Supplementary Information

Five-State Molecular Switching of a [3]Rotaxane in Response to Weak and Strong Acid and Base Stimuli

Yuji Tokunaga,* Syuji Ikezaki, Masaki Kimura, Kenji Hisada,* Tsuneomi Kawasaki

Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan Fiber Amenity Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan

- 1. Experimental
- 2. **Figure S1.** ¹H NMR spectra of the [3]rotaxane **1-H**₂ in the presence of various amounts of AcOH after an addition of ^tBuOK.
- 3. **Figure S2.** ¹H NMR spectra of the [3]rotaxane **1-H**₂ after sequential additions of Bu₄NOH as a base and AcOH as an acid.
- 4. **Figure S3.** ¹H NMR spectra of the [3]rotaxane **1-H**₂ in the presence of TfOH (0–6 eq).
- 5. **Figure S4.** UV spectra of the [3]rotaxane $1-H_2$ in the presence of TfOH.
- 6. **Figure S5.** UV spectra of the [3]rotaxane **1-H₂** in the presence of Et₃N after the addition of TfOH.
- 7. **Figure S6.** Plots of UV spectra of the [3]rotaxane **1-H**₂ after sequential additions of TfOH and Et₃N.
- 8. **Figure S7.** UV spectra of the [3]rotaxane **1-H**₂ in the presence of Et₃N and TfOH after sequential additions of Bu₄NOH and AcOH (NMR experiments).
- 9. Figure S8. UV spectra of states 3, 4, and 5 determined through target factor analysis
- 10. Figure S9. COSY and NOESY spectra of the [3]rotaxane 1-H₂.
- 11. **Figure S10.** COSY and NOESY spectra of the [3]rotaxane **1-H**₂ in the presence of ^tBuOK.
- 12. **Figure S11.** COSY and NOESY spectra of the [3]rotaxane **1-H**₂ in the presence of TfOH.
- 13. **Figure S12.** ¹H and ¹³C NMR spectra of the carbazole **2a**.
- 14. **Figure S13.** ¹H and ¹³C NMR spectra of the carbazole **2b**.

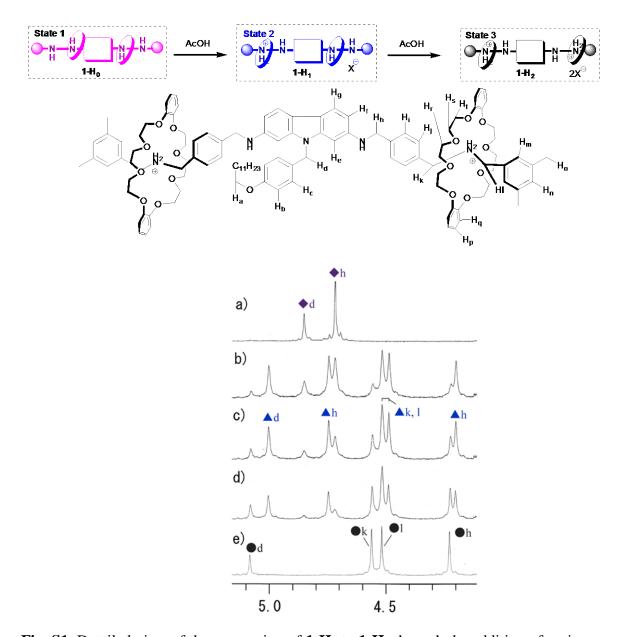
$$O_{2}N \xrightarrow{N} NO_{2} \xrightarrow{1} K_{2}CO_{3} \xrightarrow{OC_{12}H_{25}} H_{2}N \xrightarrow{N} NH_{2} \xrightarrow{1} M_{2} \xrightarrow{N} PF_{6} \text{ crown ether}$$

