Highly Enantioselective Synthesis of Chiral 7-Ring O- and N-Heterocycles by a One-pot Nitro-Michael/Cyclization Tandem Reaction

Renate Rohlmann, Constantin-Gabriel Daniliuc, Olga García Mancheño*

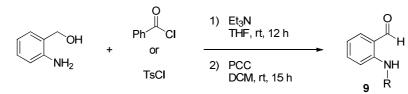
Westfälischen Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, D-48149 Münster (Germany). Fax: (0049) 251 83 33202.

E-mail: olga.garcia@uni-muenster.de

Supporting Information

Contents

General information and materials				
Experimental procedures and characterization	S2			
Synthesis of the aldehyde precursors 9a and 9b	S2			
General procedure for the O- and N-allylation or propargylation	S 3			
Analytical data for compounds 10a-s	S 3			
General procedures for the synthesis of nitroolefins 2	S 8			
Analytical data for compounds 2a-s	S9			
Optimization and general procedure for the enantioselective nitro-Michael addition	S14			
Analytical data for compound 4a	S14			
Optimization and general procedure for the nitrile cycloaddition reaction	S16			
General procedure for the one-pot reaction	S16			
Analytical data for compounds 5	S17			
Proposed mechanism and analytical data for the conjugated nitriles 6 side-products	S42			
Synthesis of bioactive compound <i>ent-8</i>	S43			
References				
X-Ray ORTEP and data of compound 5a				
NMR Spectra of compounds	S 50			

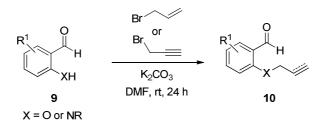

General information and materials. NMR spectra were acquired on a Bruker ARX-300 and a Varian AV-300 or AV-400 MHz. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR) and spin-spin coupling constants (*J*) are given in Hz. ¹³C NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on a Micromass LCT spectrometer using electrospray ionisation (ESI⁺) techniques. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualised by ultraviolet irradiation or KMnO₄ dip. Infrared spectra were recorded on a Varian Associated FT-IR 3100

Excalibur. The wave numbers (v) of recorded IR-signals are quoted in cm⁻¹. Optical rotations, $[\alpha]^{20}_{D}$, were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (*ee*) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA, IC and AD-H or Daicel Chiralcel OD-H columns). Catalysts **1a-d**, ¹ **1e**² and **1f**³ were prepared according to reported procedures in the literature.

X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (Nonius B.V., 1998); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods Enzymol.* **1997**, *276*, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Crystallogr.* **2003**, *A59*, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112-122) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR² values are given for all reflections.

Experimental procedures and characterization:

Synthesis of the aldehyde precursors 9a and 9b⁴


N-(2-Formylphenyl)benzamide (9a)⁵

CHO 2-Aminobenzyl alcohol (2.00 g, 16.24 mmol, 1.0 equiv.) and Et₃N (2.7 mL, 19.45 mmol, NH 1.2 equiv.) was dissolved in 50 mL of dry THF. Benzoyl chloride (2.1 mL, 17.86 mmol, O_{Ph} 1.1 equiv.) was slowly added. After stirring the reaction mixture for 12 h at room temperature, the solvent was removed in vacuo and the residue was dissolved in ethylacetate, washed with saturated NaHCO₃ (aq.) and dried over MgSO₄. Without further purification the alcohol was dissolved in 250 mL CH₂Cl₂ and treated with pyridinium chlorochromate (4.20 g, 19.45 mmol, 1.2 equiv.). After full oxidation to the aldehyde, the reaction mixture was filtrated over a celite pad and the solvent removed in vacuo. The residue was purified by column chromatography (pentane-EtOAc: $15:1 \rightarrow 9:1$) affording *N*-(2formylphenyl)benzamide (**9a**) (3.25 g, 14.45 mmol, 89%) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.07$ (s, 1H), 9.96 (d, J = 0.8 Hz, 1H), 8.94 (d, J = 8.5 Hz, 1H), 8.08 – 8.03 (m, 2H), 7.69 (dd, J = 7.6, 1.7 Hz, 1H), 7.64 (ddd, J = 8.8, 7.4, 1.7 Hz, 1H), 7.59 – 7.48 (m, 3H), 7.28 – 7.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.0$, 166.1, 141.3, 136.4, 136.3, 134.4, 132.3, 129.0 (2C), 127.6 (2C), 123.1, 122.0, 120.0; **HRMS** (ESI⁺): calculated for C₁₄H₁₁NO₂+Na⁺ [M+Na]⁺: m/z = 248.0682, found 248.0685.

N-(2-Formylphenyl)-4-methylbenzenesulfonamide (9b)⁴

2-Aminobenzyl alcohol (2.00 g, 16.24 mmol, 1.0 equiv.) and pyridine (1.6 mL, 19.81 mmol, 1.2 equiv.) was dissolved in 60 mL of dry CHCl₃. 4-Toluenesulfonyl chloride (3.44 g, 17.86 mmol, 1.1 equiv.) was dissolved in 60 mL CHCl₃ and slowly added. After stirring the reaction mixture for 12 h at room temperature, the solvent was removed in vacuo and the residue was dissolved in ethylacetate, washed with saturated NaHCO₃ (aq.) and dried over MgSO₄. Without further purification the alcohol was dissolved in 250 mL CH₂Cl₂ and treated with pyridinium chlorochromate (4.20 g, 19.45 mmol, 1.2 equiv.). After full oxidation to the aldehyde, the reaction mixture was filtrated over a celite pad and the solvent removed in vacuo. The residue was purified by column chromatography (pentane-EtOAc: $15:1\rightarrow9:1$) affording *N*-(2-formylphenyl)-4-methylbenzenesulfonamide (**9b**) (4.24 g, 15.43 mmol, 95%) as a white solid. ¹**H NMR** (300 MHz, CDCl₃): $\delta = 10.79$ (s, 1H), 9.82 (d, *J* = 0.7 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.59 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.50 (ddd, *J* = 8.6, 7.4, 1.6 Hz, 1H), 7.23 (dd, *J* = 8.2, 0.9 Hz, 2H), 7.16 (td, *J* = 7.5, 1.0 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.1$, 144.3, 140.0, 136.4, 136.2, 135.9, 129.9, 127.4, 123.1, 122.0, 117.8, 21.7; **HRMS** (ESI⁺) calculated for C₁₄H₁₃NO₃S+Na⁺ [M+Na]⁺: m/z = 298.0508, found 298.0508.

General procedure for the O- and N-allylation or propargylation⁵

An ordinary vial equipped with a magnetic stirring bar was charged with aldehyde **9** (1 equiv.) and K_2CO_3 (1.1 equiv.) in DMF (0.6 M). To the stirring solution allyl bromide or propargyl bromide (1.1 equiv.) was added dropwise. After stirring the solution for 2 days water was added and extracted 3 times with Et₂O. The combined organic phases was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography.

2-Allyloxy benzaldehyde (10a)⁵

Following the general procedure, salicylaldehyde (3.00 g, 24.56 mmol, 1.0 equiv.) was treated with K₂CO₃ (3.73 g, 27.02 mmol, 1.1 equiv.) and allyl bromide (2.40 mL, 27.02 mmol, 1.1 equiv.) in 30 mL DMF. The 2-allyloxy benzaldehyde (**10a**) was isolated by destillation (1 Torr, 90 °C) as colorless oil (3.82 g, 23.53 mmol, 96%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.53$ (d, J = 0.8 Hz, 1H), 7.83 (dd, J = 7.7, 1.8 Hz, 1H), 7.52 (ddd, J = 8.4, 7.3, 1.9 Hz, 1H), 7.13 – 6.88 (m, 2H), 6.20 – 5.94 (m, 1H), 5.44 (dq, J = 17.3, 1.6 Hz, 1H), 5.33 (dq, J = 10.6, 1.4 Hz, 1H), 4.65 (dt, J = 5.1, 1.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 189.8$, 161.0, 136.0, 132.5, 128.5, 125.1, 120.9, 118.1, 112.9, 69.2; HRMS (ESI⁺) calculated for C₁₀H₁₀O₂+Na⁺ [M+Na]⁺: m/z = 85.0573, found 185.0571.

2-(Allyloxy)-5-methylbenzaldehyde (10e)⁶

CHO Following the general procedure, 5-methylsalicylaldehyde (855 mg, 6.28 mmol, 1.0 equiv.) was treated with K₂CO₃ (927 mg, 6.71 mmol, 1.1 equiv.) and allyl bromide

(530 μL, 6.71 mmol, 1.1 equiv.) in DMF (10 mL). The 2-(allyloxy)-5-methylbenzaldehyde (**10e**) was isolated by column chromatography (petane-EtOAc 400:3) as colorless oil (916 mg, 5.20 mmol, 83%). ¹**H NMR** (300 MHz, CDCl₃): δ = 10.50 (s, 1H), 7.64 (dd, *J* = 2.5, 1.0 Hz, 1H), 7.33 (ddd, *J* = 8.5, 2.1, 1.0 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 6.07 (ddt, *J* = 17.2, 10.4, 5.1 Hz, 1H), 5.44 (dq, *J* = 17.2, 1.6 Hz, 1H), 5.32 (dq, *J* = 10.6, 1.4 Hz, 1H), 4.63 (dt, *J* = 5.0, 1.4 Hz, 2H), 2.31 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): δ = 190.1, 159.2, 136.6, 132.7, 130.4, 128.6, 124.9, 118.1, 113.0, 69.4, 20.4. **HRMS** (ESI⁺): calculated for C₁₁H₁₂O₂+Na⁺ [M+Na]⁺: m/z = 199.0730, found 199.0732.

2-(Allyloxy)-5-methoxybenzaldehyde (10f)

MeO_C CHO Following the general procedure, 5-methoxysalicylaldehyde (1.12 g, 7.35 mmol, 1.0 equiv.) was treated with K₂CO₃ (1.10 g, 7.85 mmol, 1.1 equiv.) and allyl bromide (670 μL, 7.85 mmol, 1.1 equiv.) in DMF (10 mL). The 2-(allyloxy)-5-methoxybenzaldehyde (**10f**) was isolated by column chromatography (petane-EtOAc 400:3) as colorless oil (1.41 mg, 7.34 mmol, 99%). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.47$ (s, 1H), 7.30 (d, J = 3.3 Hz, 1H), 7.08 (dd, J = 9.1, 3.3 Hz, 1H), 6.91 (d, J = 9.1 Hz, 1H), 6.03 (ddt, J = 17.3, 10.4, 5.2 Hz, 1H), 5.40 (dq, J = 17.3, 1.6 Hz, 1H), 5.29 (dq, J = 10.6, 1.4 Hz, 1H), 4.58 (dt, J = 5.2, 1.6 Hz, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.5$, 155.8, 153.8, 132.7, 125.4, 123.5, 118.0, 114.9, 110.3, 70.0, 55.8; HRMS (ESI⁺) calculated for C₁₁H₁₂O₃+Na⁺ [M+Na]⁺: m/z = 215.0679, found 215.0686.

2-(Allyloxy)-4-methoxybenzaldehyde (10g)⁶

Following the general procedure, 4-methoxysalicylaldehyde (500 mg, 3.29 mmol, MeO 1.0 equiv.) was treated with K₂CO₃ (499 mg, 3.61 mmol, 1.1 equiv.) and allyl bromide (313 μL, 3.61 mmol, 1.1 equiv.) in DMF (5 mL). The 2-(allyloxy)-4-methoxybenzaldehyde (**10g**) was isolated by column chromatography (petane-EtOAc 9:1) as colorless oil (620 mg, 3.23 mmol, 98%).¹H NMR (300 MHz, CDCl₃): $\delta = 10.35$ (d, J = 0.8 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 6.55 (ddd, J = 8.7, 2.2, 0.8 Hz, 1H), 6.43 (d, J = 2.2 Hz, 1H), 6.07 (ddt, J = 17.3, 10.4, 5.1 Hz, 1H), 5.45 (dq, J = 17.3, 1.6 Hz, 1H), 5.33 (dq, J = 10.5, 1.4 Hz, 1H), 4.62 (dt, J = 5.1, 1.6 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 188.3$, 166.0, 162.6, 132.3, 130.5, 119.2, 118.1, 106.0, 99.0, 69.1, 55.6; HRMS (ESI⁺) calculated for C₁₁H₁₂O₃+Na⁺ [M+Na]⁺: m/z = 215.0679, found 215.0688.

2-(Allyloxy)-5-methoxybenzaldehyde (10h)⁵

Following the general procedure, 3-methoxysalicylaldehyde (1.09 g, 7.14 mmol, 1.0 equiv.) was treated with K_2CO_3 (1.10 g, 7.85 mmol, 1.1 equiv.) and allyl bromide (670 µL, 7.85 mmol, 1.1 equiv.) in DMF (10 mL). The 2-(allyloxy)-5-methoxybenzaldehyde (10h) was

isolated by column chromatography (petane-EtOAc 400:3 \rightarrow 400:14) as colorless oil (1.31 g, 6.82 mmol, 95%). **¹H NMR** (400 MHz, CDCl₃): $\delta = 10.42$ (d, J = 0.8 Hz, 1H), 7.39 (dd, J = 6.9, 2.5 Hz, 1H), 7.17 – 7.04 (m,

2H), 6.05 (ddt, J = 17.1, 10.3, 6.1 Hz, 1H), 5.33 (dq, J = 17.2, 1.5 Hz, 1H), 5.24 (dq, J = 10.3, 1.2 Hz, 1H), 4.64 (dt, J = 6.1, 1.3 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.5$, 153.1, 151.3, 133.2, 130.2, 124.2, 119.1, 119.0, 118.0, 75.2, 56.1; HRMS (ESI⁺): calculated for C₁₁H₁₂O₃+Na⁺ [M+Na]⁺: m/z = 215.0679, found 215.0689.

2-(Allyloxy)-4-diethylaminobenzaldehyde (10i)

Following the general procedure, 4-diethylaminosalicylaldehyde (1.00 g, 5.17 mmol, 1.0 equiv.) was treated with K₂CO₃ (786 mg, 5.69 mmol, 1.1 equiv.) and allyl bromide (490 µL, 5.69 mmol, 1.1 equiv.) in DMF (8 mL). The 2-(allyloxy)-4diethylaminobenzaldehyde (10i) was isolated by column chromatography (petane-EtOAc 9:1) as a yellow solid (1.20 g, 5.14 mmol, 99%).¹H NMR (300 MHz, CDCl₃): $\delta = 10.20$ (s, 1H), 7.72 (d, J = 8.9 Hz, 1H), 6.37 – 6.22 (m, 1H), 6.07 (ddt, J = 17.5, 10.4, 5.1 Hz, 2H), 5.45 (dq, J = 17.3, 1.6 Hz, 1H), 5.32 (dq, J = 10.4, 1.4 Hz, 1H), 4.63 (dt, J = 5.2, 1.6 Hz, 2H), 3.41 (q, J = 7.1 Hz, 4H), 1.21 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 187.2$, 163.3, 133.1 (2C), 130.5 (2C), 117.8 (2C), 104.8, 69.1, 45.2 (2C), 12.7 (2C); HRMS (ESI⁺) calculated for C₁₄H₁₉NO₂+Na⁺ [M+Na]⁺: m/z = 256.1208, found 256.1309.

2-(Allyloxy)-1-naphthaldehyde (10j)⁵

Following the general procedure, 2-hydroxy-1-naphthaldehyde (2.00 g, 11.62 mmol, 1.0 equiv.) was treated with K₂CO₃ (1.77 g, 12.78 mmol, 1.1 equiv.) and allyl bromide (1.10 mL, 142.78 mmol, 1.1 equiv.) in DMF (18 mL). 2-(allyloxy)-1-naphthaldehyde (**10j**) was isolated by column chromatography (petane-EtOAc 9:1) as a white solid (2.44 g, 11.50 mmol, 99%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.95$ (s, 1H), 9.28 (dd, J = 8.8, 1.0 Hz, 1H), 8.03 (dt, J = 9.1, 0.6 Hz, 1H), 7.77 (ddt, J = 8.2, 1.4, 0.6 Hz, 1H), 7.62 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.42 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.26 (d, J = 9.1 Hz, 1H), 6.10 (ddt, J = 17.3, 10.4, 5.1 Hz, 1H), 5.48 (dtd, J = 17.2, 1.7, 1.2 Hz, 1H), 5.36 (dq, J = 10.6, 1.4 Hz, 1H), 4.79 (dt, J = 5.1, 1.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 192.2$, 163.2, 137.6, 132.4, 131.7, 130.0, 128.7, 128.3, 125.1, 125.0, 118.5, 117.2, 113.9, 70.3; HRMS (ESI⁺) calculated for C₁₄H₁₂O₂+Na⁺ [M+Na]⁺: m/z = 235.0730, found 235.0737.

2-(Allyloxy)-5-fluorobenzaldehyde (10k)⁵

Figure CHO Following the general procedure, 5-fluorobenzaldehyde (1.00 g, 7.14 mmol, 1.0 equiv.) was treated with K₂CO₃ (1.10 g, 7.85 mmol, 1.1 equiv.) and allyl bromide (670 µL, 7.85 mmol, 1.1 equiv.) in DMF (10 mL). The 2-(allyloxy)-5-fluorobenzaldehyde (**10k**) was isolated by column chromatography (petane-EtOAc 400:5) as colorless oil (1.89 g, 6.60 mmol, 93%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.48$ (d, J = 3.2 Hz, 1H), 7.51 (dd, J = 8.3, 3.3 Hz, 1H), 7.23 (ddd, J = 9.1, 7.6, 3.3 Hz, 1H), 6.95 (dd, J = 9.1, 3.9 Hz, 1H), 6.06 (ddt, J = 17.1, 10.5, 5.2 Hz, 1H), 5.44 (dq, J = 17.3, 1.6 Hz, 1H), 5.35 (dq, J = 10.5, 1.4 Hz, 1H), 4.64 (dt, J = 5.3, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 188.8$ (d, ⁴J = 1.8 Hz),

157.4 (d, ${}^{4}J$ = 1.5 Hz), 157.1 (d, ${}^{1}J$ = 241.5 Hz), 132.3 , 126.0 (d, ${}^{3}J$ = 6.1 Hz), 122. 6 (d, ${}^{2}J$ = 23.9 Hz), 118.5, 114.7 (d, ${}^{3}J$ = 7.2 Hz), 114.2 (d, ${}^{2}J$ = 23.4 Hz), 70.0; ¹⁹F NMR (282 MHz, CDCl₃): δ = -122.33; HRMS (ESI⁺) calculated for C₁₀H₉FO₂+Na⁺ [M+Na]⁺: m/z = 203.0479, found 203.0483.

2-(Allyloxy)-5-bromobenzaldehyde (10l)⁵

Br CHO Following the general procedure, 5-bromosalicylaldehyde (1.44 g, 7.14 mmol, 1.0 equiv.) was treated with K₂CO₃ (1.10 g, 7.85 mmol, 1.1 equiv.) and allyl bromide (670 μL, 7.85 mmol, 1.1 equiv.) in DMF (10 mL). The 2-(allyloxy)-5-bromobenzaldehyde (**10l**) was isolated by column chromatography (petane-EtOAc 400:3) as a yellow solid (1.67 g, 6.93 mmol, 97%). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.41$ (s, 1H), 7.89 (d, J = 2.7 Hz, 1H), 7.57 (dd, J = 8.9, 2.6 Hz, 1H), 6.86 (d, J = 8.9 Hz, 1H), 6.04 (ddt, J = 17.3, 10.4, 5.2 Hz, 1H), 5.42 (dq, J = 17.2, 1.6 Hz, 1H), 5.33 (dq, J = 10.6, 1.4 Hz, 1H), 4.63 (dt, J = 5.2, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.3$, 159.9, 138.3, 132.0, 131.0, 126.4, 118.6, 115.0, 113.7, 69.6; HRMS (ESI⁺) calculated for C₁₀H₉BrO₂+Na⁺ [M+Na]⁺: m/z = 262.9678, found 262.9677.

2-(Allyloxy)-4,6-dichlorobenzaldehyde (10m)⁵

Following the general procedure, 4,6-dichlorosalicylaldehyde (701 mg, 3.67 mmol, CHO 1.0 equiv.) was treated with K₂CO₃ (558 mg, 4.04 mmol, 1.1 equiv.) and allyl bromide (350 µL. 4.04 mmol. 1.1 equiv.) in DMF (6 mL). The 2-(allyloxy)-4.6dichlorobenzaldehyde (10m) was isolated by column chromatography (petane-EtOAc 400:3) as colorless oil (796 mg, 3.44 mmol, 94%). ¹**H NMR** (400 MHz, CDCl₃): $\delta = 10.47$ (s, 1H), 7.06 (dd, J = 1.9, 0.5 Hz, 1H), 6.89 (d, J = 1.8 Hz, 1H), 6.03 (ddt, J = 17.3, 10.6, 5.1 Hz, 1H), 5.48 (dtd, J = 17.3, 1.7, 1.1 Hz, 1H), 5.37 (dq, J = 17.3, 1.1 Hz), 5.37 (dq, J = 17.3, 1.1 Hz), 5.37 (dq, J = 17.3, 1.1 HJ = 10.6, 1.4 Hz, 1H), 4.64 (dt, J = 5.1, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.0, 161.5, 140.4,$ 137.3, 131.4, 123.5, 121.2, 119.0, 112.5, 70.2; **HRMS** (ESI⁺) calculated for $C_{10}H_8Cl_2O_2+Na^+$ [M+Na]⁺: m/z = 252.9794, found 252.9800.

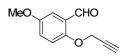
N-Allyl-*N*-(2-formylphenyl)benzamide (10n)⁵

Following the general procedure, *N*-(2-formylphenyl)benzamide **8a** (1.00 g, 4.44 mmol, 1.0 equiv.) was treated with K₂CO₃ (675 mg, 4.88 mmol, 1.1 equiv.) and allyl bromide (420 μL, 4.88 mmol, 1.1 equiv.) in DMF (7.5 mL). The *N*-allyl-*N*-(2-formylphenyl)benzamide (**10n**) was isolated by column chromatography (petane-DCM-EtOAc 2:1:0.1) as colorless oil (1.11 g, 4.17 mmol, 94%). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.05$ (s, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.28 – 7.07 (m, 6H), 6.00 (dd, J = 16.9, 8.8 Hz, 1H), 5.14 (t, J = 14.6 Hz, 2H), 4.55 (ddd, J = 69.0, 14.0, 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.4$, 170.5, 145.0, 135.3, 134.9 (2C), 132.4, 132.0, 130.3, 130.1 (2C), 129.9, 128.6, 128.1, 128.0, 119.7, 54.2; HRMS (ESI⁺) calculated for C₁₇H₁₅NO₂+Na⁺ [M+Na]⁺: m/z = 288.0995, found 288.0993.

N-Allyl-*N*-(2-formylphenyl)-4-methylbenzenesulfonamide (100)⁵

Following the general procedure, salicylaldehyde (1.30 g, 4.72 mmol, 1.0 equiv.) was treated with K₂CO₃ (717 mg, 5.19 mmol, 1.1 equiv.) and allyl bromide (500 µL, 5.19 mmol, 1.1 equiv.) in DMF (7.5 mL). The *N*-allyl-*N*-(2-formylphenyl)-4-methylbenzenesulfonamide (100) was isolated by column chromatography (petane-DCM-EtOAc 2:1:0.1) as a white solid (1.44 g, 4.57 mmol, 97%). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.40$ (s, 1H), 8.04 – 7.77 (m, 1H), 7.51 – 7.33 (m, 4H), 7.34 – 7.14 (m, 2H), 6.67 (dd, *J* = 7.7, 1.4 Hz, 1H), 5.70 (ddt, *J* = 16.9, 10.2, 6.8 Hz, 1H), 5.20 – 4.88 (m, 2H), 4.56 (br.s, 1H), 3.81 (br.s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.2$, 144.3, 141.3, 136.0, 134.2, 134.1, 131.6, 129.7 (2C), 128.6, 128.3, 127.9 (2C), 127.8, 120.5, 54.3, 21.6; HRMS (ESI⁺) calculated for C₁₇H₁₇NO₃S+Na⁺ [M+Na]⁺: m/z = 338.0821, found 338.0817.

2-(Prop-2-yn-1-yloxy)benzaldehyde (10p)⁷


Following the general procedure, salicylaldehyde (1.00 g, 8.19 mmol, 1.0 equiv.) was treated with K₂CO₃ (1.00 mL, 9.01 mmol, 1.1 equiv.) and propargyl bromide (80% in toluene; 1.00 mL, 9.01 mmol, 1.1 equiv.) in DMF (13 mL). The 2-(prop-2-yn-1-yloxy)benzaldehyde (71) was isolated by column chromatography (petane-DCM 5:3) as colorless oil (1.28 g, 7.99 mmol, 98%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.47$ (s, 1H), 7.85 (dd, J = 7.7, 1.9 Hz, 1H), 7.56 (ddd, J = 8.4, 7.3, 1.9 Hz, 1H), 7.08 (ddt, J = 14.2, 7.5, 1.0 Hz, 2H), 4.82 (d, J = 2.4 Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 189.6$, 159.8, 135.8, 128.6, 125.5, 121.8, 113.3, 77.8, 76.6, 56.4; HRMS (ESI⁺) calculated for C₁₀H₈O₂+Na⁺ [M+Na]⁺: m/z = 183.0417, found 183.0420.

