.

Fig. S1 Molecular structure of **1**. One of two independent molecules in the asymmetric unit is shown. Hydrogen atoms have been omitted for clarity.

Fig. S2 Molecular structure of **3**. Carbon atoms of *tert*-butyl/methyl substituents and hydrogen atoms have been omitted for clarity.

Fig. S3 Molecular structure of 4. Hydrogen atoms have been omitted for clarity.

Fig. S4 Molecular structure of 5. Hydrogen atoms have been omitted for clarity.

Fig. S5 Molecular structure of **6**. Carbon atoms of *tert*-butyl/methyl substituents and hydrogen atoms have been omitted for clarity.

Fig. S6 Molecular structure of **7**. Carbon atoms of *tert*-butyl/methyl substituents and THF and hydrogen atoms except the hydrides and the metalated arene protons have been omitted for clarity.

Fig. S7 Molecular structures of **8**. Carbon atoms of *tert*-butyl/methyl substituents and THF and hydrogen atoms have been omitted for clarity.

Fig. S8 Molecular structure of **9**. Carbon atoms of *tert*-butyl/methyl substituents and THF and hydrogen atoms have been omitted for clarity.

	1	3	4
Formula	C ₃₂ H ₄₂ O ₄ ClTi	C ₇₆ H ₈₄ N ₆ O ₄ Ti ₂	C ₄₂ H ₄₆ O ₂ Zr
М	574.01	1241.29	674.01
<i>T</i> /K	123(2)	123(2)	123(2)
Color	red	purple	yellow
Crystal size/mm ³	0.22 x 0.15 x 0.14	0.20 x 0.08 x 0.03	0.14 x 0.13 x 0.09
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	<i>Pca</i> 2 ₁ (No. 29)	<i>Fdd</i> 2 (No. 43)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
a/Å	26.4628(17)	22.533(5)	10.1726(15)
<i>b</i> /Å	11.6059(6)	50.714(11)	21.898(3)
c/Å	19.5905(12)	11.285(2)	15.189(2)
$lpha / ^{\circ}$	90	90	90
$eta\!/^\circ$	90	90	91.409(6)
$\gamma^{\prime \circ}$	90	90	90
V/Å ³	6016.7(6)	12896(5)	3382.5(8)
Ζ	8	8	4
$D_{\rm c}/{ m g~cm}^{-3}$	1.267	1.279	1.324
μ/mm^{-1}	0.407	0.304	0.360
Reflections collected	41404	26369	35970
Independent reflections (R_{int})	13770 (0.1064)	7372 (0.0932)	7752 (0.1139)
Refined parameters	705	405	414
Goodness-of-fit on F^2	1.048	1.056	1.056
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0612	0.0756	0.0715
w R_2 (all data) ^b	0.1415	0.1638	0.1590
Largest diff. peak	0.447 and -0.525	0.503 and -0.390	1.104 and -0.832
and hole/e Å ⁻³			

Table S1. Crystallographic Data.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, {}^{b} w R_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]]^{0.5}$

	5	6	7
Formula	$C_{32}H_{40}O_3Cl_2Zr$	C ₄₄ H ₆₄ O ₆ Zr	C ₁₄₄ H ₁₈₄ O ₁₀ Zr ₄
М	634.76	780.17	2439.79
T/K	123(2)	123(2)	123(2)
Color	colorless	green	brown
Crystal size/mm ³	0.14 x 0.13 x 0.09	0.06 x 0.05 x 0.02	0.13 x 0.10 x 0.09
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	$P2_1/c$ (No. 14)	<i>Pbcn</i> (No. 60)
a/Å	15.032(2)	24.091(6)	31.709(6)
<i>b</i> /Å	9.1927(15)	9.788(2)	15.741(3)
c/Å	22.154(4)	16.906(4)	25.572(5)
lpha/°	90	90	90
$eta\!/^{\circ}$	90.733(3)	96.277(5)	90
$\gamma^{\prime \circ}$	90	90	90
$V/\text{\AA}^3$	3061.1(8)	3962.4(17)	12763(4)
Ζ	4	4	4
$D_{\rm c}/{ m g~cm}^{-3}$	1.377	1.308	1.270
μ/mm^{-1}	0.564	0.324	0.375
Reflections collected	24316	30136	83954
Independent reflections (R_{int})	6957 (0.0497)	9065 (0.1012)	14603 (0.0705)
Refined parameters	351	468	711
Goodness-of-fit on F^2	0.990	1.066	1.203
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0498	0.0743	0.0845
wR_2 (all data) ^b	0.1460	0.1821	0.2015
Largest diff. peak	1.554 and -0.615	1.493 and -1.028	1.258 and -0.922
and hole/e Å ⁻³			

Table S1. Crystallographic Data. (Cont.)

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, {}^{b} w R_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]]^{0.5}$

	8	9
Formula	$C_{83}H_{105}O_{12.5}Zr_2$	$C_{94}H_{112}O_6S_4Zr_2$
M	1485.11	1648.52
<i>T</i> /K	123(2)	123(2)
Color	yellow	blue
Crystal size/mm ³	0.09 x 0.09 x 0.03	0.07 x 0.06 x 0.05
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/c$ (No. 14)	<i>P</i> -1 (No. 2)
a/Å	17.785(2)	9.498(3)
<i>b</i> /Å	14.4383(19)	14.156(5)
c/Å	29.830(4)	16.469(5)
$lpha/^{\circ}$	90	77.889(15)
$eta\!/^{\circ}$	95.8792(19)	80.28(2)
$\gamma^{\prime \circ}$	90	80.586(14)
$V/\text{\AA}^3$	7619.7(17)	2114.9(12)
Ζ	4	1
$D_{\rm c}/{ m g~cm^{-3}}$	1.295	1.294
μ/mm^{-1}	0.334	0.398
Reflections collected	92813	26318
Independent reflections (R_{int})	17461 (0.0992)	9639 (0.0766)
Refined parameters	819	488
Goodness-of-fit on F^2	0.983	1.071
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0934	0.0778
w R_2 (all data) ^b	0.2712	0.1901
Largest diff. peak	1.579 and -0.869	1.147 and -0.852
and hole/e Å ⁻³		

Table S1. Crystallographic Data. (Cont.)

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, {}^{b} w R_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]]^{0.5}$