$$2\mathbf{a}: R = NO_{2} \\ 2\mathbf{b}: R = NH_{2}$$

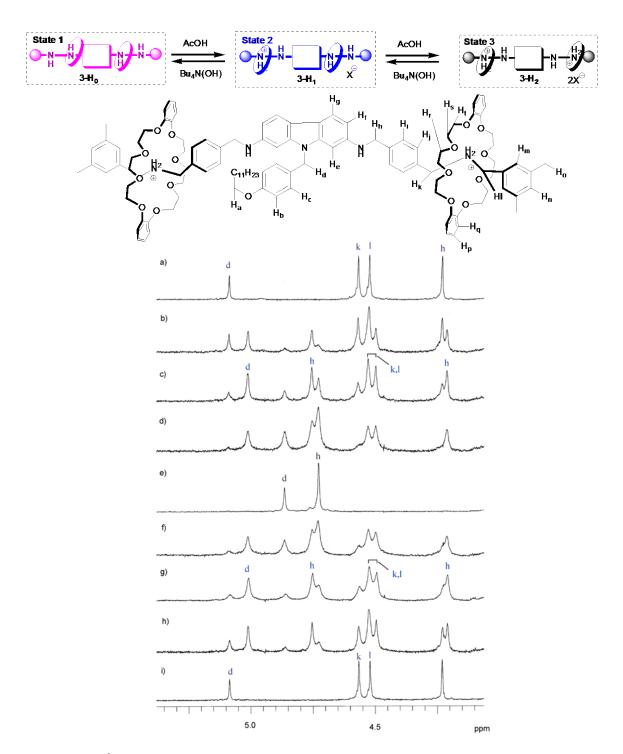
Experimental

General methods

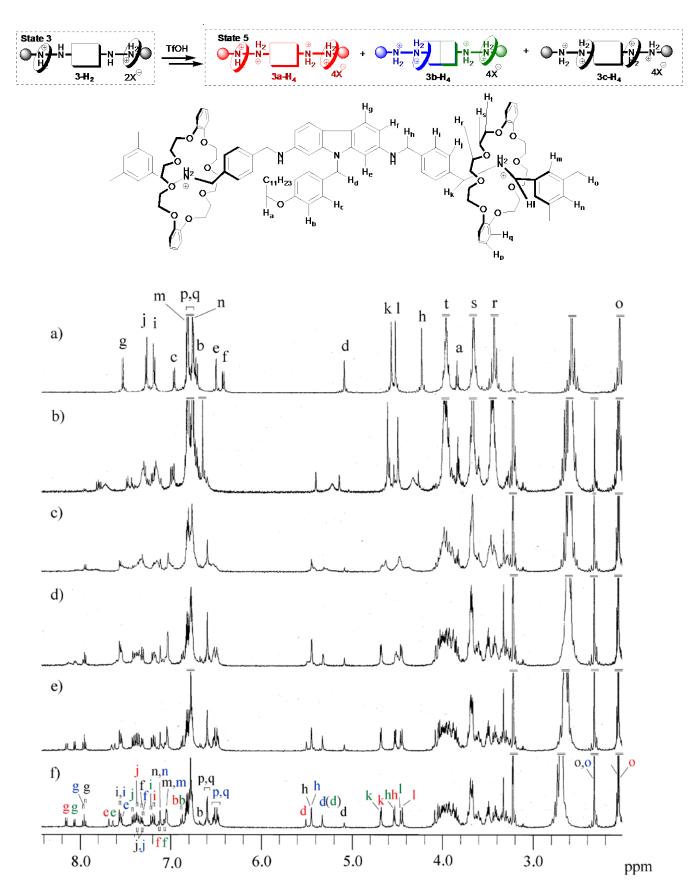
Infrared spectra were recorded using a Shimadzu FTIR-8600PC instrument. ¹H NMR spectra were recorded using JEOL LA-500 spectrometers, with TMS as the internal standard. Mass spectra were recorded using a JMS-700T instrument. UV spectra were recorded using a HITACHI U-3900H spectrometer. All reactions were performed under a positive atmosphere of dry N₂. All extracts were dried over MgSO₄; solvents were removed through rotary evaporation under reduced pressure. Silica gel column chromatography was performed using Kanto Chemical silica gel 60N. Thin-layer chromatography was performed using Merck Kieselgel 60PF₂₅₄.

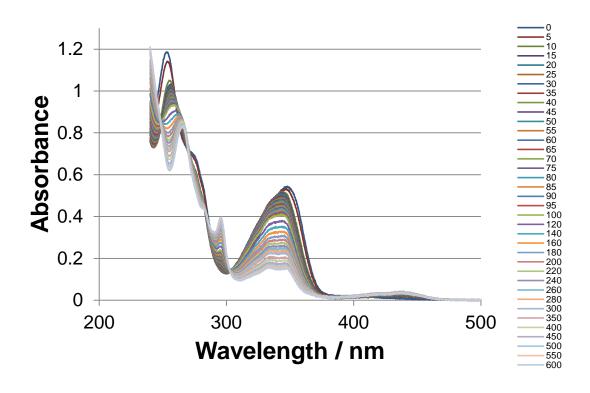

9-(4-Dodecanoxybenzyl)-2,7-dinitrocarbazole (**2a**). A suspension of the dinitrocarbazole 1 (275 mg, 1.00 mmol), 4-dodecanoxybenzyl chloride (342 mg, 1.10 mmol), and K₂CO₃ (276 mg, 2.00 mmol) in DMF (2.5 mL) was stirred at 70 °C for 24 h. Water (20 mL) was added to the reaction mixture and then the solid was filtered off and washed with H₂O and MeOH to afford **2a** as a yellow solid (493 mg, 93%). IR (KBr) ν_{max} (cm⁻¹) 2916, 2848, 1611, 1519, 1469, 1339, 1253, 1175, 1037, 822. 1 H NMR (500 MHz, DMSO- d_6 , 90 °C) δ 8.61 (d, J = 2.1 Hz, 2H), 8.55 (d, J = 8.6 Hz, 2H), 8.13 (dd, J = 8.6, 2.1 Hz, 2H), 7.18–7.13 (m, 2H), 6.81–6.86 (m, 2H), 5.86 (s, 2H), 3.89 (t, J = 6.8 Hz, 3H), 1.64 (quint, J = 6.8 Hz, 2H), 1.39–1.13 (m, 18H), 0.84 (t, J = 6.9 Hz, 3H). 13 C NMR (125 MHz, DMSO- d_6 , 90 °C) δ 158.0, 146.8, 141.1, 127.9, 127.6, 125.4, 122.2, 114.6, 114.4, 105.9, 67.3, 45.6, 30.7, 28.36, 28.35, 28.31, 28.14, 28.10, 28.0, 24.9, 21.4, 13.2 HR-MS (FAB): calcd for [M]⁺ C₃₁H₃₇N₃O₅, m/z 531.2733; found, m/z 531.2753.