5-Methyl-2-(prop-2-yn-1-yloxy)benzaldehyde (10q)⁶

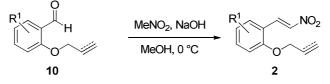
CHO Following the general procedure, 5-methylsalicylaldehyde (739 mg, 5.43 mmol, 1.0 equiv.) was treated with K_2CO_3 (825 mg, 5.97 mmol, 1.1 equiv.) and and propargyl bromide (80% in toluene; 0.67 mL, 5.97 mmol, 1.1 equiv.) in DMF (4.7 mL). The 2-

(allyloxy)-5-methylbenzaldehyde (**10q**) was isolated by column chromatography (petane-EtOAc 20:1) as a yellow solid (696 mg, 4.00 mmol, 74%). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 10.44$ (s, 1H), 7.71 – 7.57 (m, 1H), 7.36 (ddd, J = 8.5, 2.4, 0.8 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 4.79 (d, J = 2.4 Hz, 2H), 2.55 (t, J = 2.4 Hz, 1H), 2.31 (t, J = 0.7 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃): $\delta = 189.8$, 158.0, 136.5, 131.3, 128.7, 125.3, 113.4, 78.0, 76.5, 56.6, 20.4; **HRMS** (ESI⁺): calculated for C₁₁H₁₀O₂+Na⁺ [M+Na]⁺: m/z = 197.0573, found 197.0586.

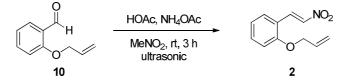
5-Methoxy-2-(prop-2-yn-1-yloxy)benzaldehyde (10r)⁶

Me

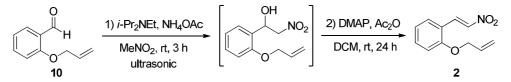
Following the general procedure, 5-methoxysalicylaldehyde (974mg, 6.40mmol, 1.0 equiv.) was treated with K_2CO_3 (973 mg, 7.04 mmol, 1.1 equiv.) and and propargyl bromide (80% in toluene; 0.82 mL, 7.04 mmol, 1.1 equiv.) in DMF (5 mL). The 2-


(allyloxy)-5-methylbenzaldehyde (**10r**) was isolated by column chromatography (petane-EtOAc 20:1) as a yellow solid (1.14 g, 6.01 mmol, 64%). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 10.44$ (s, 1H), 7.34 (d, J = 3.2 Hz, 1H), 7.14 (dd, J = 9.1, 3.1 Hz, 1H), 7.07 (d, J = 9.0 Hz, 1H), 4.78 (d, J = 2.4 Hz, 2H), 3.80 (s, 3H), 2.55 (t, J = 2.4 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl₃): $\delta = 189.5$, 154.6, 154.5, 126.2, 123.4, 115.7, 110.5, 78.0, 76.5, 57.5, 55.9; **HRMS** (ESI⁺) calculated for C₁₁H₁₀O₂+Na⁺ [M+Na]⁺: m/z = 213.0522, found 213.0532.

5-Chloro-2-(prop-2-yn-1-yloxy)benzaldehyde (10s)⁶


Following the general procedure, 5-clorosalicylaldehyde (1.00 g, 6.40mmol, 1.0 equiv.) was treated with K₂CO₃ (973 mg, 7.04 mmol, 1.1 equiv.) and and propargyl bromide (80% in toluene; 0.82 mL, 7.04 mmol, 1.1 equiv.) in DMF (5 mL). The 2-(allyloxy)-5-

methylbenzaldehyde (**7b**) was isolated by column chromatography (petane-EtOAc 20:1) as a yellow solid (1.14 g, 6.01 mmol, 64%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.39$ (s, 1H), 7.79 (d, J = 2.8 Hz, 1H), 7.50 (dd, J = 8.9, 2.8 Hz, 1H), 7.08 (d, J = 8.9 Hz, 1H), 4.82 (d, J = 2.4 Hz, 2H), 2.59 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 188.3$, 158.2, 135.3, 128.2, 127.5, 126.4, 115.1, 77.3, 77.1, 56.8; HRMS (ESI⁺) calculated for C₁₀H₇O₂+Na⁺ [M+Na]⁺: m/z = 217.0027, found 217.0027.


General procedures for the synthesis of nitroolefins 2

<u>Method A:</u>⁸ Aldehyde 10 (1.0 equiv.) was treated with MeNO₂ (1 equiv.) and 10 M NaOH aq. solution (1.1 equiv.) in MeOH (4 M) at 0 °C for 15 min. Nitroolefin 2 was then isolated by column chromatography.

<u>Method B:</u>⁹ Aldehyde 10 (1.0 equiv.) was treated with MeNO₂ (12.1 equiv.), AcOH (2.9 equiv.) and NH₄OAc (2.2 equiv.) at rt under ultrasound irradiation for 3 h. The nitroolefin 2 was then isolated by column chromatography.

<u>Method C:</u>⁹ Aldehyde **10** (1.0 equiv.) was treated with nitromethane (18.7 equiv.), diisopropylethylamine (0.1 equiv.) and NH₄OAc (2.5 equiv.) at rt under ultrasound irradiation for 3 h. The generated crude alcohol was treated in CH₂Cl₂ (0.1 M) with Ac₂O (1.1 equiv.) in the presence of 4-dimethylaminopyridine (0.05 equiv.) for 24 h. The nitroolefin **2** was then isolated by column chromatography.

(*E*)-1-(Allyloxy)-2-(2-nitrovinyl)benzene (2a)¹⁰

NO₂ Following the general procedure **A**, aldehyde **10a** (3.80 g, 23.42 mmol, 1.0 equiv.) was treated with nitromethane (1.26 mL, 23.42 mmol, 1.0 equiv.) and 10 M NaOH aq. solution (2.6 mL, 25.76 mmol, 1.1 equiv.) in MeOH (6 mL). The corresponding nitroolefin **2a** was isolated by column chromatography (petane-DCM 4:1) as a yellow solid (2.80 g, 13.60 mmol, 58%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.17$ (d, J = 13.6 Hz, 1H), 7.88 (d, J = 13.6 Hz, 1H), 7.54 – 7.35 (m, 2H), 7.07 – 6.90 (m, 2H), 6.10 (ddt, J = 17.1, 10.6, 5.4 Hz, 1H), 5.44 (dq, J = 17.3, 1.5 Hz, 1H), 5.37 (dq, J = 10.5, 1.3 Hz, 1H), 4.68 (dt, J = 5.5, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 158.6$, 138.4, 135.6, 133.5, 132.5, 132.3, 121.4, 119.4, 119.0, 112.6, 69.5; HRMS (ESI⁺) calculated for C₁₁H₁₁NO₃+Na⁺ [M+Na]⁺: m/z = 228.0631, found 228.0636.

(*E*)-1-(Allyloxy)-4-methyl-2-(2-nitrovinyl)benzene (2e)

^{Me} NO₂ Following the general procedure **B**, aldehyde **10e** (916 mg, 5.20 mmol, 1.0 equiv.) was treated with nitromethane (3.40 mL, 63.00 mmol, 12.1 equiv.), acetic acid (0.86 mL, 15.08 mmol, 2.9 equiv.) and NH₄OAc (882 mg, 11.44 mmol, 2.2 equiv.). The corresponding nitroolefin **2e** was isolated by column chromatography (petane-EtOAc 98:2 \rightarrow 7:1) as a yellow solid (990 mg, 4.52 mmol, 87%). ¹**H** NMR (300 MHz, CDCl₃): δ = 8.14 (d, *J* = 13.6 Hz, 1H), 7.87 (d, *J* = 13.6 Hz, 1H), 7.26 – 7.19 (m, 2H), 6.86 (d, *J* = 8.3 Hz, 1H), 6.08 (ddt, *J* = 17.3, 10.6, 5.4 Hz, 1H), 5.42 (dq, *J* = 17.3, 1.5 Hz, 1H), 5.35 (dq, *J* = 10.5, 1.3 Hz, 1H), 4.64 (dt, *J* = 5.4, 1.5 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 156.6, 138.2, 135.8, 134.1, 132.7, 132.5, 130.7, 119.1, 118.7, 112.6, 69.6, 20.4; **HRMS** (ESI⁺) calculated for C₁₂H₁₃NO₃+Na⁺ [M+Na]⁺: m/z = 242.0788, found 242.0785.

(E)-1-(Allyloxy)-4-methoxy-2-(2-nitrovinyl)benzene (2f)

^{MeO} NO₂ Following the general procedure **B**, aldehyde **10f** (1.41 g, 7.34 mmol, 1.0 equiv.) was treated with nitromethane (4.80 mL, 88.78 mmol, 12.1 equiv.), acetic acid (1.20 mL, 21.28, 2.9 equiv.) and NH₄OAc (1.24 g, 16.14 mmol, 2.2 equiv.). The corresponding nitroolefin **2f** was isolated by column chromatography (petane-DCM 4:1 \rightarrow 3:1) as a yellow solid (1.46 mg, 6.20 mmol, 85%). ¹**H NMR** (300 MHz, CDCl₃): δ = 8.14 (d, *J* = 13.6 Hz, 1H), 7.85 (d, *J* = 13.6 Hz, 1H), 7.02 – 6.86 (m, 3H), 6.08 (ddt, *J* = 17.3, 10.6, 5.4 Hz, 1H), 5.42 (dq, *J* = 17.3, 1.5 Hz, 1H), 5.34 (dq, *J* = 10.5, 1.3 Hz, 1H), 4.62 (dt, *J* = 5.4, 1.5 Hz, 2H), 3.80 (s, 3H); ¹³**C NMR** (75MHz, CDCl₃): δ = 153.8, 153.0, 138.6, 135.4, 132.6, 120.0, 119.3, 118.7, 116.1, 114.0, 70.1, 56.0; **HRMS** (ESI) calculated for C₁₂H₁₃NO₄+Na⁺ [M+Na]⁺: m/z = 258.0737, found 258.0739.

(E)-1-(Allyloxy)-5-methoxy-2-(2-nitrovinyl)benzene (2g)

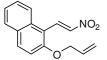
MeO O NO2

Following the general procedure **B**, aldehyde **10g** (620 mg, 3.20 mmol, 1.0 equiv.) was treated with nitromethane (2.10 mL, 39.03 mmol, 12.1 equiv.), acetic acid (0.53 mL, 9.28 mmol, 2.9 equiv.) and NH₄OAc (543 mg, 7.04 mmol, 2.2 equiv.). The

corresponding nitroolefin **2g** was isolated by column chromatography (petane-DCM $5:1\rightarrow 3:1\rightarrow 1:1$) as a yellow solid (685 mg, 2.91 mmol, 91%). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 8.12$ (d, J = 13.5 Hz, 1H), 7.84 (d,

yenow solid (605 mg, 2.51 minol, 9176). If Hurk (506 minz, CDCl₃), 0 = 0.12 (d, J = 15.5 Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H), 6.56 (dd, J = 8.6, 2.4 Hz, 1H), 6.48 (d, J = 2.3 Hz, 1H), 6.10 (ddt, J = 17.3, 10.7, 5.4 Hz, 1H), 5.44 (dq, J = 17.2, 1.5 Hz, 1H), 5.38 (dq, J = 10.5, 1.3 Hz, 1H), 4.65 (dt, J = 5.4, 1.4 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 164.4$, 160.3, 136.2, 135.9, 134.4, 132.2, 119.1, 112.7, 106.3, 99.9, 69.7, 55.8; HRMS (ESI⁺) calculated for C₁₂H₁₃NO₄+Na⁺ [M+Na]⁺: m/z = 258.0737, found 258.0742.

(E)-1-(Allyloxy)-6-methoxy-2-(2-nitrovinyl)benzene (2h)


NO₂ Following the general procedure **B**, aldehyde **10h** (1.31 g, 6.80 mmol, 1.0 equiv.) was treated with nitromethane (4.45 mL, 82.28 mmol, 12.1 equiv.), acetic acid (1.11 mL, 19.72 mmol, 2.9 equiv.) and NH₄OAc (1.15 mg, 14.96 mmol, 2.2 equiv.). The corresponding nitroolefin **2h**

was isolated by column chromatography (petane-DCM 4:1) as a yellow solid (1.17 mg, 4.97 mmol, 73%). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 8.22$ (d, J = 13.7 Hz, 1H), 7.75 (d, J = 13.7 Hz, 1H), 7.14 – 6.98 (m, 3H), 6.07 (ddt, J = 17.1, 10.3, 6.1 Hz, 1H), 5.37 (dq, J = 17.1, 1.5 Hz, 1H), 5.27 (dq, J = 10.3, 1.1 Hz, 1H), 4.60 (dt, J = 6.1, 1.3 Hz, 2H), 3.89 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): $\delta = 153.3$, 148.1, 138.5, 135.0, 133.3, 124.6, 124.6, 121.3, 119.1, 115.8, 74.5, 56.0; **HRMS** (ESI⁺) calculated for C₁₂H₁₃NO₄+Na⁺ [M+Na]⁺: m/z = 258.0737, found 258.0738.

(E)-1-(Allyloxy)-5-diethylamino-2-(2-nitrovinyl)benzene (2i)

Following the general procedure **B**, aldehyde **10i** (933 mg, 4.00 mmol, 1.0 equiv.) was treated with nitromethane (2.62 mL, 48.40 mmol, 12.1 equiv.), acetic acid (0.66 mL, 11.60 mmol, 2.9 equiv.) and NH₄OAc (678 mg, 8.80 mmol, 2.2 equiv.). The corresponding nitroolefin **2i** was isolated by column chromatography (petane-DCM 7:3 \rightarrow 1:1) as a yellow solid (1.02 mg, 3.68 mmol, 92%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.11$ (d, J = 13.2 Hz, 1H), 7.77 (d, J = 13.2 Hz, 1H), 7.25 (d, J = 9.0 Hz, 1H), 6.29 (dd, J = 8.9, 2.4 Hz, 1H), 6.18 – 6.00 (m, 2H), 5.44 (dq, J = 17.3, 1.5 Hz, 1H), 5.35 (dq, J = 10.5, 1.3 Hz, 1H), 4.65 (dt, J = 5.5, 1.5 Hz, 2H), 3.41 (q, J = 7.1 Hz, 4H), 1.21 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 161.1$, 152.3, 137.0, 134.8, 132.8, 132.7, 118.6, 107.3, 105.1, 94.9, 69.3, 45.0, 12.7; HRMS (ESI⁺) calculated for C₁₅H₂₀N₂O₃+Na⁺ [M+Na]⁺: m/z = 299.1366, found 299.1367.

(E)-2-(Allyloxy)-1-(2-nitrovinyl)naphthalene (2j)

Following the general procedure **B**, aldehyde **10j** (620 mg, 3.20 mmol, 1.0 equiv.) was treated with nitromethane (2.62 mL, 48.40 mmol, 12.1 equiv.), acetic acid (0.66 mL, 11.60 mmol, 2.9 equiv.) and NH_4OAc (678 mg, 8.80 mmol, 2.2 equiv.). The corresponding

nitroolefin 2j was isolated by column chromatography (petane-DCM 7:1) as a yellow solid (932 mg,

3.65 mmol, 91%). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.84$ (d, J = 13.3 Hz, 1H), 8.24 – 8.10 (m, 2H), 7.94 (d, J = 9.1 Hz, 1H), 7.90 – 7.76 (m, 1H), 7.61 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 7.44 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 7.28 (d, J = 9.2 Hz, 1H), 6.14 (ddt, J = 17.3, 10.6, 5.4 Hz, 1H), 5.47 (dq, J = 17.3, 1.5 Hz, 1H), 5.40 (dq, J = 10.5, 1.3 Hz, 1H), 4.84 (dt, J = 5.4, 1.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.1$, 140.5, 134.3, 133.5, 132.3, 131.0, 129.1, 129.1, 128.6, 124.7, 122.4, 119.3, 113.5, 112.0, 70.2; HRMS (ESI⁺) calculated for C₁₅H₁₃NO₃+Na⁺ [M+Na]⁺: m/z = 278.0788, found 278.0790.

(E)-1-(Allyloxy)-4-fluoro-2-(2-nitrovinyl)benzene (2k)

F NO₂ Following the general procedure **C**, aldehyde **10k** (1.19 g, 6.59 mmol, 1.0 equiv.) was treated with nitromethane (6.60 mL, 123 mmol, 18.7 equiv.), diisopropylethylamine (113 μL, 0.66 mmol, 0.1 equiv.) and NH₄OAc (1.27 g, 16.5 mmol, 2.5 equiv.). The generated alcohol was treated with Ac₂O (0.69 mL, 7.25 mmol, 1.1 equiv.) in the presence of 4-dimethylaminopyridine (40.3 mg, 0.33 mmol, 0.05 equiv.). The corresponding nitroolefin **2k** was isolated by column chromatography (petane-DCM 8:2) as a yellow solid (366 mg, 1.58 mmol, 24%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.10$ (d, J = 13.6 Hz, 1H), 7.81 (d, J = 13.6 Hz, 1H), 7.21 – 7.06 (m, 2H), 6.96 – 6.86 (m, 1H), 6.07 (ddt, J = 17.3, 10.6, 5.4 Hz, 1H), 5.43 (dq, J = 17.3, 1.5 Hz, 1H) 5.36 (dq, J = 10.5, 1.3 Hz, 1H), 4.64 (dt, J = 5.5, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.8$ (d, ¹J = 240.7 Hz), 154.7 (d, ⁴J = 2.1 Hz), 139.2 , 134.2 (d, ⁴J = 2.4 Hz), 132.1 , 120.4 (d, ³J = 7.7 Hz), 119.7 (d, ²J = 23.1 Hz), 119.1, 117.6 (d, ²J = 23.6 Hz), 113.9 (d, ³J = 8.0 Hz), 70.1; ¹⁹F NMR (282 MHz, Chloroform-*d*): $\delta = -122.56$; HRMS (ESI⁺) calculated for C₁₁H₁₀FNO₃+Na⁺ [M+Na]⁺: m/z = 246.0537, found 246.0539.

(*E*)-1-(Allyloxy)-4-bromo-2-(2-nitrovinyl)benzene (2l)¹⁰

Br NO₂ Following the general procedure **C**, aldehyde **101** (1.67 g, 6.91 mmol, 1.0 equiv.) was treated with nitromethane (6.92 mL, 129.18 mmol, 18.7 equiv.), diisopropylethylamine (118 μL, 0.69 mmol, 0.1 equiv.) and NH₄OAc (1.33 g, 17.27 mmol, 2.5 equiv.). The generated alcohol was treated with Ac₂O (0.72 mL, 7.60 mmol, 1.1 equiv.) in the presence of 4-dimethylaminopyridine (42.2 mg, 0.35 mmol, 0.05 equiv.). The corresponding nitroolefin **21** was isolated by column chromatography (petane-DCM 8:2) as a yellow solid (1.10 g, 3.85 mmol, 56%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.00$ (d, J = 13.6 Hz, 1H), 7.75 (d, J = 13.7 Hz, 1H), 7.50 (d, J = 2.5 Hz, 1H), 7.43 (dd, J = 8.9, 2.5 Hz, 1H), 6.78 (d, J = 8.9 Hz, 1H), 6.00 (ddt, J = 17.3, 10.7, 5.4 Hz, 1H), 5.40 – 5.28 (m, 2H), 4.59 (dt, J = 5.4, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 157.4$, 139.2, 135.7, 134.3, 133.9, 131.8, 121.3, 119.3, 114.4, 113.4, 69.9; HRMS (ESI⁺)calculated for C₁₁H₁₀BrNO₃+Na⁺ [M+Na]⁺: m/z = 305.9736, found 305.9729.

(E)-1-(allyloxy)-3,5-dichloro-2-(2-nitrovinyl)benzene (2m)

NO₂

Following the general procedure **B**, aldehyde **10m** (749 mg, 3.24 mmol, 1.0 equiv.) was treated with nitromethane (2.1 mL, 39.2 mmol, 12.1 equiv.), acetic acid (0.54 mL,

9.40 mmol, 2.9 equiv.) and NH₄OAc (549 mg, 7.13 mmol, 2.2 equiv.). The corresponding nitroolefin **2m** was isolated by column chromatography (petane-DCM 8:1) as a yellow solid (533 mg, 1.94 mmol, 60%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.42$ (d, J = 13.6 Hz, 1H), 8.05 (d, J = 13.6 Hz, 1H), 7.16 (d, J = 1.9 Hz, 1H), 6.89 (d, J = 1.9 Hz, 1H), 6.08 (ddt, J = 17.2, 10.4, 5.5 Hz, 1H), 5.47 (dq, J = 10.0, 1.2 Hz, 1H), 5.42 (dq, J = 3.3, 1.2 Hz, 1H), 4.69 (dt, J = 5.5, 1.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.3$, 140.9, 138.2, 138.1, 130.6, 130.0, 122.7, 119.9, 116.3, 111.6, 70.6; HRMS (ESI⁺) calculated for C₁₁H₉Cl₂NO₃+Na⁺ [M+Na]⁺: m/z = 295.9852, found 295.9858.

(E)-N-Allyl-N-(2-(2-nitrovinyl)phenyl)benzamide (2n)

Following the general procedure **A**, aldehyde **10n** (660 mg, 2.48 mmol, 1.0 equiv.) was treated with nitromethane (140 µL, 2.48 mmol, 1.0 equiv.) and 10 M NaOH aq. solution (0.27 mL, 2.73 mmol, 1.1 equiv.) in MeOH (1 mL). The corresponding nitroolefine **2n** was isolated by column chromatography (petane-EtOAc $6:1\rightarrow3:1$) as a yellow solid (534 mg, 1.73 mmol, 80%). **¹H NMR** (300 MHz, CDCl₃): $\delta = 8.04$ (d, J = 13.6 Hz, 1H), 7.56 – 7.00 (m, 10H), 6.02 (dq, J = 16.5, 7.5 Hz, 1H), 5.23 – 5.09 (m, 2H), 4.64 (dd, J = 14.3, 6.5 Hz, 1H), 4.34 (dd, J = 14.2, 7.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 138.6$, 135.3, 134.4, 132.8, 131.9 (2C), 130.3 (2C), 128.5 (2C), 128.5 (2C), 128.4, 128.2, 128.0 (2C), 119.9, 54.0; **HRMS** (ESI⁺) calculated for C₁₈H₁₆N₂O₃+Na⁺ [M+Na]⁺: m/z = 331.1053, found 331.1054.

(E)-N-Allyl-4-Methyl-N-(2-(2-nitrovinyl)phenyl)benzenesulfonamide (20)

Following the general procedure **A**, aldehyde **10o** (1.00 g, 3.17 mmol, 1.0 equiv.) was treated with nitromethane (178 µL, 3.33 mmol, 1.05 equiv.) and 10 M NaOH aq. solution (0.35 mL, 3.49 mmol, 1.1 equiv.) in MeOH (0.78 mL). The corresponding nitroolefin **2o** was isolated by column chromatography (petane-DCM-EtOAc 4:1:0.1) as a yellow solid (357 mg, 1.00 mmol, 31%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.21$ (d, J = 13.8 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 13.8 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.94 – 6.83 (m, 1H), 5.74 (ddt, J = 16.9, 10.0, 6.8 Hz, 1H), 5.13 – 4.85 (m, 2H), 4.44 (br.s, 1H), 3.94 (br.s, 1H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 144.5$, 139.7, 138.4, 135.2, 134.9, 132.3, 132.0, 131.8, 130.1, 129.9 (2C), 129.2, 128.2 (2C), 128.0, 120.6, 55.0, 21.7; HRMS (ESI⁺) calculated for C₁₈H₁₈N₂O₄S+Na⁺ [M+Na]⁺: m/z = 381.0879, found 381.0878.

(*E*)-1-(2-Nitrovinyl)-2-(prop-2-yn-1-yloxy)benzene (2p)⁷

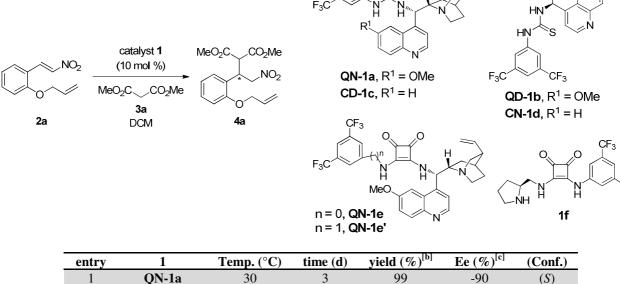
^{NO2} Following the general procedure **B**, aldehyde **10p** (1.00 g, 6.24 mmol, 1.0 equiv.) was treated with nitromethane (4.04 mL, 75.5 mmol, 12.1 equiv.), acetic acid (1.03 mL, 18.10 mmol, 2.9 equiv.) and NH₄OAc (1.06 g, 13.73 mmol, 2.2 equiv.). The corresponding nitroolefin **2p** was isolated by column chromatography (petane-DCM 8:2) as a yellow solid (938 mg, 4.62 mmol, 74%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.15$ (d, J = 13.6 Hz, 1H), 7.85 (d, J = 13.6 Hz, 1H), 7.54 – 7.40 (m, 2H), 7.16 – 7.00 (m, 2H),

4.84 (d, J = 2.4 Hz, 2H), 2.59 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 157.3$, 138.6, 135.18, 133.4, 132.4, 122.1, 119.7, 112.8, 77.5, 76.8, 56.3; HRMS (ESI⁺): calculated for C₁₁H₉NO₃+Na⁺ [M+Na]⁺: m/z = 226.0475, found 226.0476.

