Supporting Information

Tuning Layer to Pillared-layer Metal-Organic Framework for Adsorption and Separation of Light Hydrocarbons

Yan-Ping He, Yan-Xi Tan and Jian Zhang*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. E-mail: zhj@fjirsm.ac.cn.

Experimental Section

Materials and Instrumentation: All reagents were purchased commercially and used without further purification. All syntheses were carried out in a 20 ml vial under autogenous pressure. All Powder X-ray diffraction (PXRD) analyses were recorded on a Rigaku Dmax2500 diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å) with a step size of 0.05°. Thermal stability studies were carried out on a NETSCHZ STA-449C thermoanalyzer with a heating rate of 10 °C/min under an air atmosphere. Gas adsorption measurement was performed in the ASAP (Accelerated Surface Area and Porosimetry) 2020 System. Fluorescence spectra were measured with a HORIBA Jobin-Yvon FluoroMax-4 spectrometer.

Synthesis of [Zn₃L₂(DMPU)₂] (FIR-6)

 H_3L (60 mg, 0.1 mmol) and $Zn(NO_3)_2$ ·6 H_2O (60 mg, 0.2 mmol) were dissolved in DMPU, which were placed in a small vial. The mixture was heated at 120 °C for 48 h and then cooled to room temperature. Yellow block crystals of the product were formed and collected by filtration and washed with DMF several times. (yield: 70% based on H_3L).

Synthesis of [Zn₃L₂(DMPU)(bpp)]·10DMPU (FIR-7)

H₃L (60 mg, 0.1 mmol), bpp (20 mg, 0.1 mmol) and Zn(NO₃)₂·6H₂O (60 mg, 0.2 mmol) were dissolved in DMPU, which were placed in a small vial. The mixture was heated at 120 °C for 48 h and then cooled to room temperature. Yellow block crystals of the product were formed and collected by filtration and washed with DMF several times. (yield: 65% based on H₃L).

Crystal data for FIR-6: space group *P*-1, triclinic, a = 16.0621(4) Å, b = 20.7199(5) Å, c = 21.2873(5) Å, $a = 62.257(2)^\circ$, $\beta = 83.386(2)^\circ$, $\gamma = 82.529(2)^\circ$, V = 6204.8(3) Å3, T = 293(2) K, Z = 2, 40380 reflections measured, 19396 independent reflections ($R_{int} = 0.0286$). The final *R*1 value was 0.0507 ($I > 2\sigma(I)$). The final $wR(F^2)$ value was 0.1431 ($I > 2\sigma(I)$). The goodness of fit on F^2 was 1.095. **Crystal data for FIR-7:** space group *C*2/c, monoclinic, a = 21.9124(2) Å, b = 36.7010(3) Å, c = 38.7102(4) Å, $a = 90.00^\circ$, $\beta = 100.5990(10)^\circ$, $\gamma = 90.00^\circ$, V = 30599.9(5) Å3, T = 293(2) K, Z = 8, 32294 reflections measured, 14260 independent reflections ($R_{int} = 0.0443$). The final *R*1 value was 0.0835 ($I > 2\sigma(I)$). The final $wR(F^2)$ value was 0.2478 ($I > 2\sigma(I)$). The goodness of fit on F^2 was 1.102. The structures were solved by the direct method and refined by the full-matrix least-squares on F^2 using the SHELXTL-97 program.

Figure S1. Coordination environment of Zn^{2+} atom in **FIR-6**.

Figure S2. The 2D layer with terminal DMPU molecules extending outside in FIR-6.

Figure S3. Packed layers of FIR-6 in an AB fashion.

Figure S4. The asymmetric unit in FIR-7.

Figure S5. View of the (3,6)-connected NbSe₂ net of FIR-7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure S6. TGA curves of FIR-7 and FIR-7a.

Figure S7. PXRD patterns of simulated from the single-crystal data of **FIR-7** (black); as-synthesized **FIR-7** (red); desolvated solid **FIR-7a-ht** (blue).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S8. The isosteric heat of adsorption for C₃H₈, C₂H₆, and C₂H₄ in **FIR-7a-ht**.

Figure S9. a) Luminescence photos of H₃L ligand, **FIR-6** and **FIR-7** under laboratory UV (365 nm) light; b) the solid-state emission spectra (λ_{ex} =360 nm) measured at room temperature of H₃L ligand, **FIR-6** and **FIR-7**.

The solid-state emission spectra of compounds **FIR-6** and **FIR-7** together with the H₃L ligand in this work have also been investigated at room temperature. It is shown that the free H₃L ligand displays the emission maxima at 494 nm which can be assigned to the $\pi \rightarrow \pi^*$ transition, whereas compound **FIR-6** and **FIR-7** have a pattern similar to that of the ligand

with a maximum absorption emission band at around 474 nm and 510 nm, respectively. In comparison with the strongest emission of H_3L , slight blue-shift of 20 nm occur in the maximum emission peaks in compounds **FIR-6** and slight red-shift of 6 nm occur in **FIR-7**. In this case, the ligand-based luminescence dominates and the blue-shifted or red-shifted emission can be assigned to the metal–ligand coordinative interactions.