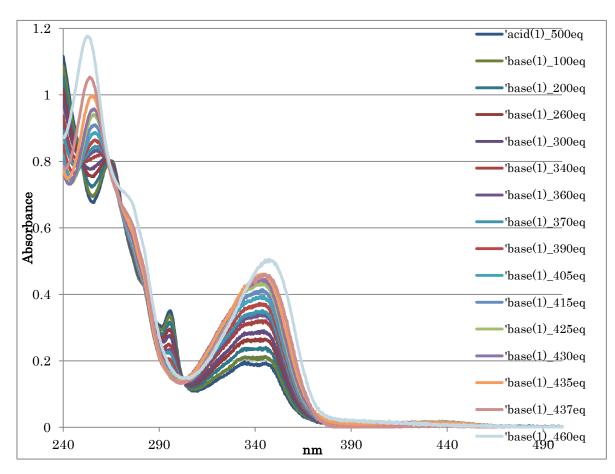
2,7-Diamino-9-(4-dodecanoxybenzyl)carbazole (2b). A solution of the dinitrocarbazole **2a** (566 mg, 1.06 mmol) and SnCl₂·H₂O (2.40 g, 10.6 mmol) in EtOH (20 mL) was heated under reflux for 24 h. After evaporation of the organic solvent, 10% NaOH (aq) was added to the residue and the mixture extracted with CH₂Cl₂. The combined extracts were washed with sat. NaCl, dried, and evaporated to give a residue, which was chromatographed (toluene:Et₂O, 3:1) to give a crude product, washing of which with MeOH afforded the **2b** (329 mg, 66%). IR (KBr) v_{max} (cm⁻¹) 3454, 3372, 2913, 2847, 1617, 1510, 1489, 1274, 1242, 1176, 1136, 1045, 812. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 7.9 Hz, 2H), 7.08–7.03 (m, 2H), 6.81–6.75 (m, 2H), 6.59–6.53 (m, 4H), 5.23 (s, 2H), 3.88 (t, J = 6.8 Hz, 2H), 3.71 (br s, 4H), 1.73 (quint, J = 6.8 Hz, 2H), 1.45–1.20 (m, 18H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, 35 °C) δ 158.5, 144.1, 142.2, 129.1, 127.5, 119.9, 116.4, 114.8, 108.5, 94.9, 68.1, 45.9, 31.9, 29.64, 29.61, 29.58, 29.56, 29.4, 29.3, 26.0, 22.7, 14.1. HR-MS (FAB): calcd for [M]⁺ C₃₁H₄₁N₃O, m/z 471.3250; found, m/z 471.3247.

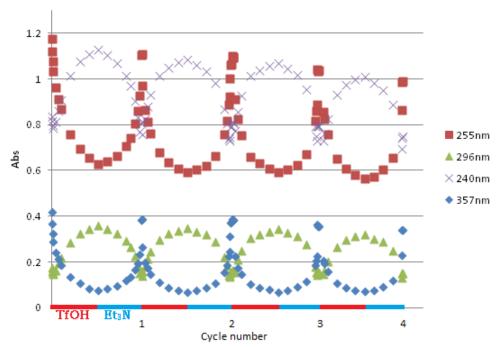

[3]Rotaxane 1-H₂. A suspension of the ammonium salt 3² (212 mg, 0.53 mmol), DB24C8 (285 mg, 0.64 mmol), and the carbazole **2b** (100 mg, 0.21 mmol) in CH₂ClCH₂Cl (3 mL) was heated at 70 °C for 24 h. After cooling to room temperature, NaBH₄ (80 mg, 2.10 mmol) and EtOH (3 mL) were added and then the mixture was stirred at room temperature for 24 h. The excess NaBH₄ was quenched with dil. HCl (aq.) and then the organic solvent was evaporated off. The resulting mixture was treated with dil. NaHCO₃ (aq.) and extracted with CH₂Cl₂. The combined extracts were washed with water, dried, and evaporated to give a residue, which was chromatographed (CH₂Cl₂: THF, 10:1) to afford the crude product. A suspension of the crude product in acetone (8 mL) and H₂O (8 mL) was treated with NH₄PF₆ (680 mg, 4.17 mmol), and stirred for 2 h. After the organic solvent had been evaporated, the resulting solid was washed with H₂O, ⁱPrOH, and Et₂O to give a solid (258 mg, 57%). IR (KBr) v_{max} (cm⁻¹) 3153, 3065, 2925, 1612, 1505, 1455, 1252, 1211, 1056, 954, 842, 743, 557. H NMR (500 MHz, CD₃CN) δ 7.54 (d, J = 8.2 Hz, 2H), 7.32–7.24 (m, 4H), 7.23–7.15 (m, 4H), 6.99-6.93 (m, 2H), 6.86-6.70 (m, 24H), 6.50 (d, J = 1.8 Hz, 2H), 6.42 (dd, J = 8.2 and 1.8 Hz, 2H), 5.09 (s, 2H), 4.93-4.84 (m, 2H), 4.62-4.48 (m, 4H), 4.23 (d, J = 4.6 Hz, 2H), 4.03-3.91 (m, 16H), 3.84 (t, J = 7.2 Hz, 2H), 3.72–3.60 (m, 16H), 3.48–3.40 (m, 16H), 2.05 (s, 12H), 1.64 (quint, J = 7.2Hz, 2H), 1.40–1.18 (m, 18H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CD₃CN, 30 °C) δ 159.4, 148.5, 142.9, 142.7, 139.2, 133.0, 131.5, 131.1, 130.9, 130.7, 129.1, 128.7, 127.8, 126.4, 122.2, 120.3, 118.3, 115.9, 115.5, 113.5, 108.1, 71.6, 71.1, 69.0, 68.9, 53.4, 53.2, 48.3, 46.2, 32.6, 30.7, 30.35, 30.30, 30.13, 30.07, 29.97, 26.7, 23.4, 21.2, 14.4. HR-MS (FAB): calcd for $[3-H_2-PF_6]^+$ C₁₁₃H₁₄₅F₆N₅O₁₇P, *m/z* 1989.0272; found, *m/z* 1989.0314.