(E)-4-Methyl-2-(2-nitrovinyl)-1-(prop-2-yn-1-yloxy)benzene (2q)

Me NO₂ Following the general procedure **B**, aldehyde **10q** (650 mg, 3.73 mmol, 1.0 equiv.) was treated with nitromethane (2.42 mL, 45.13 mmol, 12.1 equiv.), acetic acid (0.62 mL, 10.82 mmol, 2.9 equiv.) and NH₄OAc (633 mg, 8.21 mmol, 2.2 equiv.). The corresponding nitroolefin **2q** was isolated by column chromatography (petane-DCM 3:1) as a yellow solid (651 mg, 2.99 mmol, 80%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.13$ (d, J = 13.7 Hz, 1H), 7.84 (d, J = 13.6 Hz, 1H), 7.34 – 7.18 (m, 2H), 6.99 (d, J = 8.9 Hz, 1H), 4.81 (d, J = 2.4 Hz, 2H), 2.56 (t, J = 2.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.4$, 138.5, 135.4, 134.0, 132.6, 131.5, 119.5, 112.9, 76.6, 56.4, 20.4; HRMS (ESI⁺): calculated for C₁₂H₁₁NO₃+Na⁺ [M+Na]⁺: m/z = 240.0631, found 240.0639.

(E)-4-Methoxy-2-(2-nitrovinyl)-1-(prop-2-yn-1-yloxy)benzene (2r)


MeO NO₂ Following the general procedure **B**, aldehyde **10r** (1.12 g, 5.89 mmol, 1.0 equiv.) was treated with nitromethane (3.82 mL, 71.25 mmol, 12.1 equiv.), acetic acid (0.98 mL, 17.08 mmol, 2.9 equiv.) and NH₄OAc (999 mg, 12.96 mmol, 2.2 equiv.). The corresponding nitroolefin **2r** was isolated by column chromatography (petane-DCM 2:1) as a yellow solid (1.14 g, 4.90 mmol, 83%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.13$ (d, J = 13.6 Hz, 1H), 7.82 (d, J = 13.6 Hz, 1H), 7.16 – 6.86 (m, 3H), 4.78 (d, J = 2.4 Hz, 2H), 3.81 (s, 3H), 2.56 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 154.3$, 151.7, 138.8, 135.0, 120.5, 119.0, 116.1, 114.4, 77.9, 76.6, 56.9, 56.0; 20.4; HRMS (ESI⁺): calculated for C₁₂H₁₁NO₄+Na⁺ [M+Na]⁺: m/z = 256.0580, found 256.0580.

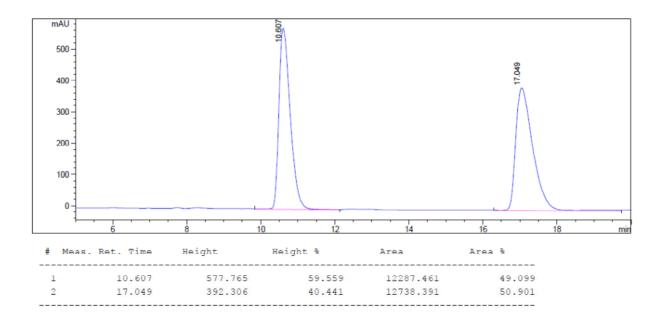
(E)-4-Chloro-2-(2-nitrovinyl)-1-(prop-2-yn-1-yloxy)benzene (2s)

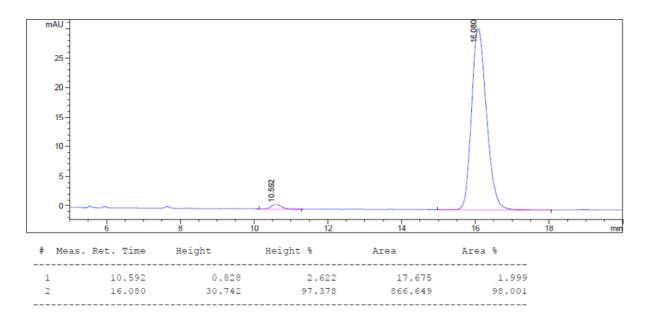
Cl NO₂ Following the general procedure **A**, aldehyde **10s** (1.18 g, 6.06 mmol, 1.0 equiv.) was treated with nitromethane (341 µL, 6.36 mmol, 1.05 equiv.) and 10 M NaOH aq. solution (666 µL, 6.67 mmol, 1.1 equiv.) in MeOH (1.38 mL). The corresponding nitroolefin **2s** was isolated by column chromatography (petane-DCM 4:1) as a yellow solid (1.08 g, 4.55 mmol, 75%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.08$ (d, J = 13.7 Hz, 1H), 7.81 (d, J = 13.7 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.05 (d, J = 8.8 Hz, 1H), 4.83 (d, J = 2.4 Hz, 2H), 2.59 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.7$, 139.4, 133.6, 132.7, 131.2, 127.1, 121.2, 114.3, 77.2, 77.1, 56.7; HRMS (ESI⁺): calculated for C₁₁H₈ClNO₃+Na⁺ [M+Na]⁺: m/z = 260.0085, found 260.0086.

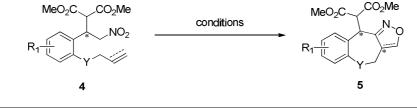
OMe

Optimization of the model organocatalyzed asymmetric reaction^[a]

1 QN-1a 30 3 99 -9	00 (S)
2 QD-1b 30 3 99 9	2 (<i>R</i>)
3 CD-1c 30 3 99 -9	2 (S)
4 CN-1d 30 3 99 9	1 (R)
5 QN-1e 30 3 99 -7	'4 (S)
6 1f 30 3 <10) 0
	5 (<i>R</i>)
	6 (<i>R</i>)
9 QD-1b $10^{[d],[e]}$ 7 99 9	6 (<i>R</i>)

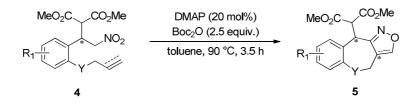

^[a] Catalyst **1** (10 mol %), **2a** (0.1 mmol) and **3** (0.12 mmol) in DCM (0.5 mL, 0.2 M). ^[b] GC-yield. ^[c] Ee determined by chiral HPLC. ^[d] Reaction in *o*-xylene. ^[e] Same results for the reactions in 1 mL *o*-xylene (0.1 M) and 0.2 mL (0.5 M).


An ordinary vial equipped with a magnetic stirring bar was charged with catalyst 1 (10 mol%), malonate 3 (0.24 mmol), nitroolefin 2 (0.20 mmol) and *o*-xylene (1.0 mL) at 10 °C. The stirring was maintained at 10 °C for 7 d. The crude reaction mixture was directly charged onto silica-gel and purified by column chromatography.


The corresponding racemic products were prepared using DABCO (leading to very low yields) or a 1:1 mixture of pseudoenantiomers of the thiourea-chincona derivatives in CH_2Cl_2 at 40 °C for 3 d.

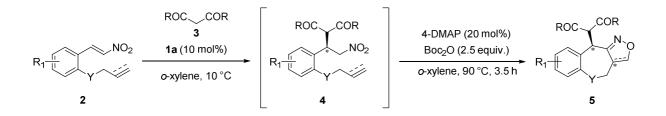
(R)-Dimethyl 2-(1-(2-(allyloxy)phenyl)-2-nitroethyl)malonate (4a)

MeO₂C, CO₂Me According to the general procedure using 10 mol% of catalyst **1b**, the title compound **4a** NO₂ was obtained after FC (petane-EtOAc 6:1) as a white solid (99%, 96% ee). $[\alpha]^{20}_{D} = -21.7$ (*c* 1.05 CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.22$ (ddd, J = 8.1, 7.5, 1.7 Hz, 1H), 7.15 (dd, J = 7.6, 1.7 Hz, 1H), 6.92 - 6.81 (m, 2H), 6.08 (ddt, J = 17.3, 10.5, 5.2 Hz, 1H), 5.43 (dq, J = 17.3, 1.6 Hz, 1H), 5.32 (dq, J = 10.6, 1.4 Hz, 1H), 5.06 (dd, J = 13.0, 9.1 Hz, 1H), 4.89 (dd, J = 13.0, 4.6 Hz, 1H), 4.65 – 4.54 (m, 2H), 4.42 (td, J = 9.5, 4.6 Hz, 1H), 4.21 (d, J = 9.9 Hz, 1H), 3.75 (s, 3H), 3.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.4$, 167.7, 156.4, 132.9, 130.8, 129.7, 123.9, 121.1, 118.1, 112.4, 76.1, 69.2, 53.0, 52.7, 52.7, 40.5; HRMS (ESI⁺) calculated for C₁₆H₁₉NO₇+Na⁺ [M+Na]⁺: m/z = 360.1054, found 360.1051. IR: v_{max} 3027, 2960, 2875, 2360, 2337, 1757, 1723, 1600, 1587, 1552, 1495, 1457, 1433, 1379, 1365, 1348, 1332, 1307, 1288, 1229, 1197, 1170, 1121, 1084, 1067, 1011, 999, 984, 937, 924, 851, 837, 762; HPLC: OD-H, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm, t_R minor (*S*) = 10.3 min, t_R major (*R*) = 15.1 min.



Optimization and general procedure for the nitrile cycloaddition reaction

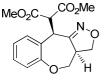
Entry	reagent (equiv.)	additive	Solvent	time (h)	Temp.	Yield (%) ^[a]	Ee (%) ^[d]
1	$ClCO_2Et(2)$	Et ₃ N	Benzene	6 h	90 °C	30	Nd
2	$PhSO_2Cl(2)$	Et ₃ N	CHCl ₃	15 h	0 °C à rt	40	Nd
3	PhNCO (1.8)	Et ₃ N	Benzene	4 h	rt à 90 °C	72 ^[b]	Nd
4	$Boc_2O(2.5)$	DMAP	MeCN	3.5 h	60 °C	32	Nd
5	$Boc_2O(2.5)$	DMAP	DCM	3.5 h	60 °C	traces	Nd
6	$Boc_2O(2.5)$	DMAP	Toluene	3.5 h	90 °C	$60(75)^{[c]}$	96 ^[e]
7	$Boc_2O(2.5)$	DMAP	Toluene	24 h	90 °C	40%	Nd
8	$Ac_2O(2.5)$	DMAP	Toluene	3.5 h	90 °C	57%	Nd


^[a] Isolated yields. ^[b] **5a** together with inseparable byproducts. ^[c] NMR yield in brackets. ^[d] Ee determined by HPLC. ^[e] Starting from **4a** with 96% ee. N.d. = not determined.

General Procedure with Boc₂O and DMAP:

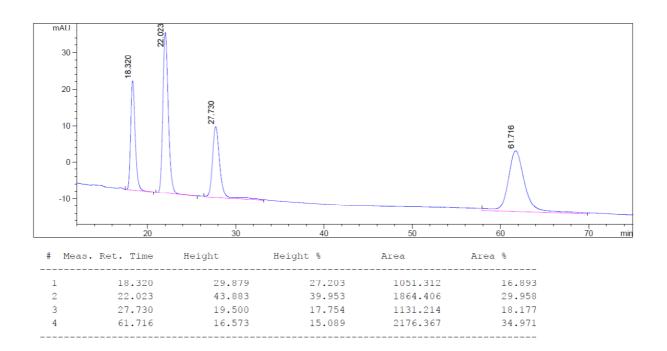
Nitro compound **4** (0.2 mmol, 1.0 equiv.) and DMAP (0.04 mmol, 0.2 equiv.) were dissolved in freshly distilled toluene and heated to 90 °C. To the hot reaction mixture, a solution of Boc_2O in toluene (0.5 M, 1.0 mL, 2.5 equiv.) was added over 20 min. The reaction was then allowed to proceed for further 3.5 h at 90 °C. After cooling to room temperature, the crude reaction mixture was directly charged onto silica-gel and purified by column chromatography.

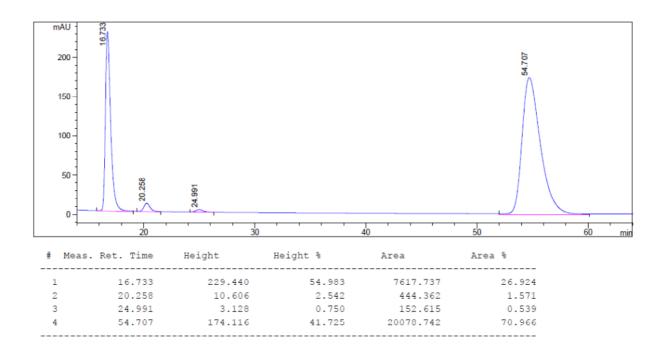
General procedure for the one-pot reaction

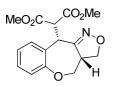


A schlenk tube was charged with catalyst 1 (10 mol%), malonate or diketone 3 (0.24 mmol), nitroolefin 2 (0.20 mmol) and dry *o*-xylene (1.0 mL) at 10 °C. The stirring was maintained at 10 °C for 7 d. Then, 0.1 mL of

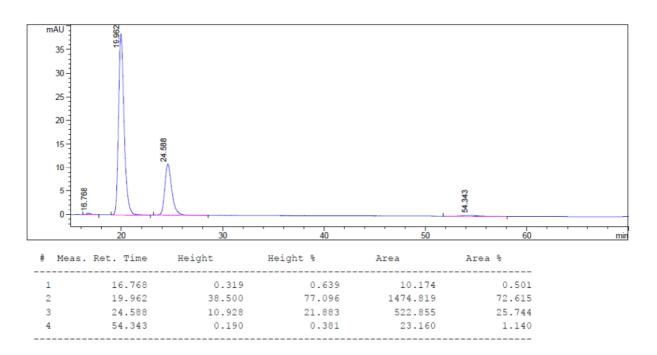
a solution of 4-DMAP (4.9 mg, 0.04 mmol, 0.2 equiv.) and Boc₂O (109.1 mg, 0.5 mmol, 2.5 equiv.) in dry o-


xylene (1.0 mL) was added at room temperature and the mixture stirred for 5 min. The reaction mixture was then heated at 90 °C and the rest of the solution (0.9 mL) added dropwise. (Alternatively, the reaction mixture was added dropwise to a mixture of DMAP and Boc₂O in *o*-xylene heated at 90 °C). The reaction was then allowed to proceed for further 3.5 h at 90 °C. After cooling to room temperature the crude reaction mixture was directly charged onto silica-gel and purified by column chromatography.

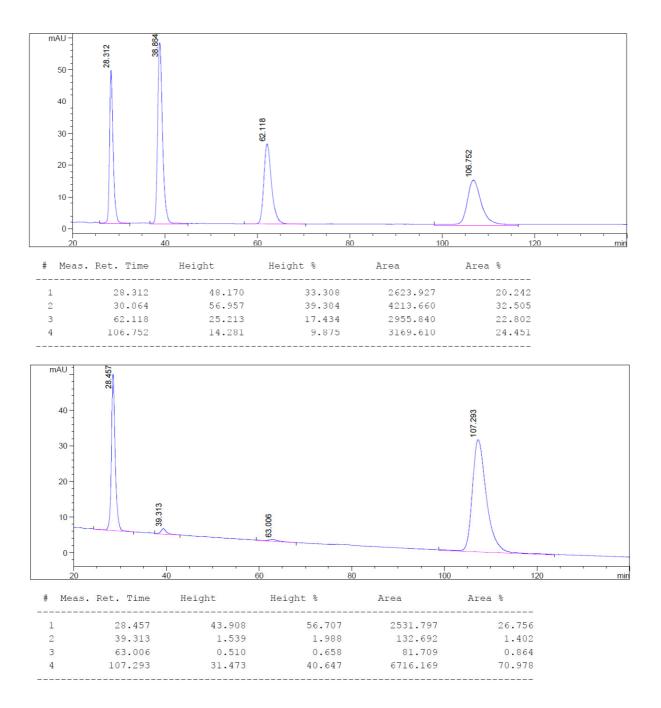

Dimethyl 2-((3aR,10R)-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5a)


Following the general procedure, the title compound **5a** was obtained after FC (petane-EtOAc 8:1) as a white solid (61%) and a 3:1 mixture of diastereoisomers (96% ee each). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 7.36 - 6.94$ (m, 4H major + 4H minor), 4.88 (d, J = 11.8 Hz, 1H major), 4.67 (d, J = 11.8 Hz, 1H minor), 4.56 - 4.41 (m, 2H major + 2H

minor), 4.40 - 4.28 (m, 1H major + 1H minor), 3.79 (s, 3H major), 3.76 (s, 3H minor), 3.62 (s, 3H major), 3.50 (s, 3H minor) 3.92-3.50 (m, 3H major + 2H minor); 13 **C NMR** (75 MHz, CDCl₃): Major isomer: $\delta = 168.1$, 167.8, 158.1, 132.0, 130.1, 129.6, 126.8, 125.5, 122.7, 74.1, 70.5, 53.3, 53.1, 53.1, 51.6, 39.5; Minor isomer: $\delta = 167.4$, 167.2, 156.7, 131.9, 131.2, 130.0, 128.8, 125.2, 122.8, 74.5, 70.4, 53.8, 53.2, 52.7, 50.2, 44.0; **HRMS** (ESI⁺) calculated for C₁₆H₁₇NO₆+Na⁺ [M+Na]⁺: m/z = 342.0948, found 342.0950; **IR**: v_{max} 3075, 2957, 2889, 2360, 1738, 1718, 1635, 1603, 1579, 1488, 1453, 1438, 1431, 1352, 1325, 1312, 1294, 1282, 1267, 1240, 1223, 1199, 1178, 1148, 1008, 890, 875, 788, 774; **HPLC**: IC, Pentane:*i*-PrOH 65:35, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R minor = 20.3 min, t_R major = 54.7 min; Minor isomer: t_R major = 16.7 min, t_R minor = 25.0 min.



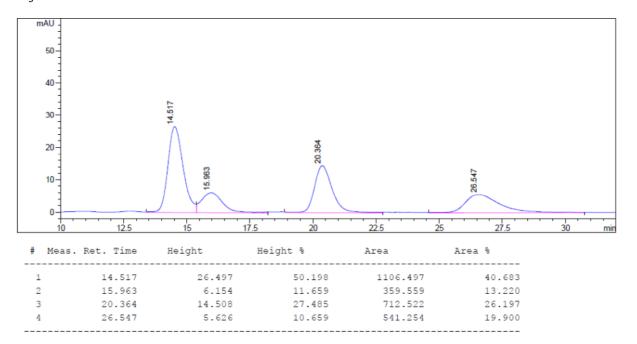
Dimethyl 2-((3aS,10S)-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (ent-5a)

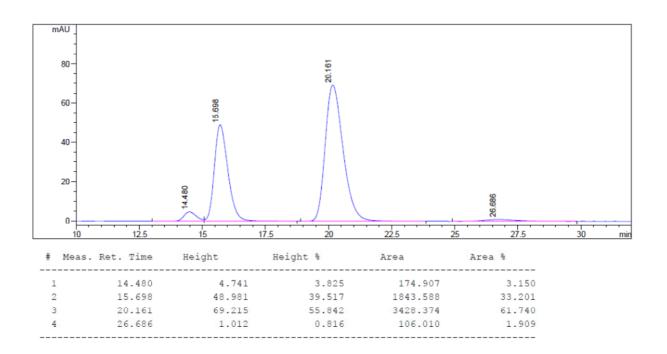

Following the general procedure, the title compound *ent-5a* was obtained after FC (petane-EtOAc 8:1) as a white solid (75%) and a 2.8:1 mixture of diastereoisomers (97% ee each). ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (dd, *J* = 7.6, 1.7 Hz, 1H, minor), 7.30 – 7.19 (m, 2H major + 2H minor), 7.19 (dd, *J* = 7.8, 2.1 Hz, 1H, major), 7.12 (dd, *J* = 7.5, 1.4 Hz, 1H,

major), 7.12 – 7.03 (m, 1H major + 1H minor), 7.01 (dd, J = 8.0, 1.3 Hz, 1H, minor), 4.89 (d, J = 11.8 Hz, 1H, major), 4.68 (d, J = 11.8 Hz, 1H, minor), 4.56 – 4.43 (m, 2H major + 2H minor), 4.40 – 4.29 (m, 1H major + 1H minor), 3.95 – 3.79 (m, 2H major +2H minor), 3.80 (s, 3H major), 3.77 (s, 3H minor), 3.72 – 3.65 (m, 1H major), 3.63 (s, 3H), 3.58 – 3.53 (m, 1H minor), 3.51 (s, 3H minor); ¹³C NMR (100 MHz, CDCl₃): Major isomer: $\delta = 168.1$, 167.8, 158.2, 132.1, 130.1, 129.6, 126.8, 125.6, 122.8, 74.1, 70.5, 53.3, 53.1, 53.1, 51.6, 39.5; Minor isomer: $\delta = 167.5$, 167.2, 159.3, 156.7, 132.1, 130.1, 128.8, 125.2, 122.8, 74.5, 70.4, 53.8, 53.2, 52.7, 50.2, 44.0; **HRMS** (ESI⁺) calculated for C₁₆H₁₇NO₆+Na⁺ [M+Na]⁺: m/z = 342.0948, found 342.0951; **IR**: ν_{max} 3075, 2957, 2889, 2360, 1738, 1718, 1635, 1603, 1579, 1488, 1453, 1438, 1431, 1352, 1325, 1312, 1294, 1282, 1267, 1240, 1223, 1199, 1178, 1148, 1008, 890, 875, 788, 774; **HPLC**: IC, Pentane:*i*-PrOH 65:35, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R major = 20.0 min, t_R minor = 54.3 min; Minor isomer: t_R minor = 16.8 min, t_R major = 24.6 min.

Diethyl 2-((3a*R*,10*R*)-3a-methyl-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5b)

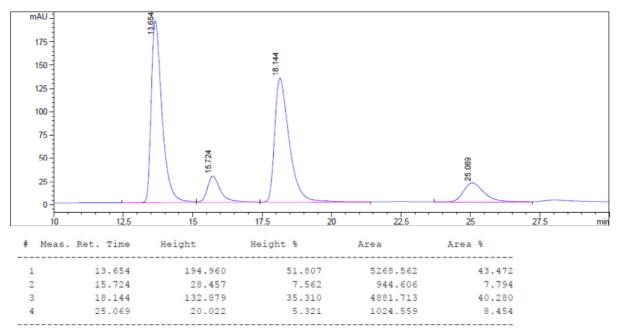
Following the general procedure, the title compound **5b** was obtained after FC (petane-EtOAc ,CO₂Et EtO₂C 8:1) as a white solid (69%) and a 2.5:1 mixture of diastereoisomers (96% ee each). ¹H NMR 'nн $(400 \text{ MHz}, \text{CDCl}_3): \delta = 7.32 \text{ (dd, } J = 7.6, 1.7 \text{ Hz}, 11 \text{ minor}), 7.26 - 7.18 \text{ (m, 2H major + 1H)}$ minor), 7.13 - 6.96 (m, 2H major + 2H minor), 4.88 (d, J = 11.9 Hz, 1H major), 4.66 (d, J = 11.8 Hz, 1H minor), 4.55 - 4.40 (m, 2H major + 2H minor), 4.37 - 4.29 (m, 1H major + 1H minor), 4.29 - 4.16 (m, 2H major + 1H minor), 4.08 (q, J = 7.1 Hz, 2H major), 4.00 - 3.77 (m, 2H major + 3 H minor), 3.65 (t, J = 11.0)Hz, 1H major), 3.53 (t, J = 11.6 Hz, 1H minor), 1.27 (td, J = 7.1, 6.4 Hz, 3H major + 3H minor), 1.11 (t, J = 7.1 Hz, 3H major), 1.02 (t, J = 7.1 Hz, 3H minor); ¹³C NMR (100 MHz, CDCl₃): Major isomer: $\delta = 167.6$, 167.4, 158.2, 158.1, 130.2, 129.5, 126.8, 125.4, 122.6, 74.1, 70.4, 62.2, 62.0, 53.4, 51.8, 39.3, 14.1, 14.0; Minor isomer: $\delta = 167.1, 166.7, 159.3, 156.7, 132.1, 129.9, 129.0, 125.1, 122.7, 74.6, 70.3, 62.2, 61.6, 53.9, 129.0, 125.1, 122.7, 74.6, 70.3, 62.2, 61.6, 53.9, 129.0,$ 50.2, 44.0, 14.1, 13.9; **HRMS** (ESI⁺) calculated for $C_{18}H_{21}NO_6+Na^+$ [M+Na]⁺: m/z = 370.1261, found 370.1263; IR: v_{max} 3065, 2982, 2895, 1739, 1717, 1602, 1489, 1447, 1374, 1344, 1276, 1267, 1217, 1192, 1145, 1105, 1059, 1040, 1015, 1000, 948, 916, 885, 857, 826, 786, 775, 625; HPLC: IC, Pentane:*i*-PrOH 80:20, F = 1.0 mL/min, λ = 230 nm: Major isomer: t_R major = 107.3 min, t_R minor = 39.3 min; Minor isomer: t_R minor = 63.0 min, t_R major = 28.5 min.