References


- 1. P. A. S. Smith and B. B. Brown, *J. Am. Chem. Soc.*, 1951, **73**, 2435–2437.
- 2. Y. Tokunaga, M. Kawabata, Y. Yamauchi and N. Harada, *Heterocycles*, 2010, **81**, 67–72.


Fig. S1. Detailed view of the conversion of **1-H₀** to **1-H₂** through the addition of various amounts of AcOH (from state 1 to state 3, as defined in Scheme 2). Partial 1 H NMR spectra (500 MHz; CD₃CN/CD₃OD, 10:1) of (a) the [3]rotaxane **1-H₂** and t BuOK (2.5 eq) and (b—e) the sample in (a) after the addition of (b) 1.1, (c) 1.5, (d) 1.7, and (e) 2.6 eq of AcOH. ◆: **1-H₀**; **^: 1-H₁**; **●**: **1-H₂**. For atom labels, see Fig. 2.


Fig. S2. Partial ¹H NMR spectra (500 MHz; CD₃CN/CD₃OD, 10:1) of the [3]rotaxane **1-H₂** after sequential additions of Bu₄NOH as a base and acetic acid as an acid. (a) [3]rotaxane **1-H₂**; (b–e) the sample in (a) after the addition of (b) 0.5, (c) 1.0, (d) 1.5, and (e) 2.1 eq of Bu₄NOH in MeOH; (f–i) the sample in (e) after the addition of (f) 0.6, (g) 1.1, (h) 1.6, and (i) 2.2 eq of AcOH.


Fig. S3. ¹H NMR spectra (500 MHz; CD₃CN/CD₃OD, 10:1) of the [3]rotaxane **1-H₂** (1.5 mM) in the presence of (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and (f) 6 eq of TfOH.

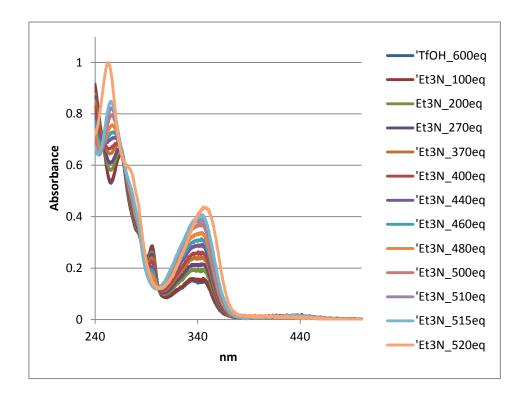

Fig. S4. UV spectra of the [3]rotaxane **1-H**₂ [20 μ M in CH₃CN/CH₃OH (1:1)] in the presence of TfOH (0–600 eq).

Fig. S5. UV spectra of the [3]rotaxane **1-H**₂ in the presence of Et₃N (0–460 eq) after the addition of TfOH (500 eq).

Fig. S6. Plots of the UV spectral data of the [3]rotaxane 1- H_2 after sequential additions of acid (TfOH) and base (Et₃N).

Fig. S7. UV spectra of the [3]rotaxane $1-H_2$ in the presence of Et_3N and TfOH after sequential additions of Bu_4NOH and AcOH (NMR experiments).