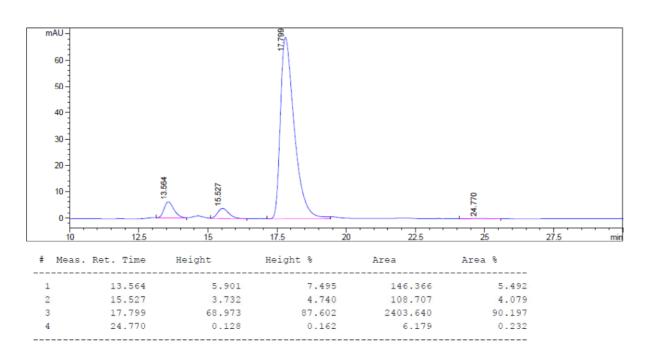

Diisopropyl 2-((3aR,10R)-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5c)

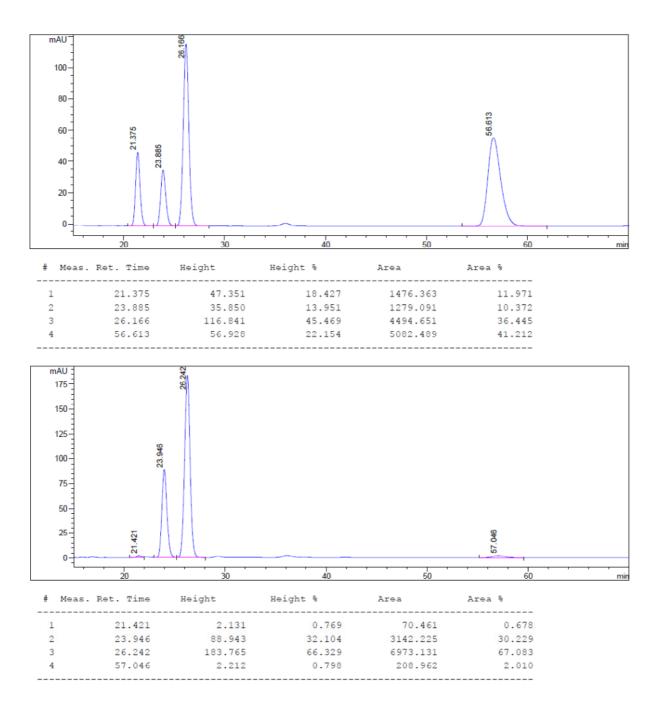

ⁱPrO₂C CO₂ⁱPr

Following the general procedure, the title compound **5c** was obtained after FC (petane-EtOAc 8:1) as a white solid (75%) and a 2.2:1 mixture of diastereoisomers (90% ee each). ¹H NMR (400 MHz, CDCl₃): δ = 7.33 (dd, *J* = 7.6, 1.7 Hz, 1H minor), 7.25 – 7.17 (m, 2H major + 1H

minor), 7.10 - 7.02 (m, 2H major), 7.00 (dd, J = 8.0, 1.3 Hz, 1H minor), 5.07 (hept, J = 6.3 Hz, 1H major), 5.07 (hept, J = 6.3 Hz, 1H minor), 4.94 (hept, J = 6.3 Hz, 1H major), 4.87 (d, J = 12.0 Hz, 1H major), 4.81 (hept, J = 6.3 Hz, 1H minor), 4.64 (d, J = 11.9 Hz, 1H minor), 4.52 (ddd, J = 11.8, 6.7, 5.1 Hz, 1H major + 1H minor), 4.43 (d, J = 12.0 Hz, 1H major), 4.43 (dd, J = 10.9, 8.4 Hz, 1H minor), 4.34 (dd, J = 10.3, 8.1 Hz, 1H major), 4.27 (d, J = 11.9 Hz, 1H minor), 4.21 (tdd, J = 11.3, 8.4, 6.4 Hz, 1H minor), 3.96 - 3.85 (m, 1H major), 4.14 minor), 3.81 (t, J = 8.1 Hz, 1H major), 3.61 (t, J = 11.2 Hz, 1H major), 3.53 (t, J = 11.6 Hz, 1H minor),

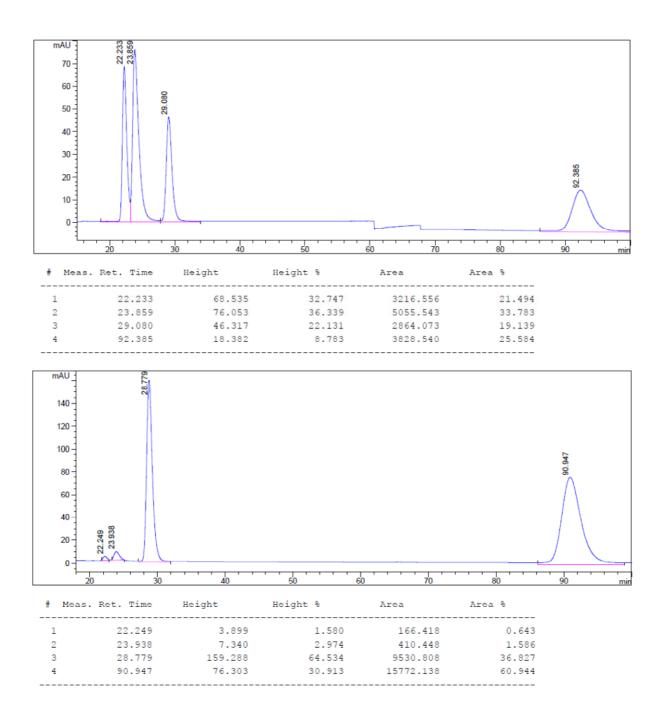

1.28 (d, J = 6.3 Hz, 3H major), 1.26 (d, J = 3.1 Hz, 3H minor), 1.24 (d, J = 6.1 Hz, 3H major), 1.24 (d, J = 3.1 Hz, 3H minor), 1.14 (d, J = 6.3 Hz, 3H major), 1.10 (d, J = 6.4 Hz, 3H major) 1.15 – 1.10 (m, 3H minor), 0.93 (d, J = 6.3 Hz, 3H minor); ¹³C NMR (100 MHz, CDCl₃): Major isomer: $\delta = 167.1$, 167.0, 158.4, 158.1, 130.3, 129.3, 126.6, 125.3, 122.5, 74.2, 70.2, 69.7, 69.5, 53.5, 52.0, 39.0, 21.7, 21.6, 21.5, 21.4; Minor isomer: $\delta = 166.7$, 166.3, 159.4, 156.8, 132.3, 129.9, 129.1, 125.0, 122.7, 74.6, 70.3, 69.9, 69.2, 54.2, 50.2, 43.8, 21.7 (2C), 21.5, 21.4; **HRMS** (ESI⁺) calculated for C₂₀H₂₅NO₆+Na⁺ [M+Na]⁺: m/z = 398.1574, found 398.1579; **IR**: ν_{max} 3065, 2982, 2936, 2881, 2363, 2342, 1744, 1729, 1488, 1466, 1454, 1375, 1297, 1260, 1239, 1219, 1177, 1164, 1097, 1006, 8914, 824, 785, 773; **HPLC**: AS-H, Pentane:*i*-PrOH 95:05, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R major = 20.2 min, t_R minor = 14.5 min; Minor isomer: t_R minor = 26.7 min, t_R major = 15.7 min.




3-((3aR,10R)-3,3a,4,10-Tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)pentane-2,4-dione (5d)

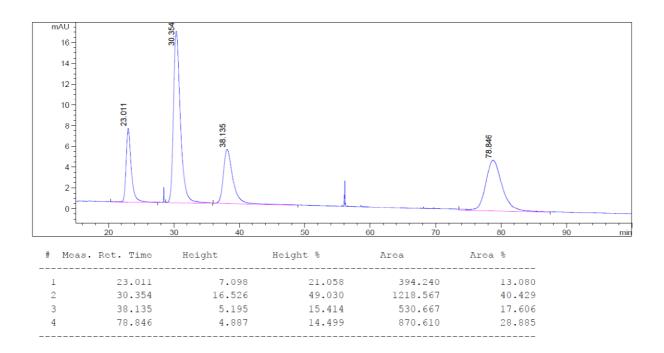
Following the general procedure, the title compound 5d was obtained after FC (petane-EtOAc ,COMe MeOC~ `O 6:1) as a white solid (46%) and a 5.0:1 mixture of diastereoisomers (90% ee each). ¹H NMR 'n (400 MHz, CDCl₃): δ 7.27 – 7.20 (m, 2H major + 2H minor), 7.11 – 7.05 (m, 1H major + 2H minor), 7.02 (dd, J = 7.9, 1.3 Hz, 1H major), 5.00 (d, J = 12.1 Hz, 1H minor), 4.93 (d, J = 12.1 Hz, 1H minor), 4.76 (d, J = 11.9 Hz, 1H major), 4.65 (d, J = 11. Hz, 1H major), 4.56 (dd, J = 11.3, 7.1 Hz, 1H minor), 4.52 (dd, J = 11.5, 6.3 Hz, 1H major), 4.43 (dd, J = 11.0, 8.4 Hz, 1H major), 4.36 (dd, J = 10.4, 8.2 Hz, 1H minor),4.02 (tdd, J = 11.3, 8.9, 6.3 Hz, 1H major), 3.95 - 3.89 (m, 1H minor), 3.86 (t, J = 8.7 Hz, 1H major), 3.80 (t, J = 1.33, 3.80 (t, J = 1.333, 3.80 (t, J = 1.3333, 3.80 (t, J = 1.3333, 3.80 (t, J = 1.3333, 3.80= 8.4 Hz, 1H minor), 3.58 (t, J = 11.3 Hz, 1H minor), 3.54 (t, J = 11.6 Hz, 1H major), 2.39 (s, 3H minor), 2.26 (s, 3H major), 2.02 (s, 3H minor), 1.86 (s, 3H major); ¹³C NMR (100 MHz, CDCl₃): Major isomer: $\delta = 202.5$, 202.2, 159.1, 156.5, 132.0, 130.0, 128.6, 125.5, 123.0, 74.5, 70.8, 70.4, 50.0, 44.1, 32.1, 26.8; Minor isomer: δ = 202.4, 202.3, 159.1, 156.5, 132.0, 129.7, 126.7, 125.9, 122.8, 74.4, 70.5, 69.5, 52.1, 39.0, 30.8, 29.8; **HRMS** (ESI⁺) calculated for $C_{16}H_{17}NO_4 + Na^+ [M+Na]^+$: m/z = 310.1050, found 310.1058; **IR**: v_{max} 3002, 2969, 2928, 2878, 2361, 2342, 1715, 1691, 1487, 1449, 1411, 1358, 1292, 1268, 1224, 1199, 1187, 1154, 1103, 1011, 922, 866, 843, 774, 621, 612; **HPLC**: OD-H, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, λ = 230 nm: Major isomer: t_R major = 17.8 min, t_R minor = 13.6 min; Minor isomer: t_R minor = 24.8 min, t_R major = 15.5 min.

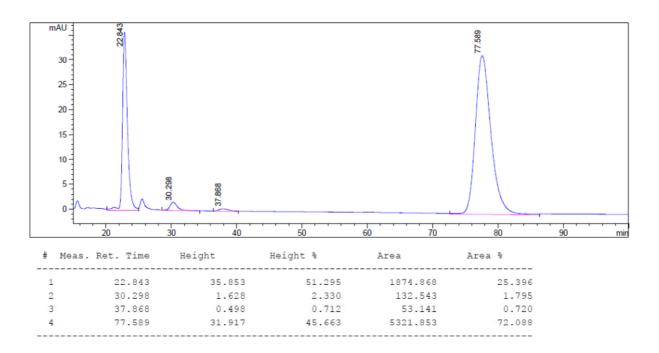
Dimethyl 2-((3a*R*,10*R*)-8-methyl-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5e)



Dimethyl 2-((3a*R*,10*R*)-8-methoxy-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5f)

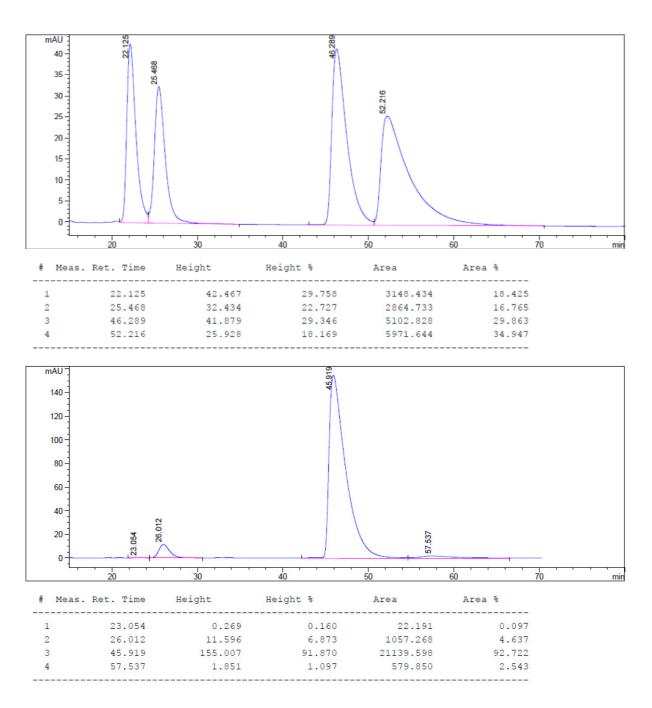
MeO₂C CO₂Me MeO Following the general procedure, the title compound **5f** was obtained after FC (petane-EtOAc 5:1) as a white solid (63%) and a 3:1 mixture of diastereoisomers (95% ee each).


¹H NMR (300 MHz, CDCl₃): $\delta = 7.02 - 6.95$ (m, 1H major), 6.92 (d, J = 8.7 Hz, 1H minor), 6.83 (d, J = 3.0 Hz, 1H minor), 6.76 - 6.69 (m, 2H major + 1H minor), 4.85 (d, J = 11.8 Hz, 1H major), 4.60 (d, J = 11.8 Hz, 1H minor), 4.54 - 4.28 (m, 3H major + 3H minor), 3.94 - 3.77 (m, 2H major + 2H minor), 3.78 (s, 3H major), 3.76 (s, 3H minor), 3.75 (s, 3H minor), 3.74 (s, 3H major), 3.66 (s, 3H major), 3.60 (t, J = 10.9 Hz, 1H major), 3.54 (s, 3H minor), 3.49 (t, J = 11.6 Hz, 1H minor); ¹³C NMR (75 MHz, CDCl₃): Major isomer: $\delta = 168.0$, 167.8, 158.1, 156.8, 151.8, 130.8, 123.3, 114.0, 112.1, 74.5, 70.5, 55.7,

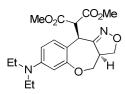

53.3, 53.2, 53.0, 51.7, 39.5; Minor isomer: $\delta = 167.4$, 167.1, 156.7, 156.4, 152.9, 129.5, 123.5, 116.4, 115.2, 74.9, 70.4, 55.8, 53.7, 53.2, 52.7, 50.1, 44.1; **HRMS** (ESI⁺) calculated for C₁₇H₁₉NO₇+Na⁺ [M+Na]⁺: m/z = 372.1054, found 372.1061; **IR**: v_{max} 3008, 2956, 2923, 2848, 2361, 1755; 1735, 1610, 1580, 1495, 1433, 1284, 1261, 1238, 1197, 1149, 1034, 1009, 993, 887, 831; **HPLC**: IC, Pentane:*i*-PrOH 65:35, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R minor = 23.9 min, t_R major = 90.9 min; Minor Isomer: t_R minor = 22.2 min, t_R major = 28.8 min.

Dimethyl 2-((3a*R*,10*R*)-7-methoxy-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5g)

Following the general procedure, the title compound 5g was obtained after FC (petane-CO₂Me MeO₂C EtOAc 4:1) as a white solid (52%) and a 3:1 mixture of diastereoisomers (95% ee each). ¹**H** NMR (400 MHz, CDCl₃): δ 7.20 (d, J = 8.5 Hz, 1H), 7.11 – 7.05 (m, 1H major), 6.66 – 6.58 (m, 2H major + 1H minor), 6.55 (d, J = 2.6 Hz, 1H minor), 4.77 (d, J = 11.6 Hz, 1H major), 4.61 (d, J = 11.8Hz, 1H minor), 4.54 – 4.38 (m, 2H major + 2H minor), 4.35 – 4.25 (m, 1H major + 1H minor), 4.21 – 4.14 (m, 1H minor), 3.91 – 3.65 (m, 10H major + 8H minor), 3.61 (s, 3H major), 3.52 (s, 1H minor); ¹³C NMR (100 MHz, CDCl₃): Major isomer : $\delta = 168.1$, 167.8, 160.5, 158.8, 158.4, 127.7, 121.9, 110.6, 108.9, 73.9, 70.5, 55.5, 53.4, 53.2, 53.0, 51.4, 39.1; Minor isomer: $\delta = 167.5$, 167.2, 160.8, 160.2, 156.8, 132.6, 120.6, 110.6, 108.3, 74.6, 70.3, 55.5, 54.0, 53.1, 52.6, 50.2, 43.3; (ESI+) calculated for $C_{17}H_{19}NO_7+Na^+$ $[M+Na]^+$: m/z = 372.1054, found 372.1047; **IR**: v_{max} 3006, 2978, 2959, 2923, 2837, 2360, 2325, 1744, 1722, 1611, 1574, 1500, 1450, 1438, 1374, 1350, 1311, 1295, 1281, 1259, 1196, 1178, 1149, 1126, 1106, 1085, 1034, 1018, 976, 936, 914, 884, 851, 835, 824, 794; **HPLC**: IC, Pentane:*i*-PrOH 65:35, F = 1.0 mL/min, $\lambda =$ 230 nm: Major isomer: t_R major = 77.6 min, t_R minor = 30.3 min; Minor isomer: t_R minor = 37.9 min, t_R major = 22.8 min.

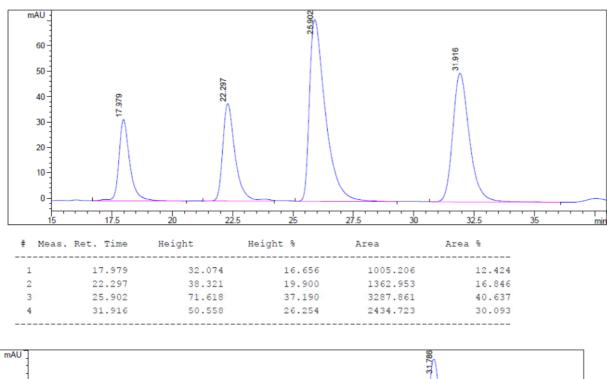


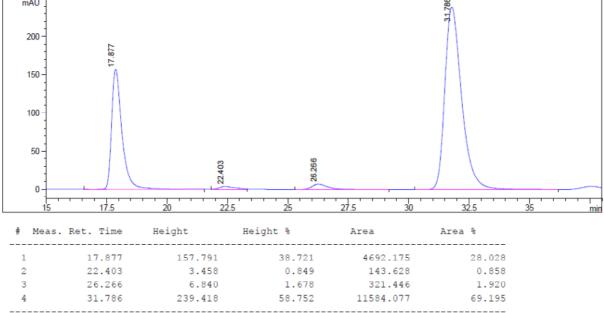
Dimethyl 2-((3a*R*,10*R*)-6-methoxy-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5h)



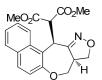
Following the general procedure, the title compound **5h** was obtained after FC (petane-EtOAc 8:1) as a white solid (87%) and a 20:1 mixture of diastereoisomers (95% ee each). Only signals of the major diastereoisomer: ¹H NMR (400 MHz, CDCl₃): δ = 7.05 (t, *J* = 8.1 Hz, 1H), 6.87 (dd, *J* = 8.4, 1.4 Hz, 1H), 6.76 (ddd, *J* = 7.9, 1.3, 0.6 Hz, 1H), 4.92 (d, *J* = 11.9

Hz, 1H), 4.57 (dd, J = 11.0, 7.2 Hz, 1H), 4.51 (d, J = 11.9 Hz, 1H), 4.37 – 4.31 (m, 1H), 3.88 – 3.81 (m, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 168.1, 167.8, 158.0, 152.6, 131.6, 125.7, 125.7, 118.0, 112.1, 73.6, 70.5, 56.1, 53.3, 53.1, 53.1, 51.8, 39.4;$ HRMS (ESI⁺) calculated for C₁₇H₁₉NO₇+Na⁺ [M+Na]⁺: m/z = 372.1054, found 372.1056; IR: v_{max} 3001, 2955, 2886, 2841, 2360, 2333, 1736, 1599, 1584, 1481, 1456, 1436, 1370, 1275, 1259, 1241, 1199, 1148, 1088, 1059, 1004, 915, 884, 753, 729; HPLC: OD-H, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R major = 45.9 min, t_R minor = 57.5 min; Minor isomer: t_R minor = 23.1min, t_R major = 26.0 min.

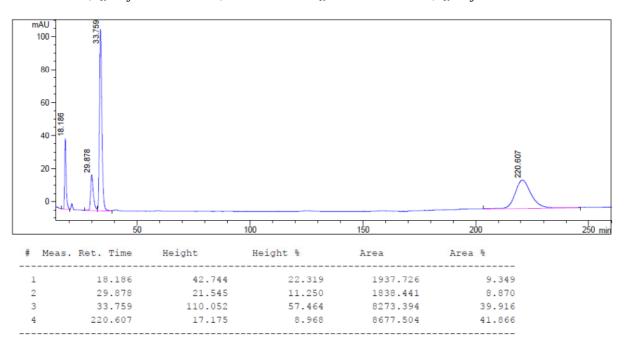

Dimethyl 2-((3a*R*,10*R*)-7-(diethylamino)-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10yl)malonate (5i)

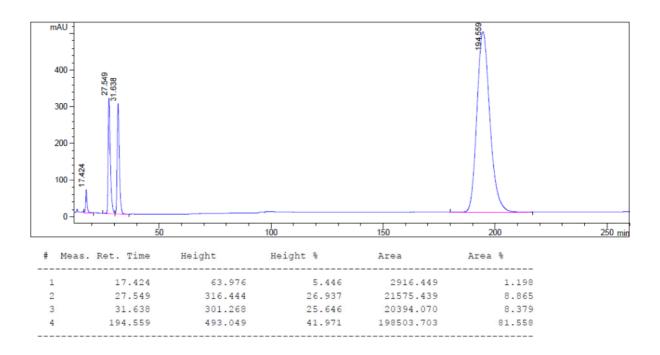


Following the general procedure, the title compound **5i** was obtained after FC (petane-EtOAc 5:1) as a white solid (66%) and a 2.5:1 mixture of diastereoisomers (95% ee each). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.09$ (d, J = 8.5 Hz, 1H minor), 6.97 (d, J = 8.4 Hz, 1H major), 6.45 – 6.23 (m, 2H major + minor), 4.73 (d, J = 11.8 Hz, 1H

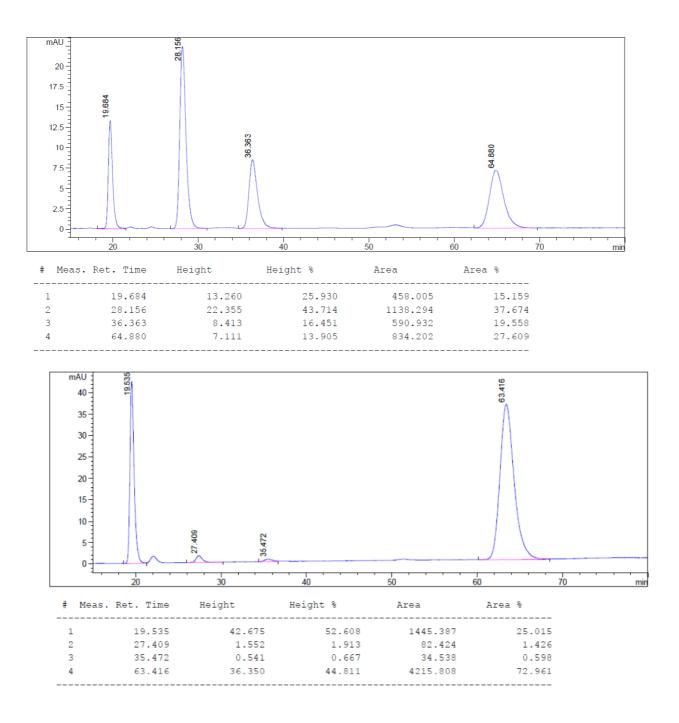

major), 4.56 (d, J = 11.7 Hz, 1H minor), 4.51 – 4.38 (m, 2H major + 2 H minor), 4.37 – 4.24 (m, 1H major + 1H minor), 3.78 (s, 3H major), 3.74 (s, 1H minor), 3.64 (s, 3H major), 3.55 (s, 3H minor), 3.89 – 3.52 (m, 3H major + 3H minor), 3.30 (q, J = 7.1 Hz, 4H major +4H minor), 1.13 (t, J = 7.1 Hz, 6H major + 6H minor); ¹³C NMR (75 MHz, CDCl₃): Major isomer: $\delta = 168.3$, 168.0, 159.1, 159.0, 149.0, 127.5, 115.5, 108.1, 105.4,

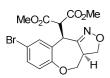
74.0, 70.4, 53.5, 53.2, 53.0, 51.7, 44.4 (2C), 38.9, 12.6 (2C); Minor isomer: $\delta = 167.7$, 167.4, 160.4, 157.4, 149.3, 132.6, 114.0, 108.0, 105.0, 74.5, 70.2, 54.4, 53.1, 52.6, 50.3, 44.4 (2C), 43.2, 12.6 (2C); **HRMS** (ESI⁺) calculated for C₂₀H₂₆N₂O₆+Na⁺ [M+Na]⁺: m/z = 413.1683, found 413.1681; **IR**: v_{max} 2969, 2933, 2882, 1756, 1736, 1614, 1557, 1512, 1434, 1398, 1376, 1297, 1272, 1257, 1238, 1216, 1193, 1146, 1108, 1080, 1021, 916, 882, 729; **HPLC**: IA, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R minor = 26.3 min, t_R major = 31.8 min; Minor isomer: t_R major = 17.9 min, t_R minor = 22.4 min.