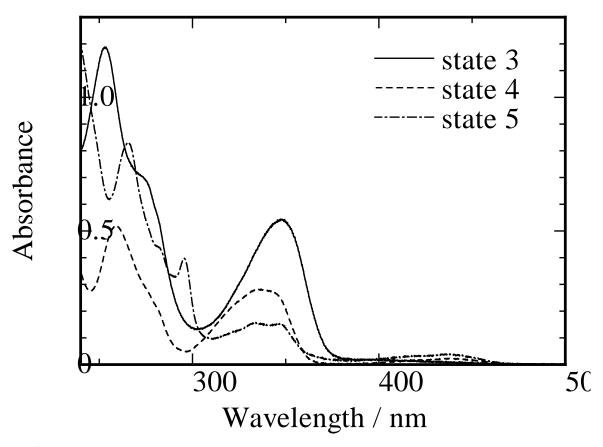
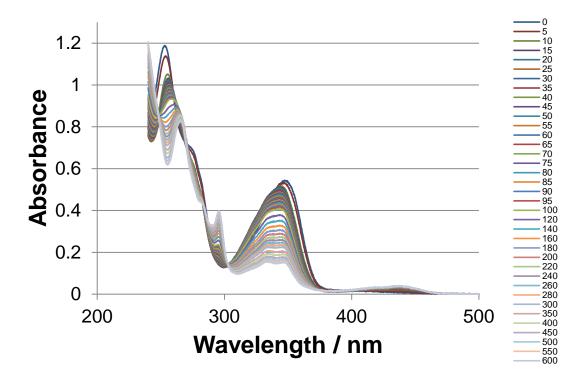
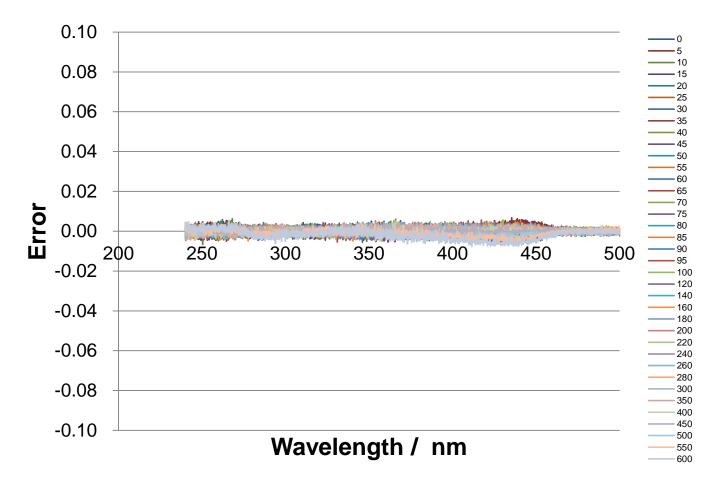




Fig. S8a. UV spectra of states 3, 4, and 5 determined through target factor analysis.

Fig. S8b. UV spectra of the [3]rotaxane $1-H_2$ in the presence of TfOH (0–600 eq), calculated using target factor analysis.

Fig. S8c. Errors between experimental and calculated UV data (differences between Fig. S4 and S8b).

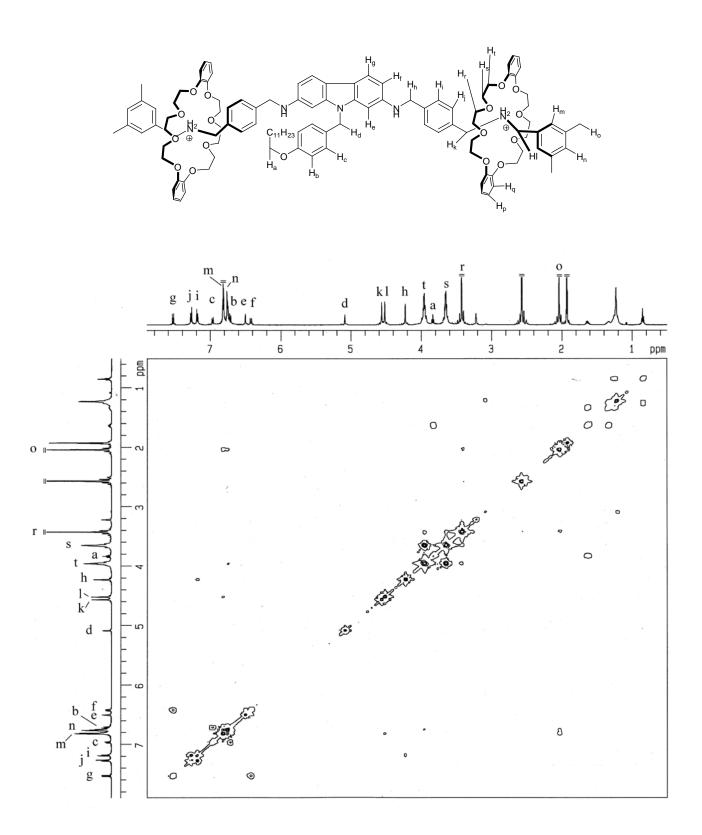


Fig. S9a. COSY spectrum (500 MHz; CD₃CN/CD₃OD, 10:1; 4.2 mM) of the [3]rotaxane 1-H₂.

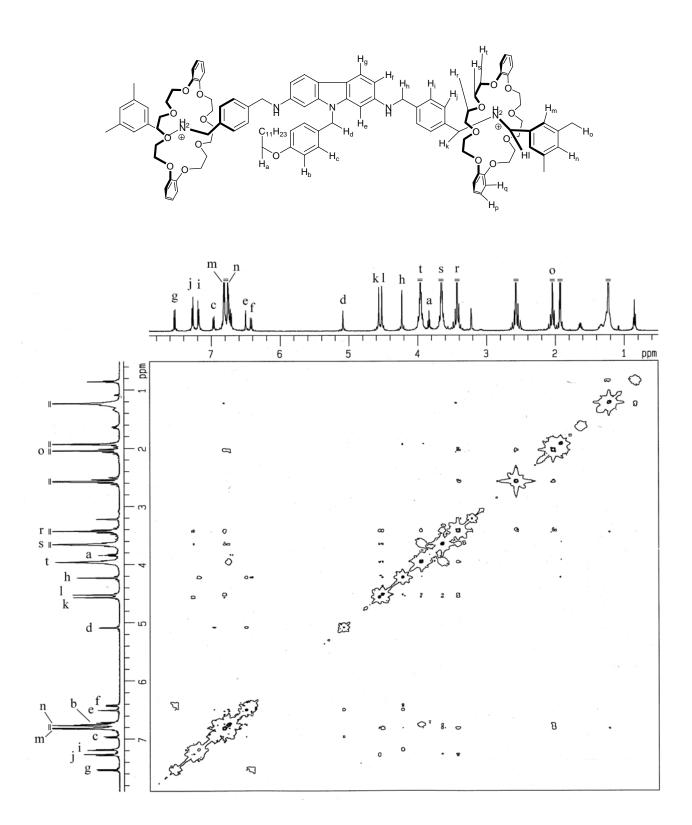
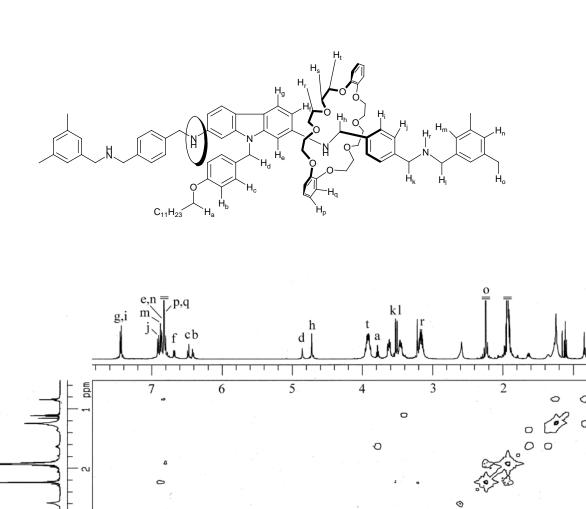
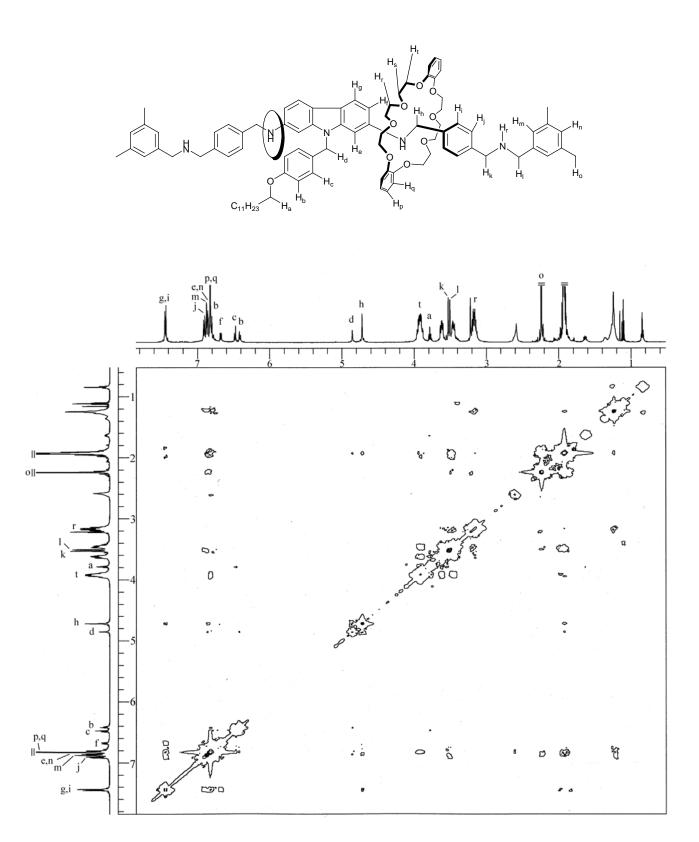
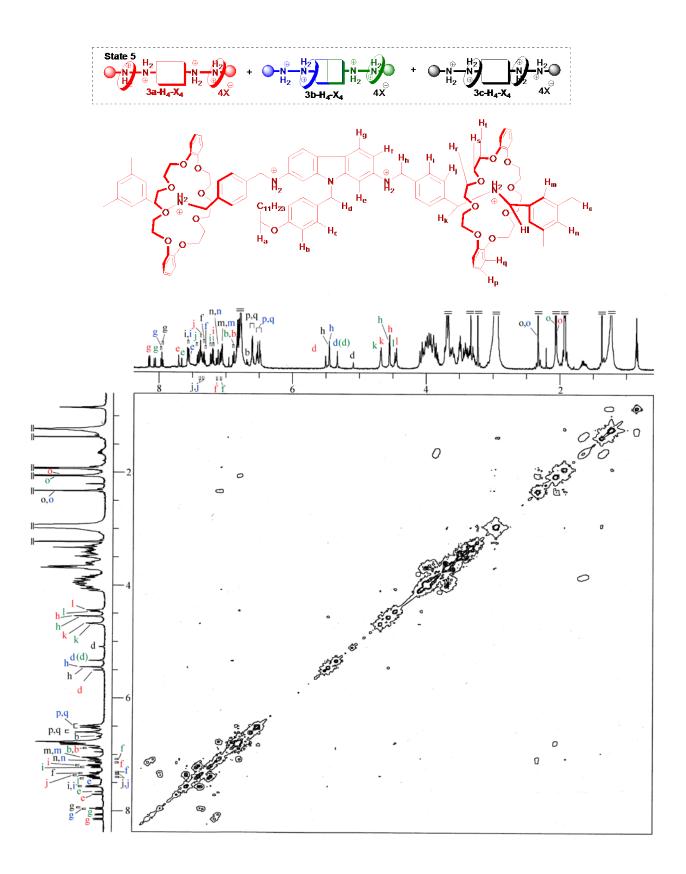