Dimethyl 2-((8aR,12R)-8,8a,9,12-tetrahydronaphtho[1',2':6,7]oxepino[4,3-c]isoxazol-12-yl)malonate (5j)

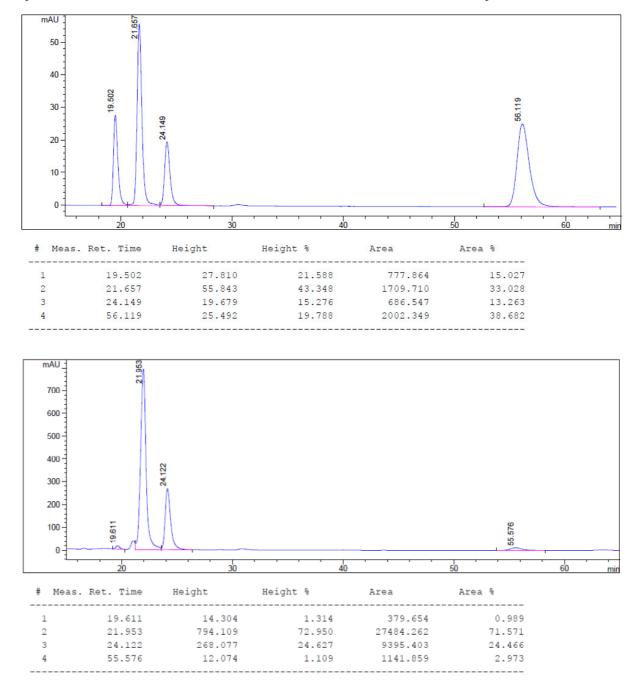
Following the general procedure, the title compound **5j** was obtained after FC (petane-EtOAc 5:1) as a white solid (63%) and a 3.8:1 mixture of diastereoisomers (81% ee each). ¹H NMR (300 MHz, CDCl₃): δ = 8.36 (d, *J* = 8.7 Hz, 1H minor), 8.28 (d, *J* = 8.7 Hz, 2H major), 7.90 – 7.72 (m, 2H major + 2H minor), 7.66 – 7.53 (m, 1H major + 1H minor), 7.53


- 7.39 (m, 1H major + 1H minor), 7.26 (d, *J* = 8.7 Hz, 1H major), 7.20 (d, *J* = 8.8 Hz, 1H minor), 5.65 (d, *J* = 11.8 Hz, 1H minor), 5.63 (d, *J* = 9.8 Hz, 1H major), 4.76 (d, *J* = 11.7 Hz, 1H minor), 4.64 (dd, *J* = 11.3, 6.7 Hz, 1H minor), 4.54 (d, *J* = 9.8 Hz, 1H major), 4.49 (dd, *J* = 11.0, 8.3 Hz, 1H minor), 4.36 – 4.15 (m, 3H major + 1H minor), 4.08 (dd, *J* = 8.5, 6.3 Hz, 1H major), 3.86 (s, 3H major), 3.83 (s, 3H minor), 3.89 – 3.76 (m, 1H major) 3.66 – 3.55 (m, 2H minor), 3.45 – 3.29 (m, 1H major), 3.20 (s, 3H minor), 3.09 (s, 3H major); ¹³C NMR (75 MHz, CDCl₃): Major isomer: δ = 168.4, 167.2, 159.7, 153.4, 131.9, 131.7, 131.1, 128.6, 127.0, 125.3, 125.0, 123.9, 122.1, 71.9, 71.3, 55.6, 53.1, 52.2, 48.5, 35.6; Minor isomer: δ = 167.7, 167.0, 157.9, 156.4, 131.8, 131.6, 130.9, 130.8, 128.5, 125.0, 124.3, 123.6, 122.3, 74.8, 70.3, 53.3, 53.2, 52.4, 49.9, 36.7; HRMS (ESI⁺) calculated for C₂₀H₁₉NO₆+Na⁺ [M+Na]⁺: m/z = 392.1105, found 392.1109; **IR**: v_{max} 3059, 2953, 2884, 2361, 1735, 1622, 1594, 1512, 1434, 1376, 1332, 1297, 1242, 1219, 1150, 1079, 1008, 913, 885, 859, 830, 753, 730; **HPLC**: IC, Pentane:*i*-PrOH 75:25, F = 1.2 mL/min, λ = 230 nm: Major isomer: t_R minor = 31.6 min, t_R major = 194.6 min; Minor isomer: t_R minor = 17.4 min, t_R major = 27.5 min.



Dimethyl 2-((3aR,10R)-8-fluoro-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5k)

Following the general procedure, the title compound 5k was obtained after FC (petane-,CO₂Me MeO₂C EtOAc 5:1) as a white solid (57%) and a 2.8:1 mixture of diastereoisomers (96% ee each). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 7.10 - 6.86$ (m, 3H major + 3H minor), 4.87 (d, J = 11.7 Hz, 1H major), 4.62 (d, J = 11.8 Hz, 1H minor), 4.56 – 4.41 (m, 2H major + 2H minor), 4.41 – 4.30 (m, 1H major+ 1H minor), 3.96 – 3.80 (m, 2H major + 2H minor), 3.79 (s, 3H major), 3.77 (s, 3H minor), 3.69 (s, 3H major), 3.66 – 3.47 (m, 1H major + 1 H minor); 3.57 (s, 3H minor); ¹³C NMR (75 MHz, CDCl₃): Major isomer: $\delta = 167.8$, 167.6, 159.7 (d, ¹J = 244.5 Hz), 157.6, 154.2 (d, ⁴J = 2.9 Hz), 132.0 (d, ³J = 7.9 Hz), 124.0 (d, ${}^{3}J = 8.7$ Hz), 115.8 (d, ${}^{2}J = 22.7$ Hz), 113.7 (d, ${}^{3}J = 25.0$ Hz), 74.4 (d, ${}^{6}J = 1.5$ Hz), 70.6, 53.4, 53.3, 52.8, 51.6, 39.3 (d, ${}^{4}J = 1.3 \text{ Hz}$); Minor Isomer: $\delta = 167.2$, 167.0, 159.1 (d, ${}^{1}J = 244.6 \text{ Hz}$), 156.2; 155.3 (d, ${}^{4}J = 2.8$ Hz), 130.6 (d, ${}^{3}J = 8.0$ Hz), 124.2 (d, ${}^{3}J = 8.5$ Hz), 118.5 (d, ${}^{2}J = 24.0$ Hz), 116.5 (d, ${}^{2}J = 22.8$ Hz), 74.8 (d, ${}^{6}J = 0.9 \text{ Hz}$), 70.5, 53.6, 53.3, 52.8, 50.1, 43.7 (d, ${}^{4}J = 1.4 \text{ Hz}$); **HRMS** (ESI⁺) calculated for $C_{16}H_{16}FNO_6 + Na^+$ [M+Na]⁺: m/z = 360.0854, found 360.0844; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -115.99$ (major), -117.14 (minor); **IR**: v_{max} 3078, 3007, 2958,2923, 2852, 1754, 1736, 1590, 1489, 1430, 1383, 1350, 1305, 1262, 1239, 1184, 1145, 1014, 1005, 978, 962, 918, 887, 870, 842, 823; HPLC: IC, Pentane:*i*-PrOH 80:20, F = 1.0 mL/min, λ = 210 nm: Major isomer: t_R minor = 27.4 min, t_R major = 63.4 min; Minor isomer: t_R major = 19.5 min, t_R minor = 35.5 min.


Dimethyl 2-((3aR,10R)-8-bromo-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5l)

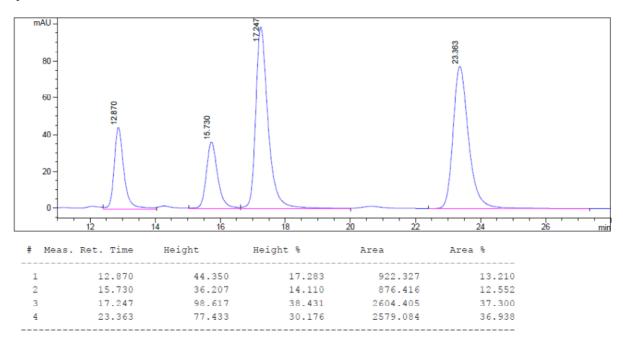
Following the general procedure, the title compound **51** was obtained after FC (petane-EtOAc 5:1) as a white solid (50%) and a 3.6:1 mixture of diastereoisomers (92% ee each). ¹**H NMR** (300 MHz, CDCl₃): δ = 7.47 (d, *J* = 2.4 Hz, 1H, minor), 7.40 – 7.31 (m, 2H, major + 2H, minor), 6.96 (d, *J* = 8.4 Hz, 1H, major), 6.90 (d, *J* = 8.5 Hz, 1H, minor), 4.84

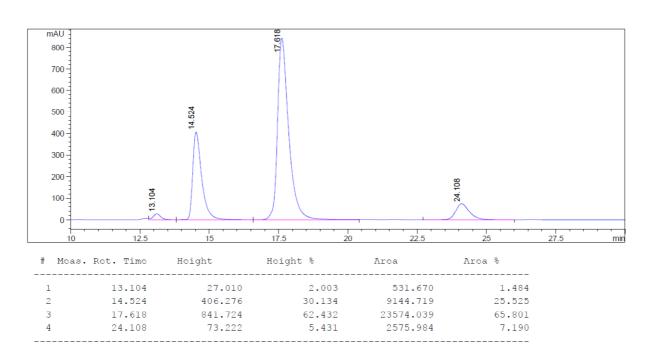
(d, J = 11.6 Hz, 1H, major), 4.61 (d, J = 11.7 Hz, 1H, minor), 4.56 – 4.15 (m, 4H, major + 1 H, minor), 3.96 – 3.81 (m, 2H, major +2 H minor), 3.79 (s, 3H, major), 3.77 (s, 1H, minor), 3.70 (s, 3H, major), 3.65 (t, J = 9.0 Hz, 1H, major), 3.57 (s, 1H, minor), 3.56 – 3.43 (m, 2H, minor). ¹³C NMR (150 MHz, CDCl₃): Major isomer: $\delta = 167.8$, 167.6, 157.5, 157.2, 132.5, 132.4, 130.1, 124.5, 118.2, 74.1, 70.6, 53.3, 53.2, 52.9, 51.4, 39.4; Minor isomer: $\delta = 167.2$, 166.9, 158.4, 156.1, 134.6, 132.9, 131.0, 124.7, 117.7, 74.6, 70.4, 53.7, 53.3, 52.8,

50.0, 43.6; **HRMS** (ESI⁺) calculated for $C_{16}H_{16}BrNO_6 + Na^+ [M+Na]^+$: m/z = 420.0053, found 420.0056; **IR**: v_{max} 2915, 2872, 1682, 1591, 1475, 1412, 1392, 1271, 1236, 1222, 1180, 1124, 1098, 1013, 993, 936, 901, 885, 876, 852, 810; **HPLC**: IA, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R major = 22.0 min, t_R minor = 55.6 min; Minor isomer: t_R minor = 19.6 min, t_R major = 24.1 min.

Dimethyl 2-((3aR,10R)-7,9-dichloro-3,3a,4,10-tetrahydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-

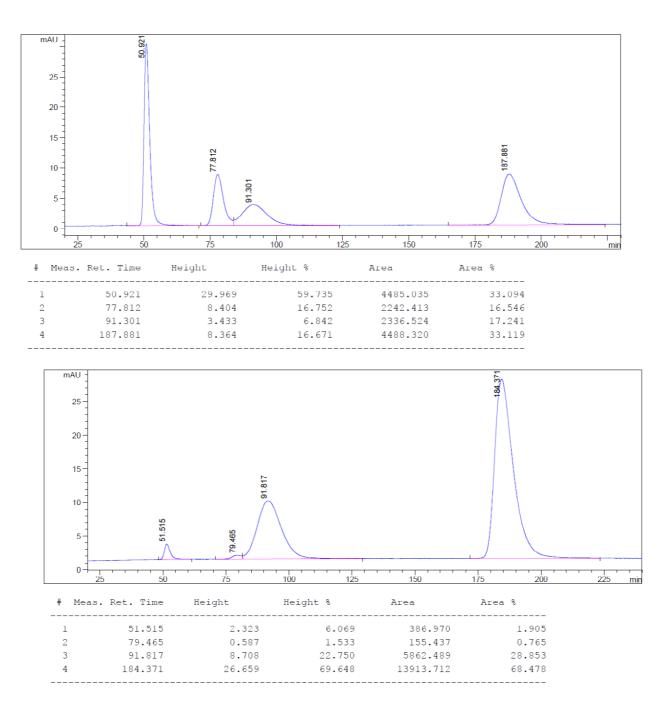
yl)malonate (5m)


MeO₂C С


CI

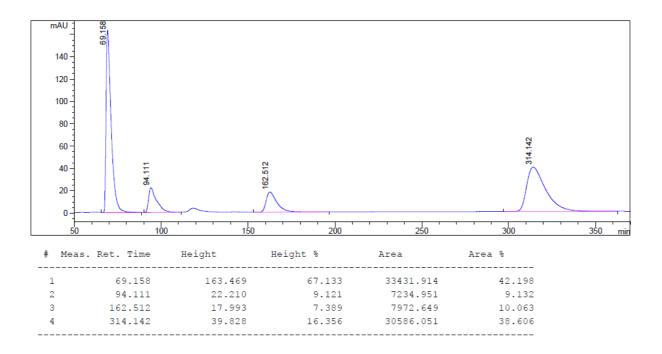
Following the general procedure, the title compound 5m was obtained after FC (petane-,CO₂Me N EtOAc 6:1) as a white solid (58%) and a 2.9:1 mixture of diastereoisomers (80% ee each): <u>`</u>೧ ¹**H NMR** (300 MHz, CDCl₃): δ = 7.28 (d, *J* = 2.1 Hz, 1H, major), 7.25 (d, *J* = 2.2 Hz, 1H, Ή minor), 7.04 (d, J = 2.1 Hz, 1H, major), 6.99 (d, J = 2.1 Hz, 1H, minor), 5.37 (d, J = 11.7 Hz, 1H, minor),

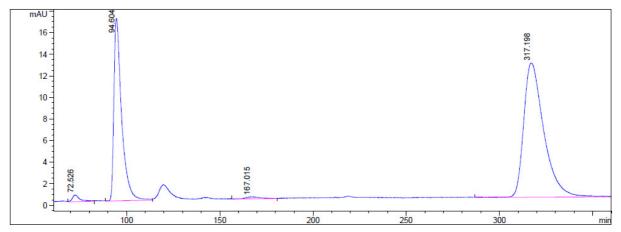
5.31 (d, J = 9.9 Hz, 1H, major), 4.58 (dd, J = 11.5, 6.6 Hz, 1H, minor), 4.47 (dd, J = 11.1, 8.6 Hz, 2H, minor), 4.35 – 4.21 (m, 2H, major), 4.21 (d, J = 9.0 Hz, 2H, major), 4.04 (dd, J = 8.6, 6.8 Hz, 1H, major), 3.90 (t, J = 8.5 Hz, 1H, minor), 3.81 (s, 3H, major), 3.78 (s, 1H, minor), 3.59 (s, 1H, minor), 3.54 (s, 3H, major), 3.50 – 3.29 (m, 1H, major + 1H, minor); ¹³C NMR (100 MHz, CDCl₃):Major isomer: $\delta = 167.7$, 167.0, 157.6, 156.8, 135.8, 135.3, 128.7, 126.9, 122.6, 72.6, 71.2, 54.9, 53.2, 52.8, 48.2, 37.5; Minor isomer: $\delta = 166.3$, 163.8, 156.4, 155.1, 137.0, 135.0, 129.4, 126.5, 122.2, 71.4, 71.3, 53.5, 53.3, 52.7, 48.5, 40.5. The major diastereomer could be isolated: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (d, J = 2.1 Hz, 1H), 7.03 (dd, J = 2.1, 0.5 Hz, 1H), 5.30 (d, J = 9.7 Hz, 0H), 4.31 (d, J = 9.8 Hz, 1H), 4.27 (dd, J = 9.8, 8.6 Hz, 1H), 4.21 (d, J = 1.1 Hz, 1H), 4.19 (d, J = 2.6 Hz, 1H), 4.03 (dd, J = 8.6, 6.8 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.46 – 3.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.7$, 167.0, 157.6, 156.8, 135.8, 135.3, 128.6, 126.9, 122.6, 72.6, 71.2, 54.9, 53.2, 52.8, 48.2, 37.5; HRMS (ESI⁺) calculated for C₁₆H₁₅Cl₂NO₆+Na⁺ [M+Na]⁺: m/z = 410.0169 found 410.0166; **IR**: v_{max} 3081, 2954, 2888, 1736, 1586, 1558, 1435, 1406, 1370, 1334, 1297, 1258, 1238,


1194, 1151, 1089, 1011, 914, 882, 842, 803, 731, 650; **HPLC**: IA, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R major = 17.6 min, t_R minor = 24.1 min; Minor isomer: t_R minor = 13.1 min, t_R major = 14.5 min.

Dimethyl 2-((3a*S*,10*R*)-5-benzoyl-3a,4,5,10-tetrahydro-3*H*-benzo[b]isoxazolo[3,4-e]azepin-10-yl)malonate (5n)

Following the general procedure, the title compound **5n** was obtained after FC (petane-CO₂Me MeO₂C EtOAc 4:1 \rightarrow 2:1) as a white solid (60%) and a 3.6:1 mixture of diastereoisomers (95% ee `C each). ¹**H NMR** (300 MHz, CDCl₃): δ = 7.51 (d, J = 7.8 Hz, 2H, minor), 7.45 – 7.38 (m, 2H, Ή 0= major), 7.36 – 7.11 (m, 6H, major, +6 H, minor), 7.13 – 6.97 (m, 1H, major, +1H, minor), `**D**h 6.75 (d, J = 7.7 Hz, 1H, major), 6.66 (d, J = 7.8 Hz, 1H, minor), 5.36 (dd, J = 13.1, 6.5 Hz, 1H, major), 5.34 - 1005.23 (m, 1H, minor), 5.05 (d, J = 12.6 Hz, 1H, major), 4.88 (d, J = 12.4 Hz, 1H, minor), 4.74 (d, J = 12.6 Hz, 1H, major), 4.52 (dd, J = 10.7, 8.2 Hz, 1H, major), 4.34 (d, J = 12.5 Hz, 1H, minor), 4.10 – 3.97 (m, 3H, minor), 3.92 – 3.84 (m, 1H, major), 3.82 (s, 3H, major), 3.76 (s, 3H, minor), 3.76 (s, 3H, major), 3.68 (s, 3H, minor), 2.82 (t, J = 12.3 Hz, 1H, minor), 2.71 (dd, J = 13.0, 11.6 Hz, 1H, major); ¹³C NMR (100 MHz, CDCl₃): Major isomer: $\delta = 169.7$ (2C), 167.7, 167.7, 157.3, 143.9, 134.8, 133.8, 130.4, 129.4, 129.3, 128.9, 128.7, 128.5, 128.0, 125.1, 71.6, 53.6, 53.4, 52.1, 50.8, 49.9, 39.8; Minor isomer: $\delta = 166.9$, 166.8, 158.4, 156.9, 143.1, 134.1, 131.7, 130.7, 130.0, 129.3, 128.9, 128.8, 128.6, 128.1, 128.1, 127.8, 72.2, 60.5, 53.9, 53.4, 52.9, 50.5, 48.6; **HRMS** (ESI⁺) calculated for $C_{23}H_{22}NO_6+Na^+$ [M+Na]⁺: m/z = 445.1370, found 445.1369; IR: v_{max} 1745, 1725, 1649, 1602, 1579, 1490, 1449, 1435, 1395, 1345, 1320, 1294, 1275, 1264, 1199, 1151, 970, 926, 894, 875, 789, 777, 728, 708; HPLC: IC, Pentane:*i*-PrOH 80:20, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R minor = 51.9 min, t_R major = 184.4 min; Minor isomer: t_R minor = 79.5 min, t_R major = 91.8 min.


Dimethyl 2-((3a*S*,10*R*)-5-(4-toluensulfonyl)-3a,4,5,10-tetrahydro-3H-benzo[b]isoxazolo[3,4-e]azepin-10-yl)malonate (50)



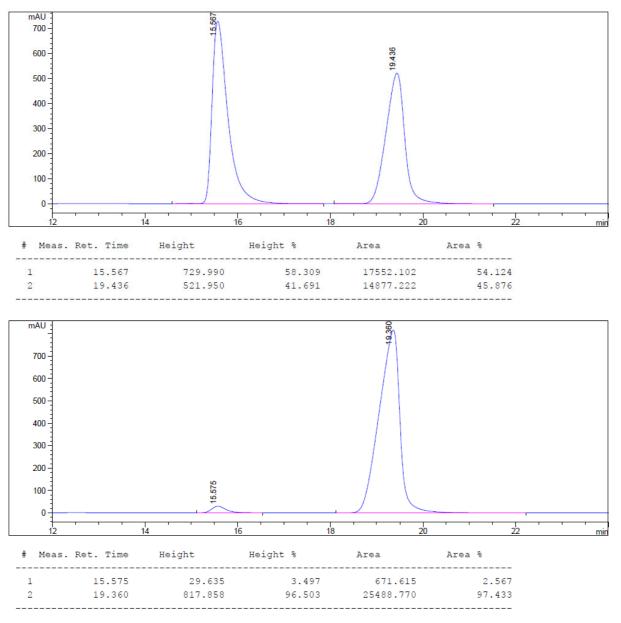
Following the general procedure, the title compound **50** was obtained after FC (petane-EtOAc 2:1) as a white solid (57%) and a 2.3:1 mixture of diastereoisomers (97% ee each). ¹H NMR (300 MHz, CDCl₃): δ = 7.84 (d, *J* = 8.3 Hz, 2H minor), 7.78 (d, 8.3 Hz, 2H major), 7.50 (dd, *J* = 7.6, 1.8 Hz, 1H minor), 7.44 – 7.10 (m, 6H major + 4H minor), 6.88 (dd,

J = 7.8, 1.5 Hz, 1H minor), 4.83 – 4.53 (m, 3H major +2H minor), 4.51 – 4.22 (m, 2H major + 1H minor), 4.01 – 3.83 (m, 1H major + 2H minor), 3.79 (d, J = 3.2 Hz, 1H minor), 3.77 (s, 3H minor), 3.74 (s, 3H major), 3.67 (s, 3H major), 3.61 (s, 3H minor), 3.04 – 2.83 (m, 1H major + 1H minor), 2.48 (s, 3H minor), 2.44 (s, 3H major); ¹³C NMR (75 MHz, CDCl₃): Major isomer: $\delta = 167.6$, 167.4, 157.6, 144.1, 140.1, 138.3, 136.0, 133.8,

130.2, 129.9, 129.6, 129.4, 128.7, 127.3, 125.1, 71.3, 53.3, 52.8, 52.2, 51.8, 50.5, 39.1, 21.8; Minor isomer: $\delta = 167.6, 167.3, 157.1, 144.4, 140.3, 138.5, 136.0, 134.7, 130.3, 129.9, 129.5, 129.4, 128.6, 127.4, 127.2,$ 71.7, 53.5, 53.2, 44.6, 21.8; **HRMS** (ESI⁺) calculated for C₂₃H₂₄N₂O₇S+Na⁺ [M+Na]⁺: m/z = 495.1196, found 495.1190; **IR**: v_{max} 3291; 2954, 2924, 2850, 2361, 2343, 2257, 1755, 1732, 1599, 1553, 1493, 1452, 1435, 1344, 1304, 1241, 1157, 1089, 1018, 912, 880; **HPLC**: IC, Pentane:*i*-PrOH 80:20, F = 1.0 mL/min, $\lambda = 230$ nm: Major isomer: t_R minor = 72.5 min, t_R major = 317.2 min; Minor isomer: t_R major = 94.6 min, t_R minor = 167.0 min.