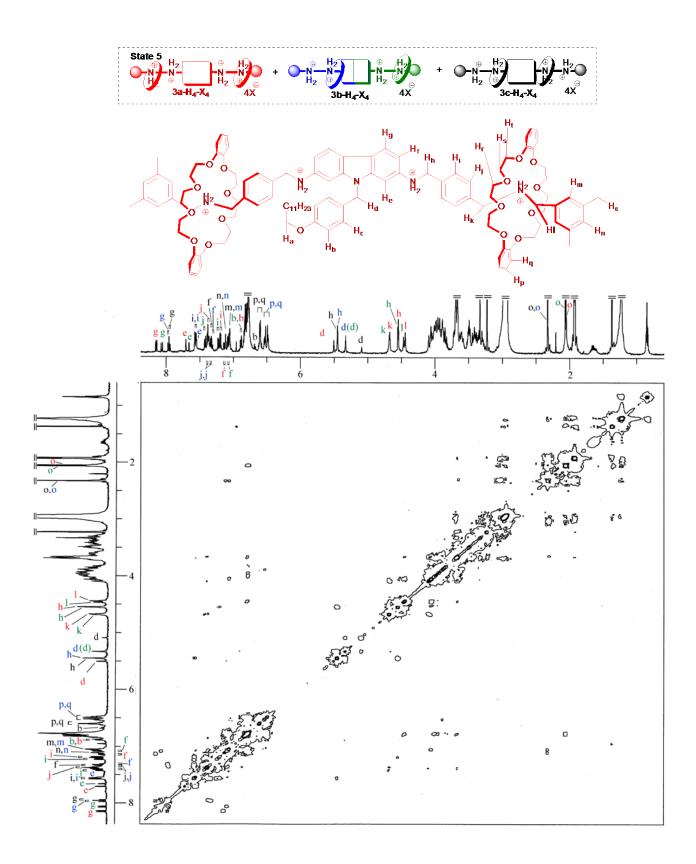
Fig. S9b. NOESY spectrum (500 MHz; CD₃CN/CD₃OD, 10:1; 4.2 mM) of the [3]rotaxane 1-H₂.

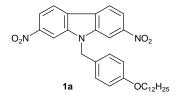

0 ||-

p,q



0


Fig. S10a. COSY spectrum (500 MHz; CD₃CN-CD₃OD, 10:1; 4.2 mM) of the [3]rotaxane **1-H₂** in the presence of t BuOK (2.1 eq).


Fig. S10b. NOESY spectrum (500 MHz; CD_3CN/CD_3OD , 10:1; 4.2 mM) of the [3]rotaxane **1-H₂** in the presence of tBuOK (2.1 eq).

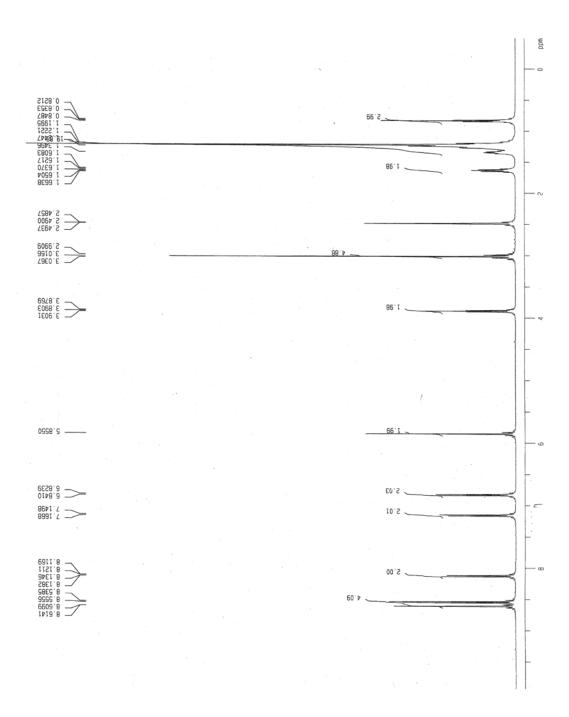


Fig. S11a. COSY spectrum (500 MHz; CD_3CN-CD_3OD , 10:1; 6.1 mM) of the [3]rotaxane **1-H₂** in the presence of TfOH (5 eq).