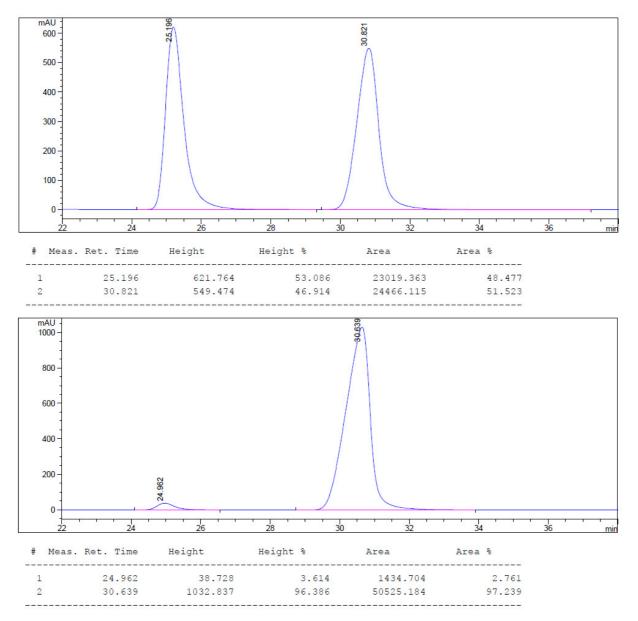


164.617	1.139
4883.356	33.799
96.068	0.665
9304.162	64.397
	96.068

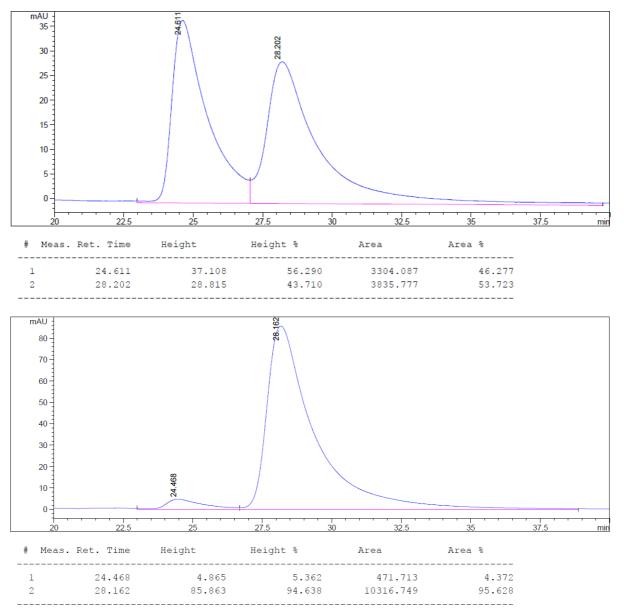

(R)-Dimethyl 2-(4,10-dihydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5p)

Following the general procedure, the title compound 5p was obtained after FC (petane-CO₂Me MeO₂C EtOAc 4:1) as a white solid (99%, 96% ee). $[\alpha]_{D}^{20} = +119$ (c 2.27, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.11 \text{ (d, } J = 1.1 \text{ Hz}, 1\text{H}), 7.39 \text{ (dd, } J = 7.1, 1.5 \text{ Hz}, 1\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1, 1.5 \text{ Hz}, 10\text{H}), 7.30 \text{ (ddd, } J = 7.1$ J = 8.1, 7.3, 1.7 Hz, 1H), 7.12 (td, J = 7.8, 7.4, 1.1 Hz, 2H), 5.40 (dd, J = 14.6, 1.2 Hz, 1H),

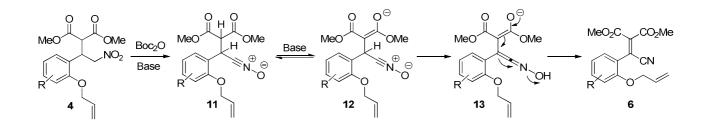
4.93 (dd, J = 11.2, 0.8 Hz, 1H), 4.81 (dd, J = 14.6, 1.4 Hz, 1H), 4.53 (d, J = 11.2 Hz, 1H), 3.67 (s, 3H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.5, 167.4, 158.9, 157.4, 153.3, 132.0, 131.3, 130.3, 125.5, 123.0, 116.1, 65.9, 56.2, 52.9, 52.6, 41.3; **HRMS** (ESI⁺) calculated for $C_{16}H_{15}NO_6+Na^+$ [M+Na]⁺: m/z = 340.0792, found 340.0788; IR: v_{max} 3118, 3005, 2955, 2873, 1734, 1601, 1582, 1488, 1457, 1434, 1419, 1261, 1238, 1148, 1106, 1013, 894, 782; **HPLC**: OJ-H, Pentane:*i*-PrOH 85:15, F = 1.0 mL/min, $\lambda = 230 \text{ nm}$, t_R major (*R*) $= 25.2 \text{ min}, t_{R} \text{ minor} (S) = 32.8 \text{ min}.$



(R)-Dimethyl 2-(8-methyl-4,10-dihydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5q)


(R)-Dimethyl 2-(8-methoxy-4,10-dihydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5r)

Following the general procedure, the title compound **5r** was obtained after FC (petane-MeO₂C, N_O EtOAc 6:1) as a white solid (56%, 94% ee). $[\alpha]^{20}_{D} = +109$ (*c* 1.59, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.10$ (d, J = 1.0 Hz, 1H), 7.04 (d, J = 8.7 Hz, 1H), 6.91 (d, J = 3.0 Hz, 1H), 6.79 (dd, J = 8.7, 3.0 Hz, 1H), 5.34 (dd, J = 14.5, 1.1 Hz, 1H), 4.87 (dd, J = 11.2, 0.8 Hz, 1H), 4.76 (dd, J = 14.5, 1.4 Hz, 1H), 4.53 (d, J = 11.2 Hz, 1H), 3.76 (s, 3H), 3.66 (s, 3H), 3.57 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.5$, 167.4, 158.9, 156.6, 153.3, 150.9, 132.7, 123.6, 116.2, 116.0, 115.2, 66.0, 56.1, 55.8, 52.9, 52.7, 41.4; HRMS (ESI⁺) calculated for C₁₇H₁₇NO₇+Na⁺ [M+Na]⁺: m/z = 370.0897, found 370.0892; **IR**: v_{max} 3017, 2958, 2833, 2362, 2343, 1761, 1740, 1615, 1601, 1583, 1495, 1431, 1419, 1291, 1236, 1221, 1204, 1193, 1167, 1150, 1118, 1108, 1038, 1028, 1014, 925, 892, 830, 674, 665; **HPLC**: IA, Pentane:*i*-PrOH 90:10, F = 1.0 mL/min, $\lambda = 230$ nm: t_R major = 30.6 min, t_R minor = 25.0 min.


(R)-Dimethyl 2-(8-chloro-4,10-dihydrobenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (5s)

Following the general procedure, the title compound **5**s was obtained after FC (petane- C_{0} $C_{$

Proposed mechanism for the formation of conjugated nitriles 6 side-products

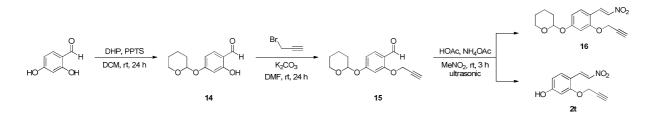
Only in the cases of the F, Br and Cl substituted derivatives **4**, nitriles **6** were formed and isolated as sideproducts. The formation of **6** can be rationalized by the relative higher acidity of the benzylic position in these compounds due to the electron-withdrawing nature of the halogen substituents. Subsequently, we propose that after the formation of the nitrile oxide **11**, under the basic conditions employed, the malonate moiety might also be deprotonated to form the corresponding enolate **12**. This could now undergo a proton shift in the cases that the benzylic proton has the appropriate acidity, leading to the ethenone oxime **13**. Finally, the expulsion of the hydroxyl group would lead to the observed unsaturated nitrile **6**.

Dimethyl 2-((2-(allyloxy)-5-fluorophenyl)(cyano)methylene)malonate (6k)

The title compound **6k** was obtained after FC (petane-EtOAc 5:1) as yellow oil (27%). **¹H NMR** (300 MHz, CDCl₃): $\delta = 7.11$ (ddd, J = 9.1, 7.8, 3.1 Hz, 1H), 7.01 (dd, J = 8.2, 3.1 Hz, 1H), 6.02 (ddt, J = 17.3, 10.5, 5.2 Hz, 1H), 5.40 (dq, J = 17.3, 1.5 Hz, 1H), 5.30 (dq, J = 10.6, 1.4 Hz, 1H), 4.59 (dt, J = 5.3, 1.6 Hz, 2H), 3.94 (s, 3H), 3.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.1$, 161.9, 156.6 (d, ¹J = 242.6 Hz), 152.2 (d, ³J = 2.8 Hz), 139.6, 132.2, 122.0 (d, ⁴J = 1.3 Hz), 121.9 (d, ⁴J = 1.5 Hz), 118.7 (d, ²J = 22.9 Hz), 118.5, 116.6 (d, ²J = 25.2 Hz), 114.8 , 114.3 (d, ³J = 8.1 Hz), 70.5, 53.7, 53.1; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -121.90$; **HRMS** (ESI⁺) calculated for C₁₆H₁₄FNO₅+Na⁺ [M+Na]⁺: m/z = 342.0748, found 342.0754; **IR**: v_{max} 2363, 2343, 1736, 1612, 1590, 1493, 1456, 1436, 1426, 1371, 1303, 1256, 1194, 1180, 1152, 1126, 1083, 1028, 994, 935, 878, 843, 813, 750.

Dimethyl 2-((2-(allyloxy)-5-bromophenyl)(cyano)methylene)malonate (6l)

The title compound **61** was obtained after FC (petane-EtOAc 5:1) as a yellow oil (34%). ^IH NMR (300 MHz, CDCl₃): $\delta = 7.49$ (dd, J = 8.9, 2.4 Hz, 1H), 7.38 (d, J = 2.4 Hz, 1H), 6.82 (d, J = 8.9 Hz, 1H), 6.00 (ddt, J = 17.3, 10.4, 5.1 Hz, 1H), 5.40 (dq, J = 17.3, 1.6 Hz, 1H), 5.31 (dq, J = 10.6, 1.4 Hz, 1H), 4.60 (dt, J = 5.2, 1.6 Hz, 2H), 3.94 (s, 3H), 3.67 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.1$, 161.8, 155.0, 139.6, 135.2, 132.3, 131.9, 122.7, 121.7, 118.6, 114.8, 114.6, 113.0, 70.1, 53.7, 53.1; HRMS (ESI⁺) calculated for C₁₆H₁₄BrNO₅+Na⁺ [M+Na]⁺: m/z = 401.9948, found 401.9951; **IR**: v_{max} 2951, 1779, 1735, 1615, 1591, 1483, 1455, 1435, 1400, 1371, 1264, 1242, 1146, 1121, 1093, 1026, 990, 931, 813, 764, 722.


Dimethyl 2-((2-(allyloxy)-4,6-dichlorophenyl)(cyano)methylene)malonate (6m)

The title compound **6m** was obtained after FC (petane-EtOAc 4:1) as a white solid (25%). ¹H NMR (300 MHz, CDCl₃): $\delta = 6.95$ (d, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 1H), 5.99 (ddt, J = 17.2, 10.7, 5.4 Hz, 1H), 5.62 – 5.03 (m, 2H), 4.52 (dq, J = 5.5, 1.5 Hz, 2H), 3.71 (s, 3H), 3.42 (s, 3H); **HRMS** (ESI⁺) calculated for C₁₆H₁₃Cl₂NO₅+Na⁺ [M+Na]⁺: m/z = 369.0171, found 369.01714.

Dimethyl 2-((2-(allyloxy)-5-chlorophenyl)(cyano)methylene)malonate (6s)

The title compound **6s** was obtained after FC (petane-EtOAc 8:1) as a yellow oil (26%). ^IH NMR (300 MHz, CDCl₃): $\delta = 7.40$ (dd, J = 8.9, 2.6 Hz, 1H), 7.29 (d, J = 2.5 Hz, 1H), 7.06 (d, J = 8.9 Hz, 1H), 4.73 (d, J = 2.4 Hz, 2H), 3.94 (s, 3H), 3.69 (s, 3H), 2.57 (t, J = 2.4Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.0, 161.8, 153.4, 140.0, 132.2, 129.7, 127.0, 122.7, 121.2, 114.8, 114.6, 77.3, 77.1, 56.9, 53.7, 53.2; HRMS (ESI⁺) calculated for C₁₆H₁₂ClNO₅+Na⁺ [M+Na]⁺: m/z = 356.0296, found 356.0297.$ **IR** $: <math>v_{max}$ 3287, 2957, 1733, 1614, 1572, 1484, 1453, 1436, 1405, 1372, 1267, 1249, 1223, 1146, 1104, 1086, 1017, 990, 929, 891, 879, 813, 764, 675, 644, 612.

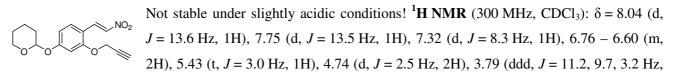
Synthesis of bioactive compound ent-8

2-Hydroxy-4-((tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde (14)

To a suspension of 2,4-dihydroxybenzalehyde (2.00 g, 14.48 mmol, 1.0 equiv.) and pyridinium-4-toluolsulfonate (35.7 mg, 0.14 mmol, 0.01 equiv.) in 70 mL DCM a solution of dihydropyran (1.45 mL, 15.93 mmol, 1.1 equiv.) in 24 mL DCM was slowly added. After stirring the reaction mixture for 1.5 h at room temperature, the reaction mixture was washed with saturated NaCl (aq.) and dried over Na₂SO₄ and the solvent removed in vacuo. The residue was purified by column chromatography (pentane-EtOAc: 20:1), affording **14** (2.32 g, 10.42 mmol, 72%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 11.35$ (s, 1H), 9.71 (d, J = 0.7 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 6.64 (dd, J = 8.6, 2.3 Hz, 1H), 6.61 (d, J = 2.3 Hz, 1H), 5.49 (t, J = 3.2 Hz, 1H), 3.81 (ddd, J = 11.3, 9.8, 3.1 Hz, 1H), 3.62 (dtd, J = 11.4, 4.1, 1.5 Hz, 1H), 1.97 (dddd, J = 13.7, 12.0, 6.9, 3.2 Hz, 1H), 1.86 (ddd, J = 6.7, 4.6, 3.2 Hz, 2H), 1.77 – 1.63 (m, 2H), 1.65 – 1.52 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 194.6$, 164.4, 164.2, 135.4, 115.8, 109.5, 103.7, 96.3, 62.3, 30.0, 25.0, 18.5; HRMS (ESI⁺): calculated for C₁₂H₁₄O₄+Na⁺ [M+Na]⁺: m/z = 245.0784, found 245.0790.

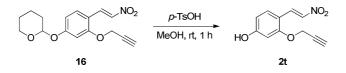
2-(Prop-2-yn-1-yloxy)-4-((tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde (15)

O H


An ordinary vial equipped with a magnetic stirring bar was charged with **14** (2.23 g, 10.03 mmol, 1.0 equiv.), K_2CO_3 (1.53 g, 11.04 mmol, 1.1 equiv.) and DMF (15 mL, 0.6 M). To the stirring solution, propargyl bromide (80%, 1.23 mL, 11.04 mmol, 1.1 equiv.)

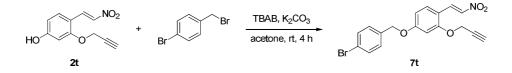
was added dropwise. After stirring the solution for 5 h water was added and the mixture extracted 3 times with DCM. The combined organic phases were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography (pentane-EtOAc: 20:1) to obtain **15** (2.46 g, 9.44 mmol, 94%) as a light yellow oil. ¹H NMR (300 MHz, CD₂Cl₂): $\delta = 10.28$ (d, J = 0.8 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 6.87 – 6.57 (m, 2H), 5.51 (t, J = 3.1 Hz, 1H), 4.82 (d, J = 2.4 Hz, 2H), 3.83 (ddd, J = 11.4, 9.6, 3.3 Hz, 1H), 3.61 (dtd, J = 11.5, 4.1, 1.4 Hz, 1H), 2.66 (t, J = 2.4 Hz, 1H), 2.06 – 1.92 (m, 1H), 1.92 – 1.79 (m, 2H), 1.77 – 1.43 (m, 4H); ¹³C NMR (75 MHz, CD₂Cl₂): $\delta = 188.3$, 164.1, 161.9, 130.5, 120.4, 110.0, 101.8, 97.1, 78.2, 76.7, 62.7, 57.0, 30.6, 25.6, 19.1; HRMS (ESI⁺): calculated for C₁₅H₁₆O₄+Na+ [M+Na]+: m/z = 283.0941, found 283.0944.

(E)-2-(4-(2-Nitrovinyl)-3-(prop-2-yn-1-yloxy)phenoxy)tetrahydro-2H-pyran (16) and (E)-4-(2-nitrovinyl)-3-(prop-2-yn-1-yloxy)phenol (2t)

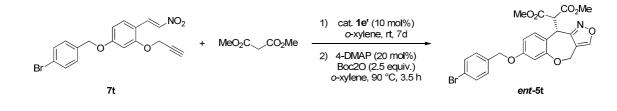

Aldehyde **15** (1.30 g, 4.99 mmol, 1.0 equiv.) was treated with nitromethane (3.23 mL, 60.34 mmol, 12.1 equiv.), acetic acid (828 μ L, 14.47 mmol, 2.9 equiv.) and NH₄OAc (846 mg, 10.98 mmol, 2.2 equiv.) at rt under ultrasound irradiation for 3 h. The corresponding nitroolefins **16** (1.07 g, 3.54 mmol, 71%) and **2t** (0.31 g, 1.39 mmol, 28%) were then isolated by column chromatography (pentane-EtOAc: 10:1 \rightarrow 4:1).

(E)-2-(4-(2-Nitrovinyl)-3-(prop-2-yn-1-yloxy)phenoxy)tetrahydro-2H-pyran (16)

1H), 3.57 (dtd, J = 11.4, 4.0, 1.6 Hz, 1H), 2.53 (t, J = 2.4 Hz, 1H), 2.01 – 1.87 (m, 1H), 1.82 (dt, J = 5.6, 3.6 Hz, 2H), 1.75 – 1.41 (m, 4H); ¹³**C** NMR (75 MHz, CDCl₃): $\delta = 161.8$, 159.0, 136.6, 135.5, 134..0, 113.3, 109.8, 101.7, 96.6, 77.4, 76.8, 62.3, 56.4, 30.2, 25.1, 18.6. **HRMS** (ESI⁺) calculated for C₁₆H₁₇NO₅+Na⁺ [M+Na]⁺: m/z = 326.0999, found 326.0996.


(E)-4-(2-Nitrovinyl)-3-(prop-2-yn-1-yloxy)phenol (2t)

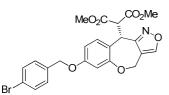
To a solution of nitroolefin **16** (1.00 g, 3.30 mmol, 1.0 equiv.) in MeOH (83 mL, 0,04 M), *p*-TsOH (56.6 mg, 0.33 mmol, 0.1 equiv.) was added and stirred at rt for 1 h until completion of reaction (followed by TLC). The


residue was purified by column chromatography (pentane-EtOAc: 4:1), affording **2t** as a yellow-orange solid (0.70 g, 3.20 mmol, 97%). ¹**H NMR** (300 MHz, DMSO-*d*₆) δ = 10.65 (s, 1H), 8.12 (d, *J* = 13.4 Hz, 1H), 7.98 (d, *J* = 13.4 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 6.60 (d, *J* = 2.2 Hz, 1H), 6.51 (dd, *J* = 8.5, 2.2 Hz, 1H), 4.95 (d, *J* = 2.4 Hz, 2H), 3.70 (t, *J* = 2.3 Hz, 1H), 3.38 (br.s, 1H); ¹³C NMR (75 MHz, DMSO): δ = 163.4, 159.2, 135.4, 134.8, 134.0, 110.2, 109.6, 100.7, 79.1, 78.6, 56.2. **HRMS** (ESI⁺): calculated for C₁₁H₉NO₄+Na⁺ [M+Na]⁺: m/z = 242.0424, found 242.0429.

(E)-4-((4-Bromobenzyl)oxy)-1-(2-nitrovinyl)-2-(prop-2-yn-1-yloxy)benzene (7t)

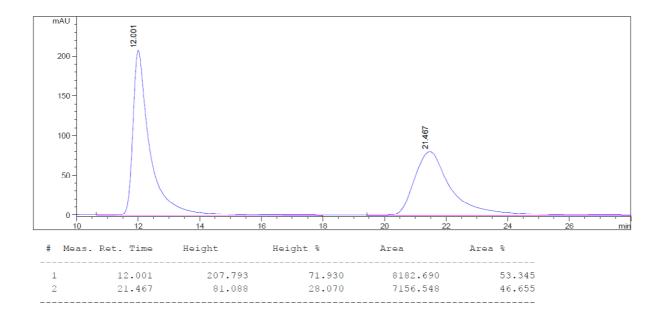
To a solution of nitroolefin **2t** (600 mg, 2.74 mmol, 1.0 equiv.) and 4-bromobenzyl bromide (685 mg, 2.74 mmol, 1.0 equiv.) in acetone (8.5 mL, 0,33 M), K₂CO₃ (379 mg, 2.74 mmol, 1.0 equiv.) and TBAB (177 mg, 0.55 mmol, 0.2 equiv.) were added and stirred at rt for 4 h until completion of reaction (followed by TLC). The residue was purified by column chromatography (pentane-EtOAc: 4:1) affording **7t** as a yellow-orange solid (0.70 g, 3.20 mmol, 97%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.09$ (d, J = 13.6 Hz, 1H), 7.80 (d, J = 13.5 Hz, 1H), 7.59 – 7.46 (m, 2H), 7.40 (d, J = 8.5 Hz, 1H), 7.35 – 7.27 (m, 2H), 6.70 – 6.60 (m, 2H), 5.08 (s, 2H), 4.79 (d, J = 2.4 Hz, 2H), 2.58 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.0$, 159.0, 136.6, 135.3, 135.0, 134.2, 132.1 (2C), 129.3 (2C), 122.5, 113.2, 107.8, 100.8, 77.3, 77.0, 69.8, 56.4. HRMS (ESI⁺) calculated for C₁₈H₁₄BrNO₄+Na⁺ [M+Na]⁺: m/z = 409.9998, found 410.0003.

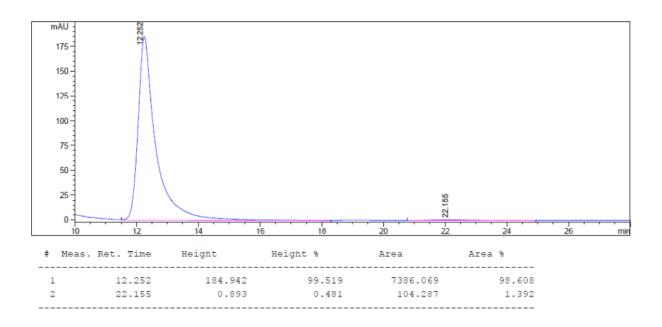
Dimethyl (S)-2-(7-((4-bromobenzyl)oxy)-4H,10H-benzo[6,7]oxepino[4,3-c]isoxazol-10-yl)malonate (*ent*-5t)

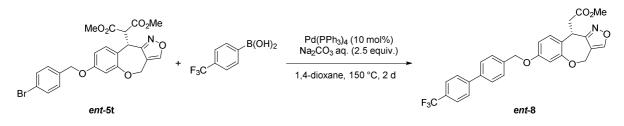


MeO₂C CO₂Me

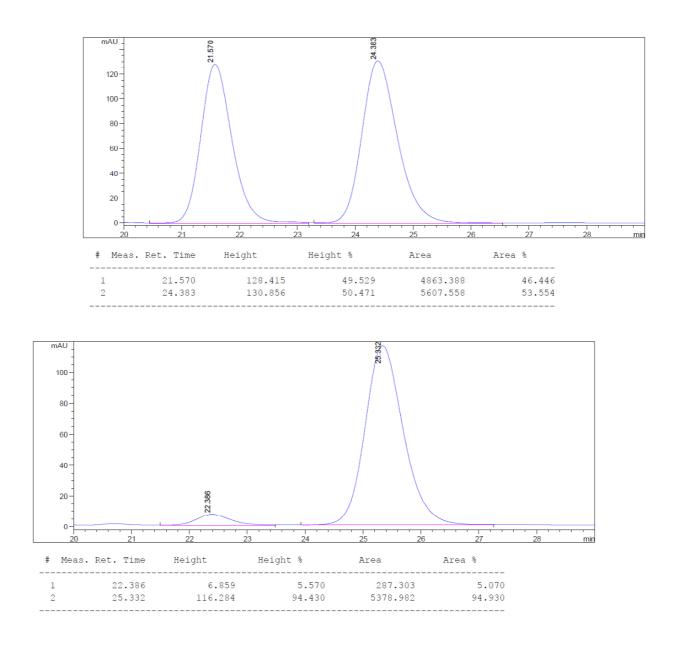
An ordinary vial equipped with a magnetic stirring bar was charged with catalyst **1e'** (10 mol%), malonate **3** (41.4 μ L, 0.36 mmol, 1.2 equiv.), nitroolefin **7t** (77.6 mg, 0.30 mmol, 1.0 equiv.) and *o*-xylene (1.5 mL) at rt. The stirring was maintained at rt for 7 d. The crude reaction mixture was directly charged onto


silica-gel and purified by column chromatography (pentane-EtOAc: 6:1) to afford compound *ent*-4t (93.4 mg, 0.18 mmol, 60%). ¹H NMR (300 MHz, CDCl₃): δ = 7.56 – 7.45 (m, 2H), 7.31 – 7.26 (m, 2H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 2.3 Hz, 1H), 6.48 (dd, *J* = 8.5, 2.4 Hz, 1H), 5.00 (dd, *J* = 13.0, 9.2 Hz, 1H), 4.95 (s, 2H),


4.85 (dd, J = 13.0, 4.6 Hz, 1H), 4.71 (d, J = 2.4 Hz, 2H), 4.33 (td, J = 9.5, 4.6 Hz, 1H), 4.14 (d, J = 10.0 Hz, 1H), 3.75 (s, 3H), 3.51 (s, 3H), 2.55 (t, J = 2.4 Hz, 1H); ¹³**C** NMR (75 MHz, CDCl₃): $\delta = 168.4$, 167.7, 159.7, 156.5, 135.7, 131.9 (2C), 131.6, 129.3 (2C), 122.2, 117.0, 106.5, 101.2, 77.9, 76.3, 76.3, 69.5, 56.3, 53.0, 52.8, 52.7, 39.9; **HRMS** (ESI⁺) calculated for C₂₃H₂₂BrNO₈+Na+ [M+Na]+: m/z = 544.0402, found 544.0394.