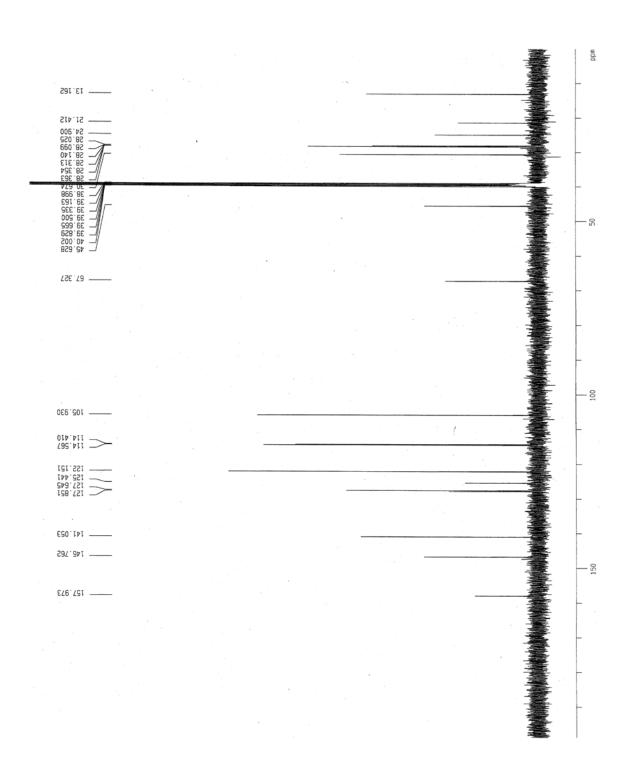


Fig. S11b. NOESY spectrum (500 MHz; CD_3CN/CD_3OD , 10:1; 6.1 mM) of the [3]rotaxanes **1-H**₂ in the presence of TfOH (5 eq).

Fig. S12a. ¹H NMR spectrum (500 MHz, DMSO- d_6) of the carbazole **2a**.

Fig. S12b. 13 C NMR spectrum (500 MHz, DMSO- d_6) of the carbazole **2a**.

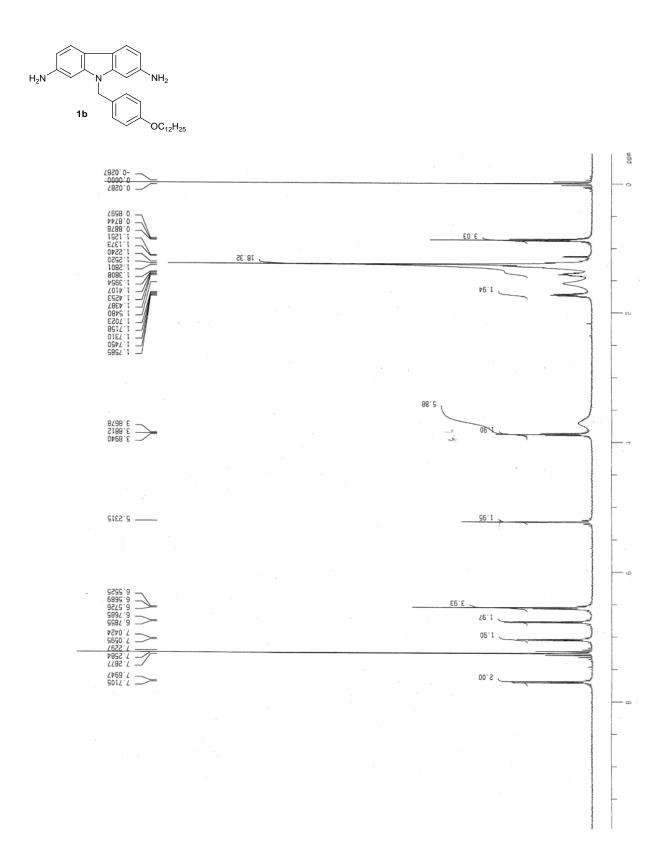
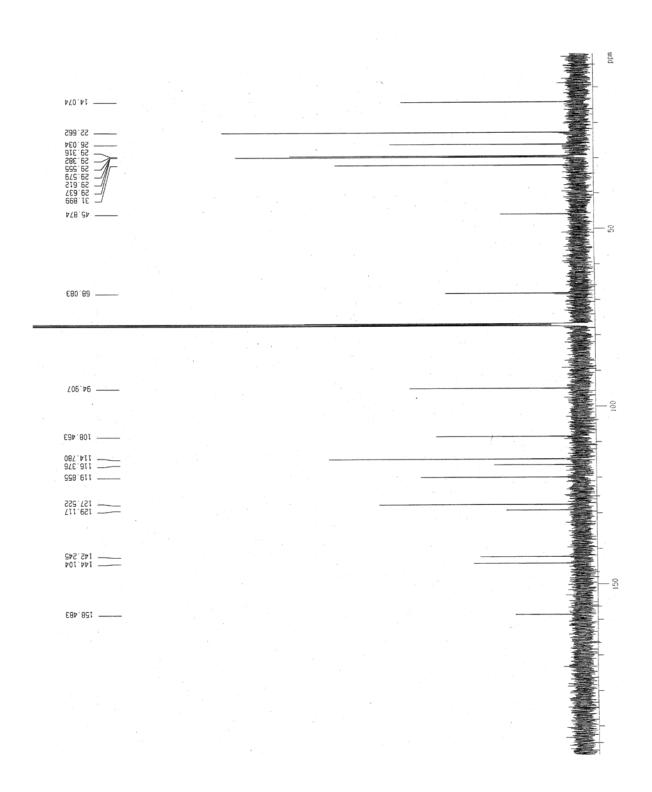



Fig. S13a. 1 H NMR spectrum (500 MHz, CDCl $_3$) of the carbazole 2b.

Fig. S13b. ¹³C NMR spectrum (500 MHz, CDCl₃) of the carbazole **2b**.