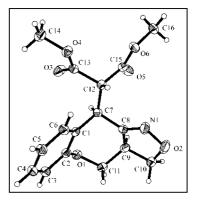

The nitro compound *ent-*4t (104.1 mg, 0.2 mmol, 1.0 equiv.) and DMAP (4.9 mg, 0.04 mmol, 0.2 equiv.) were dissolved in freshly distilled toluene (1.0 mL) and heated to 90 °C. To the hot reaction mixture, a solution of Boc_2O in toluene (0.5 M, 1.0 mL, 2.5 equiv.) was added over 20 min. The reaction was

then allowed to proceed for further 3.5 h at 90 °C. After cooling to room temperature, the crude reaction mixture was directly charged onto silica-gel and purified by column chromatography to afford the titled compound *ent-***5t** (58.2 mg, 0.12 mmol, 58%, 97% ee). ¹**H NMR** (300 MHz, CDCl₃): $\delta = 8.11$ (d, J = 1.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.28 (dd, J = 8.4, 5.2 Hz, 3H), 6.86 – 6.62 (m, 2H), 5.39 (dd, J = 14.6, 1.2 Hz, 1H), 4.97 (s, 2H), 4.88 (d, J = 11.1 Hz, 1H), 4.79 (dd, J = 14.7, 1.4 Hz, 1H), 4.46 (d, J = 11.1 Hz, 1H), 3.67 (s, 3H), 3.56 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃): $\delta = 167.6$, 167.5, 159.9, 159.1, 158.4, 153.3, 135.6, 132.0, 131.9 (2C), 129.2 (2C), 124.4, 122.2, 116.1, 111.6, 109.7, 69.5, 66.0, 56.4, 52.9, 52.7, 40.6; **HRMS** (ESI⁺) calculated for C₂₃H₂₀BrNO₇+Na+ [M+Na]+: m/z = 524.0315, found 524.0336; **IR** (ATR): v_{max} 2954, 2875, 1736, 1611, 1580, 1495, 1456, 1434, 1415, 1287, 1260, 11,55, 1118, 1104, 1071, 1022, 1011, 946, 891, 805, 711, 559; **HPLC**: IA, Pentane:i-PrOH 70:30, F = 1.0 mL/min, $\lambda = 230$ nm, t_R major (*S*) = 12.3 min, t_R minor (*R*) = 22.2 min.



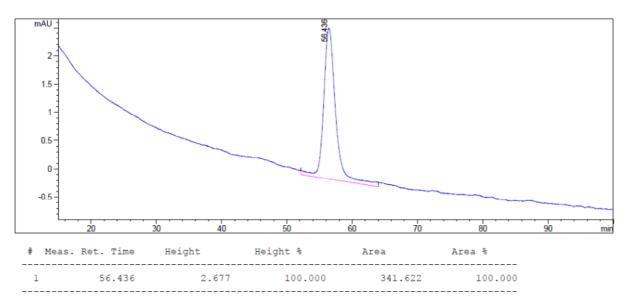
Methyl (*S*)-2-(7-((4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)methoxy)-4H,10Hbenzo[6,7]oxepino[4,3-c]isoxazol-10-yl)acetate (*ent*-8)

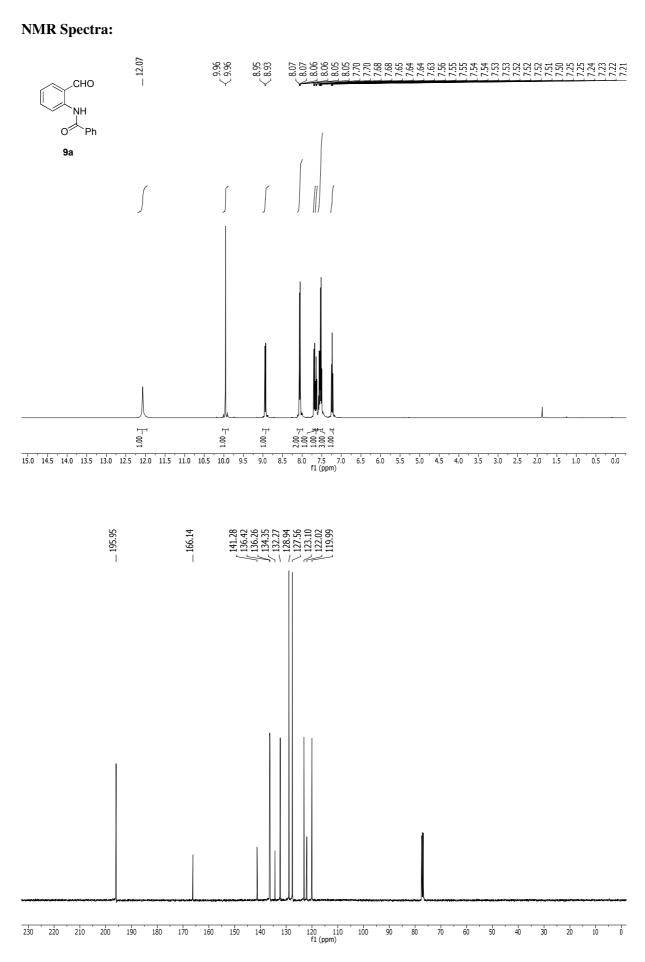
To a solution of *ent*-5t (50.2 mg, 0.1 mmol, 1.0 equiv.), boronic acid (22.8 mg, 0.12 mmol, 1.2 equiv.) and Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv.) in dry 1,4-dioxane (0.4 mL), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 10 mol%) and dest. water (50 µL) were added. The reaction mixture was heated at 150 °C for 2d. The crude reaction mixture was directly charged onto silica-gel and purified by column chromatography (pentane-EtOAc: 4:1) to afford the titled compound *ent*-8 as a white solid (50.4 mg, 0.99 mmol, 99%, 90% ee). $[\alpha]^{20}{}_{\rm D}$ = -108 (*c* 0.98, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 8.10 (s, 1H), 7.70 (s, 4H), 7.65 – 7.59 (m, 2H), 7.55 – 7.50 (m, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 6.81 (d, *J* = 2.6 Hz, 1H), 6.76 (dd, *J* = 8.4, 2.6 Hz, 1H), 5.28 (dd, *J* = 14.5, 1.1 Hz, 1H), 5.09 (s, 2H), 4.89 (dd, *J* = 14.5, 1.4 Hz, 1H), 4.74 (dd, *J* = 9.0, 6.4 Hz, 1H), 3.63 (s, 3H), 3.18 (dd, *J* = 15.7, 9.0 Hz, 1H), 3.07 (dd, *J* = 15.7, 6.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ = 171.6, 161.2, 159.8, 158.6, 153.0, 144.3 (q, ⁴*J* = 1.3 Hz, 2C), 139.7, 136.8, 130.3, 129.6 (q, ²*J* = 32.6 Hz), 128.2 (2C), 127.7 (2C), 127.5 (2C), 126.3, 125.9 (q, ³*J* = 3.7 Hz, 2C), 124.4 (d, ¹*J* = 272.0 Hz), 116.1, 111.5, 109.9, 70.0, 66.0, 51.9, 39.7, 37.1; HRMS (ESI⁺) calculated for C₂₈H₂₂F₃NO₅+Na⁺ [M+Na]⁺: m/z = 532.1342, found 532.1341; **IR** (ATR): v_{max} 3119, 2953, 2925, 2856, 2365, 2342, 1736, 1613, 1580, 1496, 1458, 1415, 1358, 1324, 1260, 1160, 1109, 1070, 1023, 1007, 909, 885, 850, 816, 732, 647, 621, 603. **HPLC**: AD-H, Pentane:*i*-PrOH 80:20, F = 1.0 mL/min, λ = 230 nm, t_R major (*S*) = 25.3 min, t_R minor (*R*) = 22.4 min.

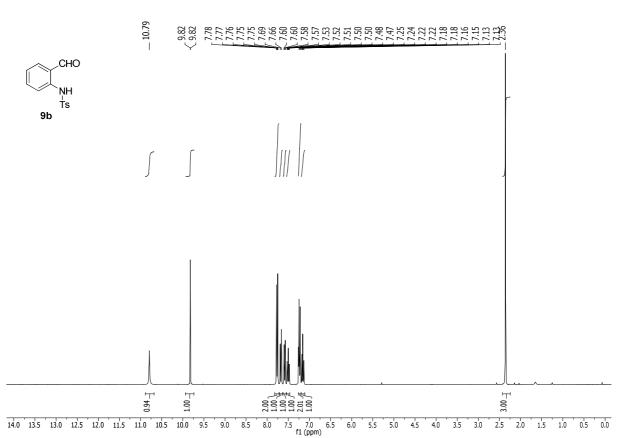


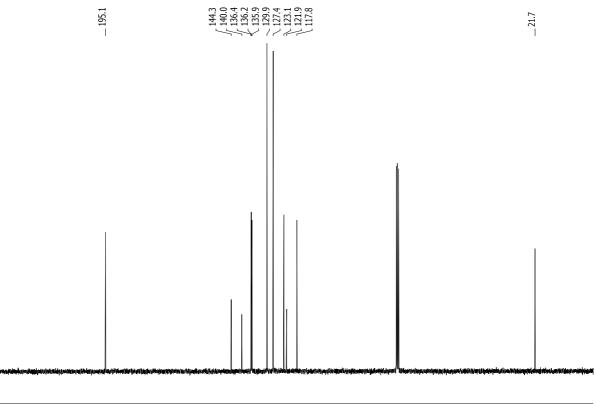
References:

- (1) B. Vakulya, S. Varga, A. Csámpi, T. Soós, Org. Lett. 2005, 7, 1967.
- (2) J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416.
- (3) Ł. Albrecht, G. Dickmeiss, F. Cruz Acosta, C. Rodríguez-Escrich, R. L. Davis, K. A. Jørgensen, J. Am. Chem. Soc. 2012, **134**, 2543.
- (4) Y.-T. Lee, Y.-J. Jang, S.-e. Syu, S.-C. Chou, C.-J. Lee, W. Lin, Chem. Commun. 2012, 48, 8135.
- (5) K. Hirano, A. T. Biju, I. Piel, F. Glorius, J. Am. Chem. Soc. 2009, 131, 14190.
- (6) F. Miege, C. Meyer, J. Cossy, Angew. Chem. Int. Ed. 2011, 50, 5932.
- (7) K. Ramachandiran, K. Karthikeyan, D. Muralidharan, P. T. Perumal, *Tetrahedron Lett.* 2010, **51**, 3006.
- (8) B. M. Trost, C. Müller, J. Am. Chem. Soc. 2008, 130, 2438.
- (9) J. McNulty, J. A. Steere, S. Wolf, Tetrahedron Lett. 1998, 39, 8013.
- (10) K. Ramachandiran, K. Karthikeyan, T. Nandhakumar, D. Muralidharan, P. T. Perumal, Synthesis 2011, 3277.
- (11) T. Shiizu, Y. Hayashi, H. Shibafuchi, K. Teramura, Bull. Chem. Soc. Jpn. 1986, 59, 2827.
- (12) H. R. Kim, H. J. Kim, J. L. Duffy, M. M. Olmstead, K. Ruhlandt-Senge, M. J. Kurth, *Tetrahedron Lett.* 1991, **32**, 4259.
- (13) Y. Basel, A. Hassner, Synthesis 1997, 309.


X-Ray ORTEP and data of compound (3aR,10R)-5a


Formula C₁₆H₁₇NO₆, M = 319.31Colourless crystal, 0.25 x 0.10 x 0.08 mm a = 8.2054(1), b = 10.5740(1), c = 8.6556(1) Å, $\beta = 95.960(1)$ V = 746.9(1) Å³, $\rho_{calc} = 1.420$ gcm⁻³, $\mu = 0.923$ mm⁻¹ Empirical absorption correction (0.802 \leq T \leq 0.929) Z = 2, monoclinic, space group $P2_1$ (No. 4) $\lambda = 1.54178$ Å, T = 223(2) K




ω and φ scans, 3697 reflections collected (±*h*, ±*k*, ±*l*), [(sinθ)/λ] = 0.60 Å⁻¹, 2081 independent (*R_{int}* = 0.026) and 2077 observed reflections [*I*>2σ(*I*)], 210 refined parameters, *R* = 0.030, *wR*² = 0.07, max. (min.) residual electron density 0.09 (-0.10) e.Å⁻³, the hydrogens were calculated and refined as riding atoms. Flack parameter was refined to 0.07(2).

It was possible to measure the crystal by HPLC, showing that the structure corresponds to the major enatiomer (R,R) of the major diastereomer pair (R,R)/(S,S).

Ó 150 140 130 120 110 100 90 f1 (ppm)

240 230 220 210 200 190 180

CHO ſ / Ò, 10a 1.00 -0.98 \pm $1.00 \pm 1.01 \pm$ 2.03 \pm 1.01 1.00 ∄ 2.03 🖃 7.0 6.5 f1 (ppm) 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 7.5 6.0 5.5 8.5 8.0 5.0 2.0 1.0 0.5 0.0 9.0 4.5 4.0 3.5 3.0 2.5 1.5 135.95
135.95
132.45
132.45
128.48
125.12
126.92
110.92
112.92 ___ 189.83 -161.00___ 69.22

> 120 110 f1 (ppm)

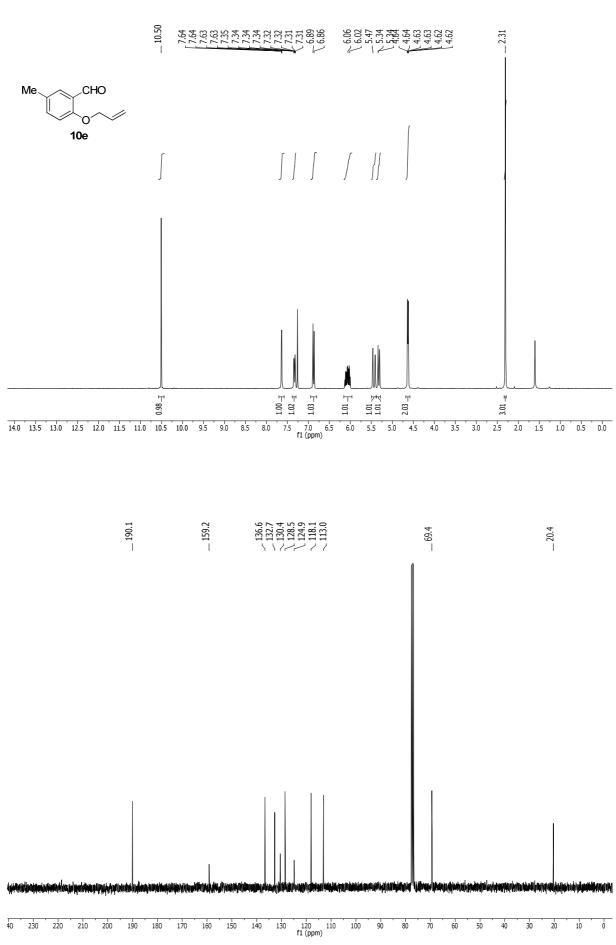
170 160 150 140 130

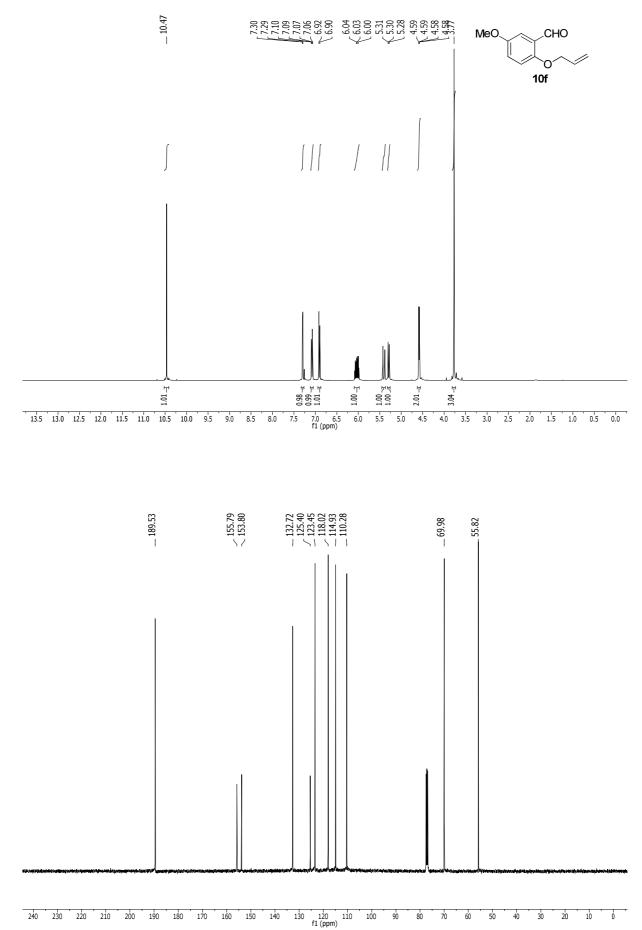
70

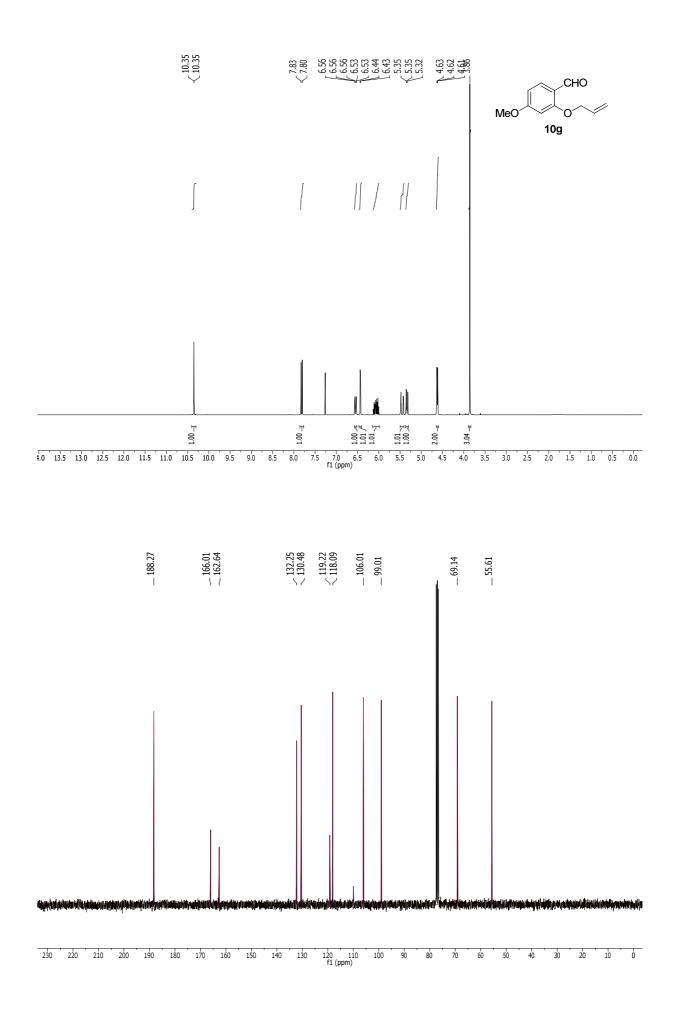
60 50 40

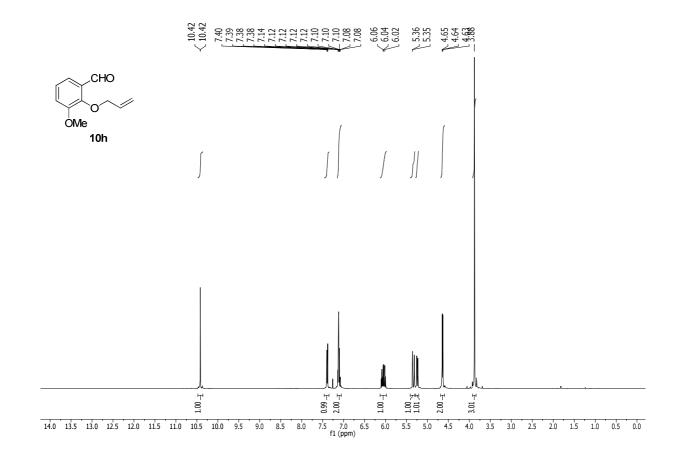
80

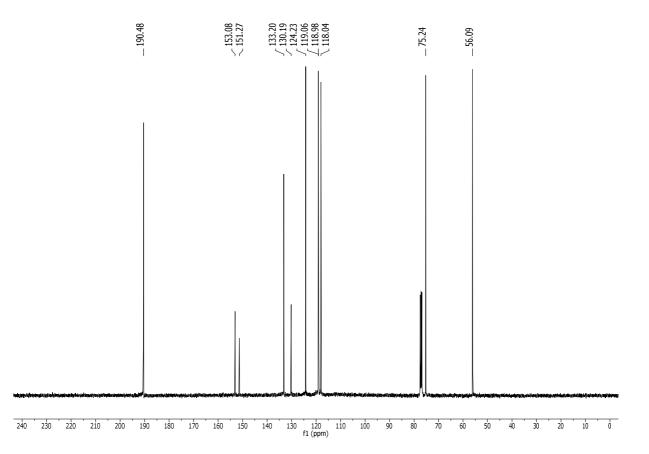
90

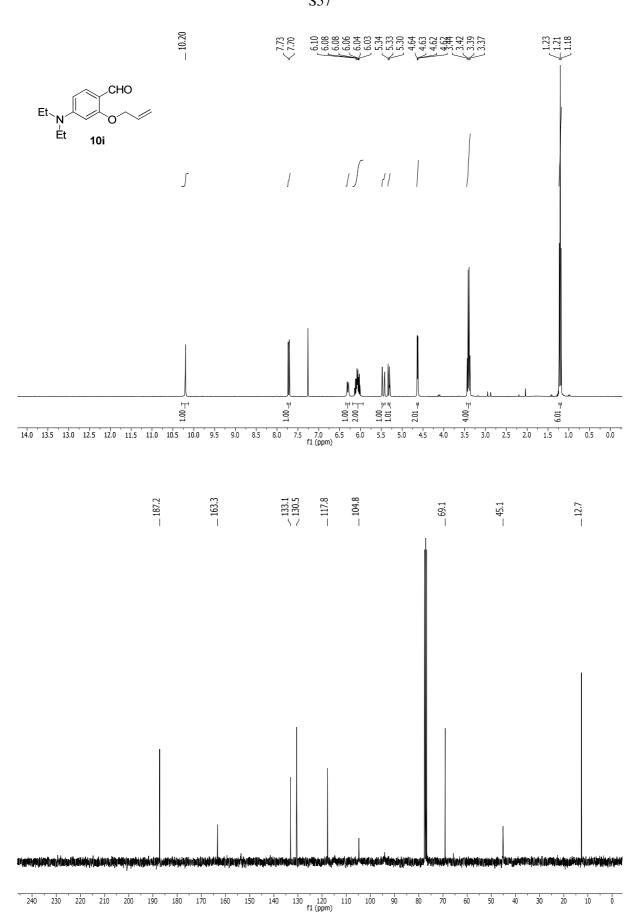

100

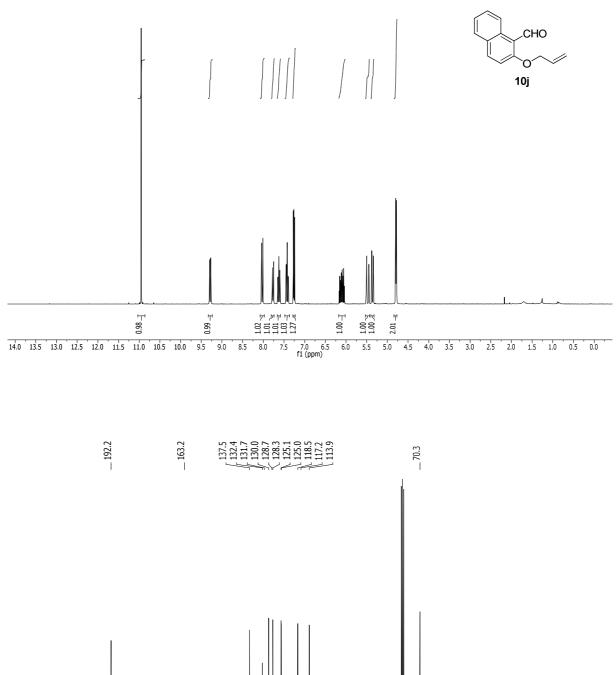

-10

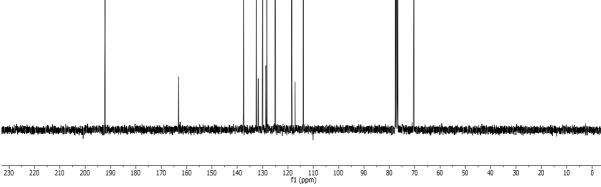

ó

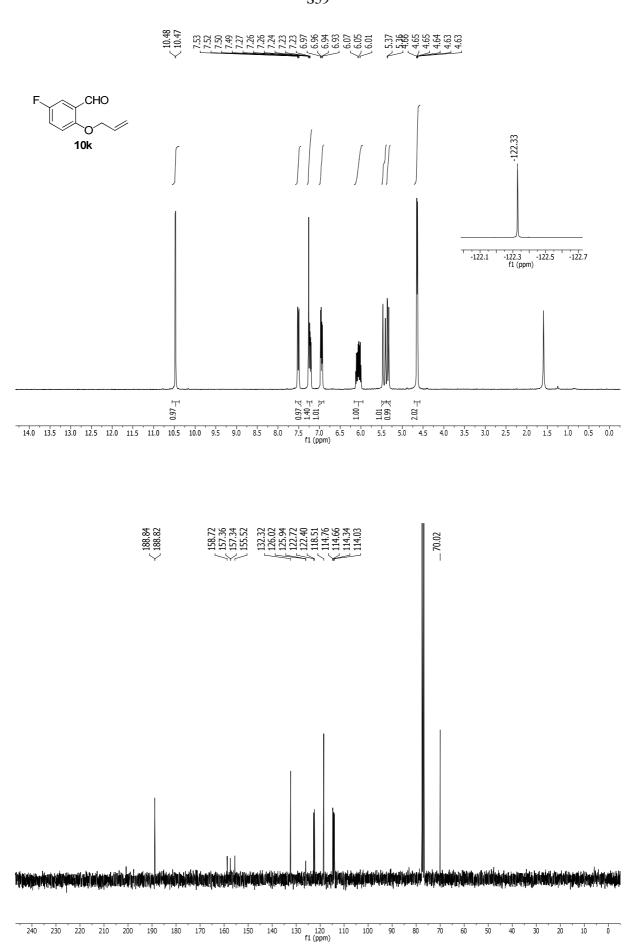

10

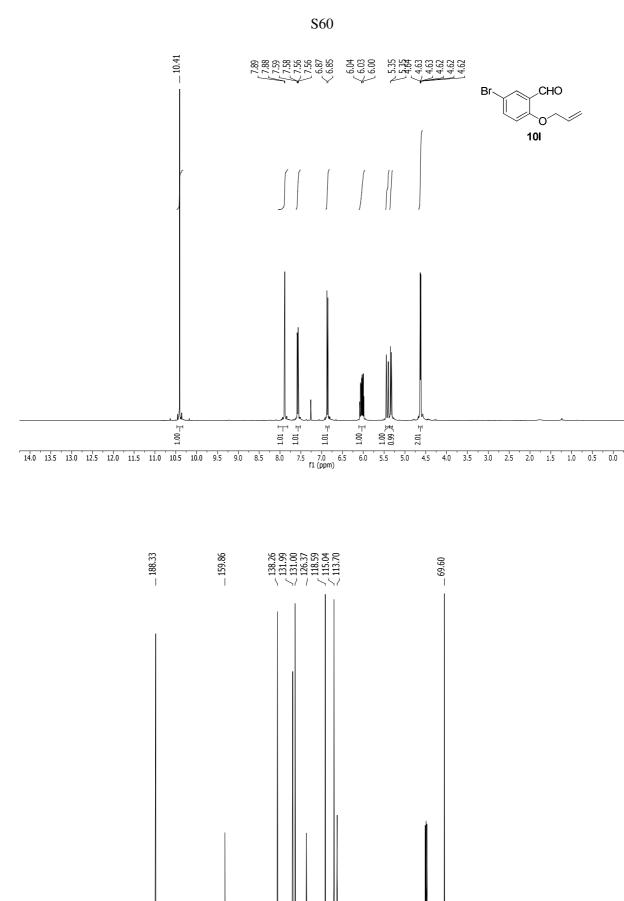

30 20



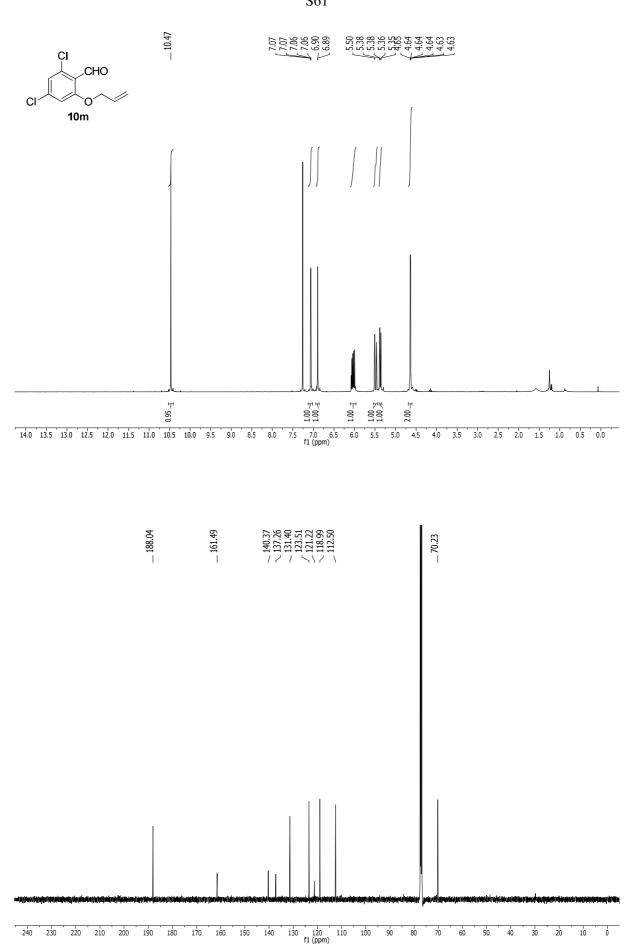


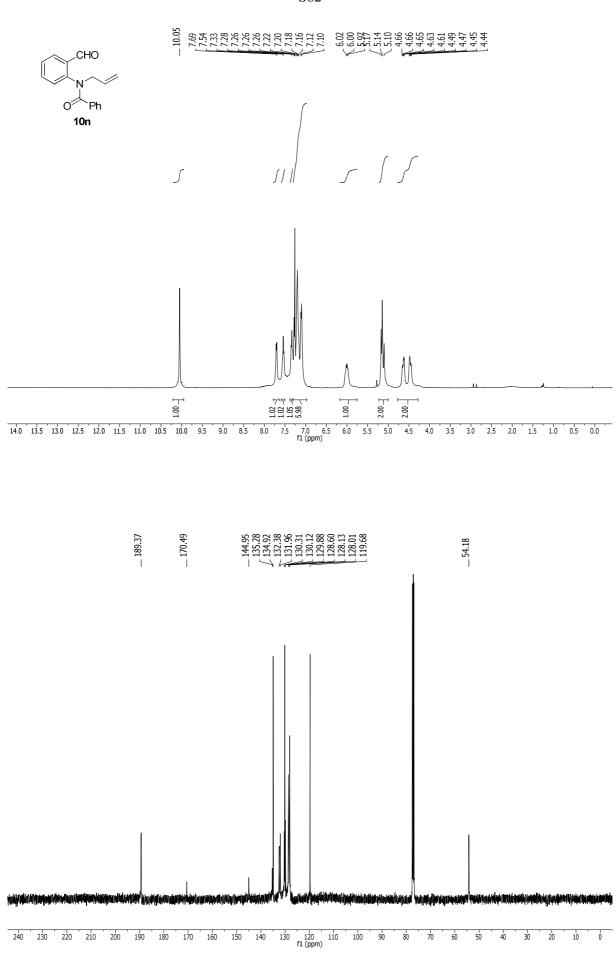


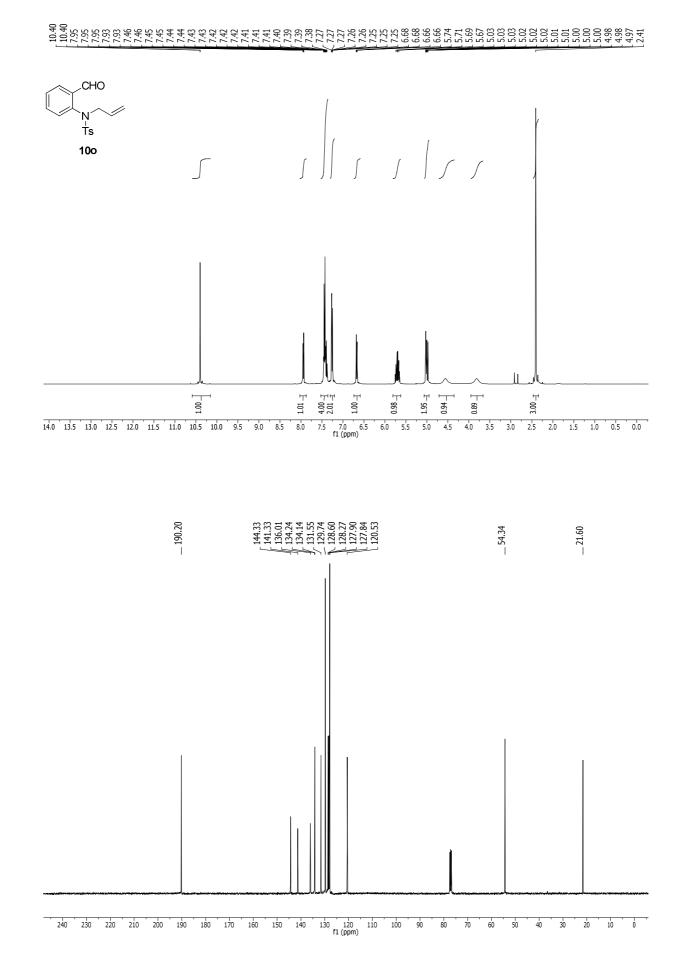


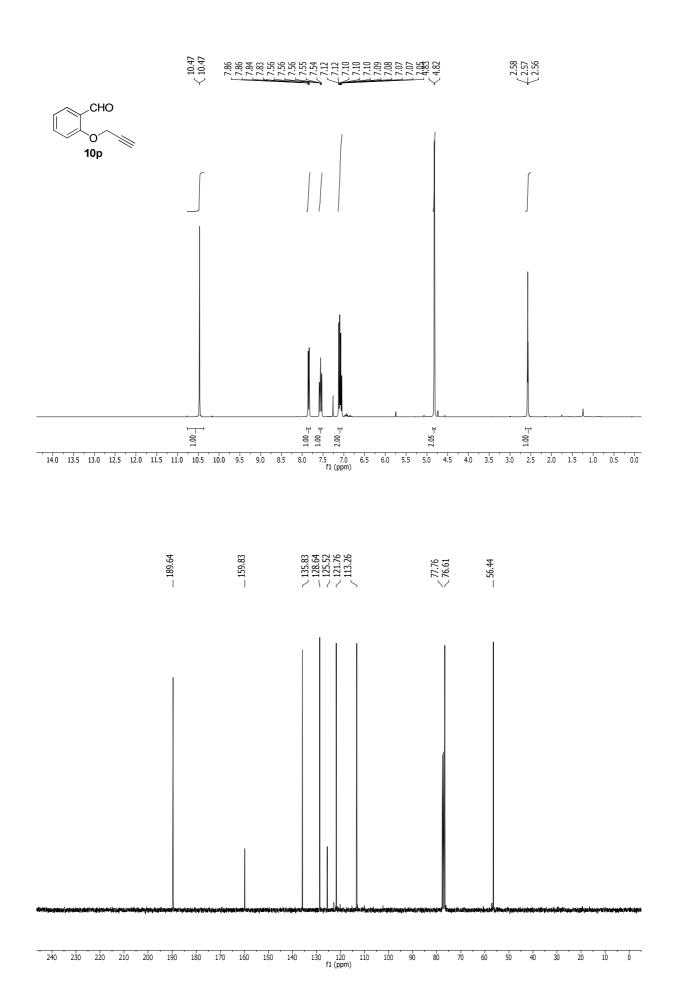


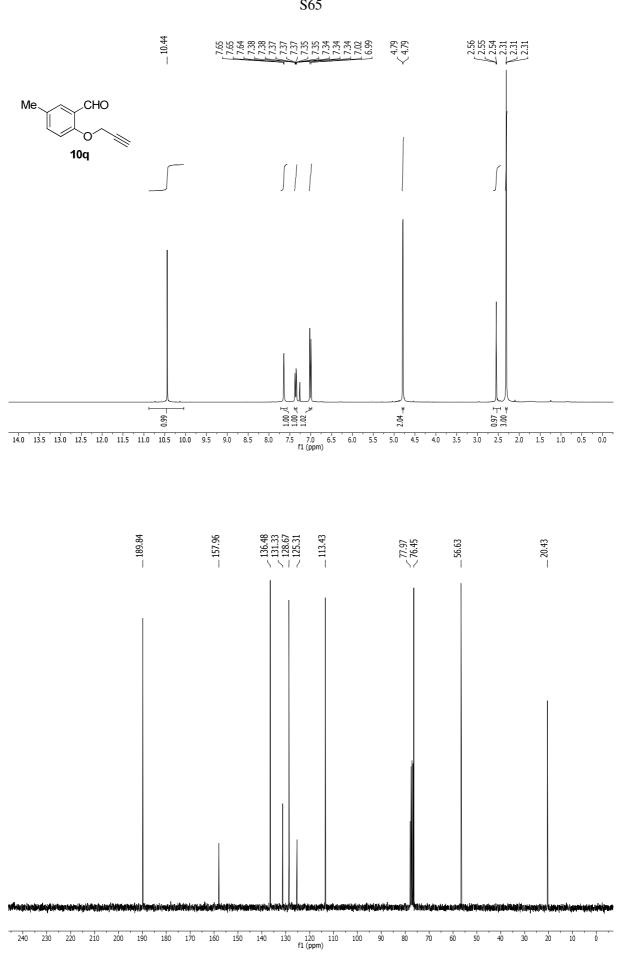
 S58

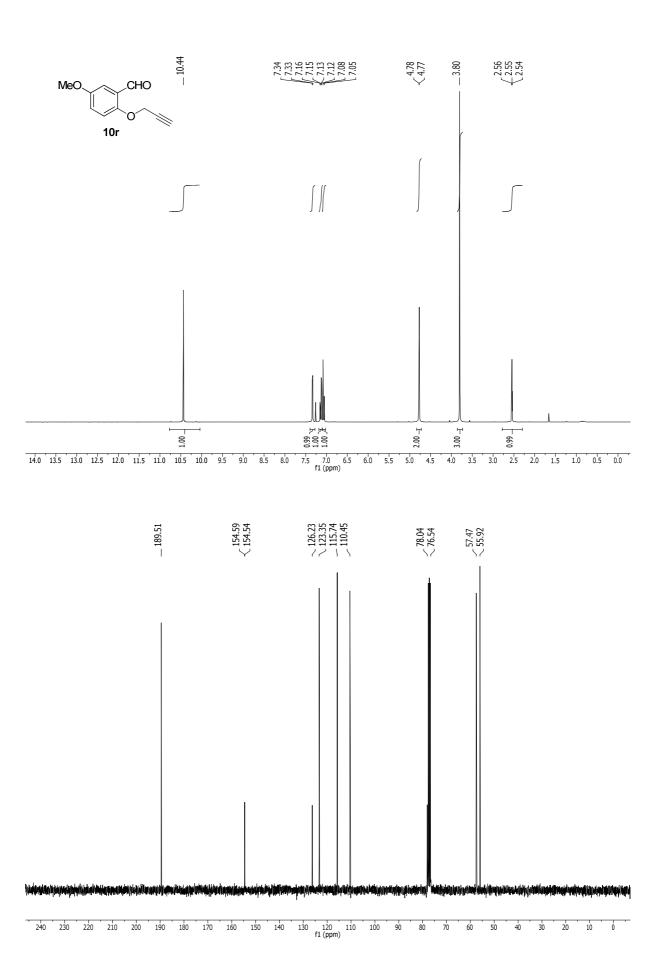


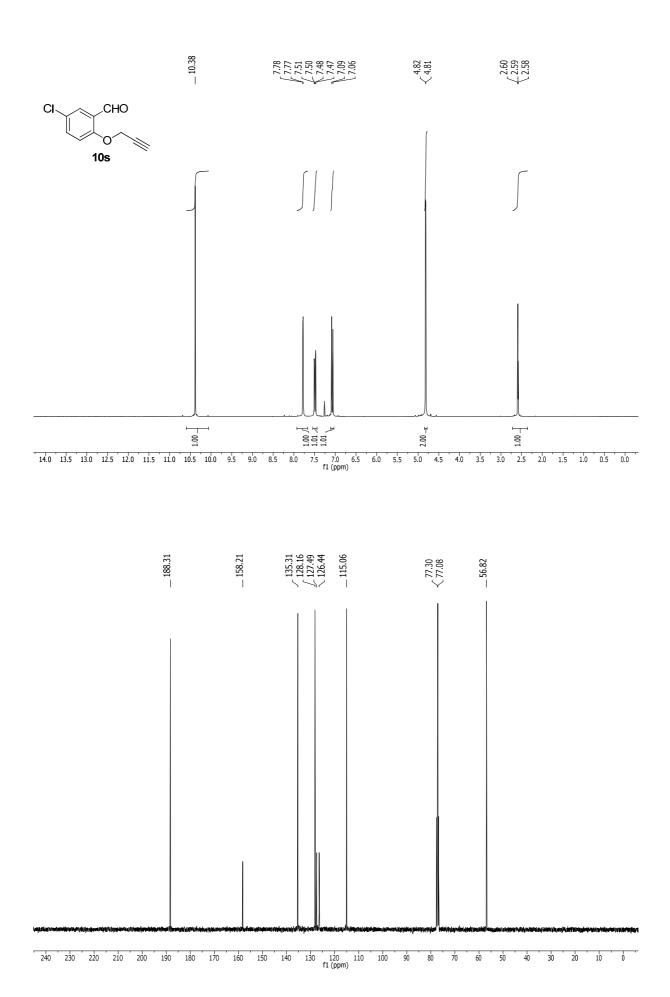


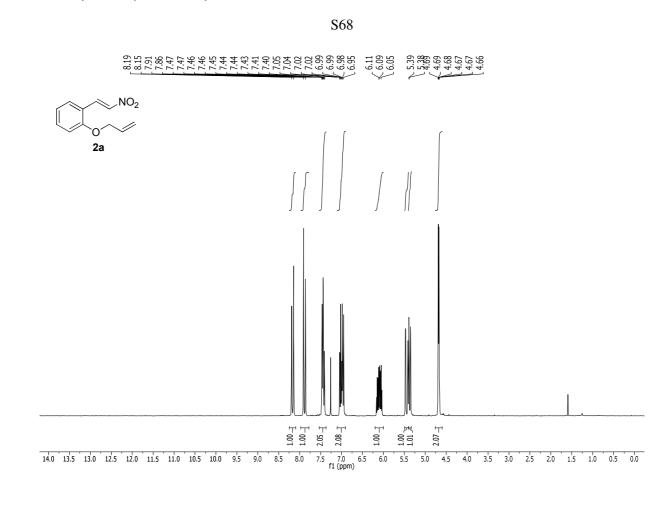


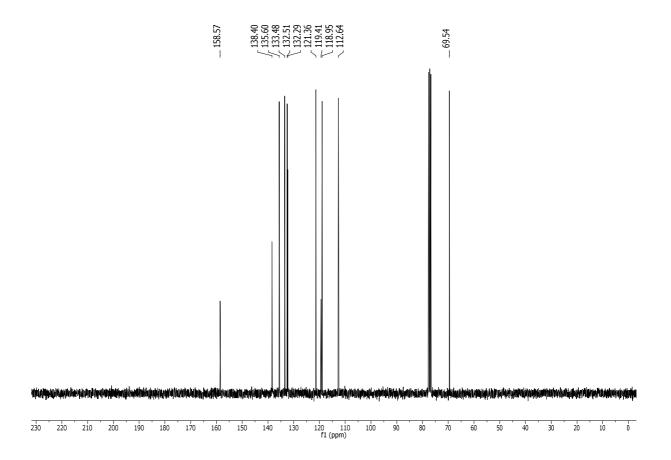


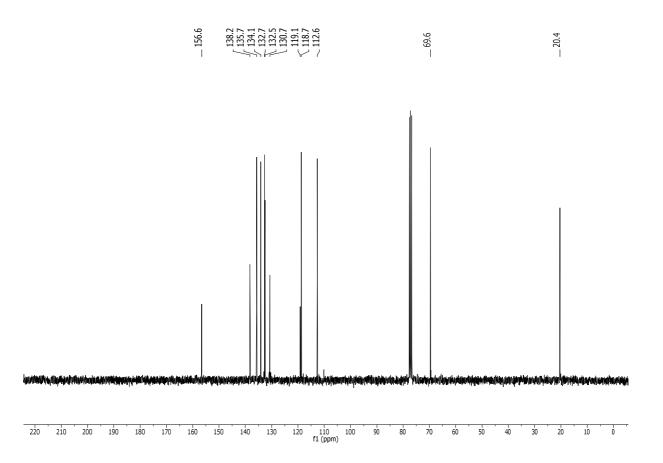

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

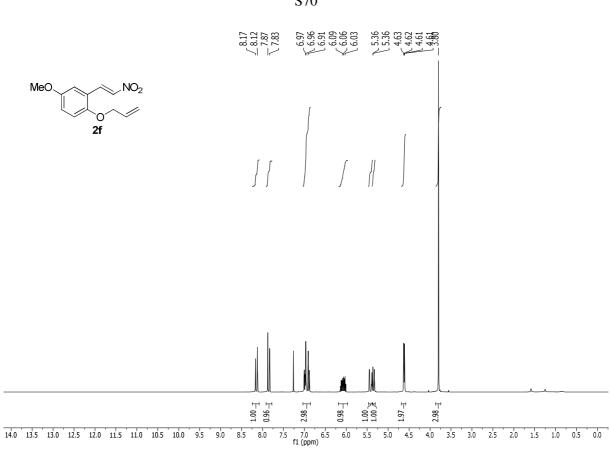


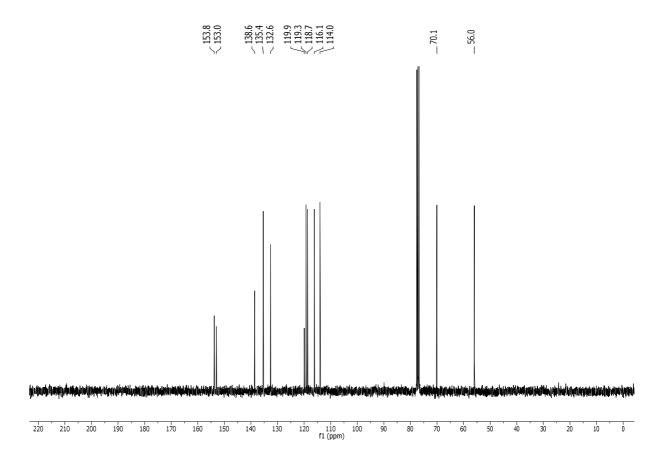


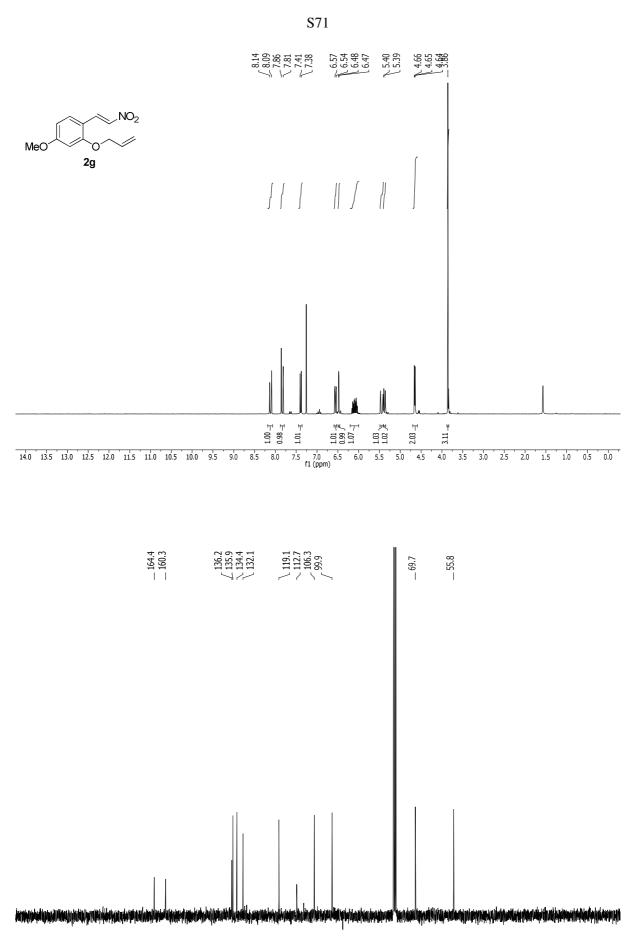


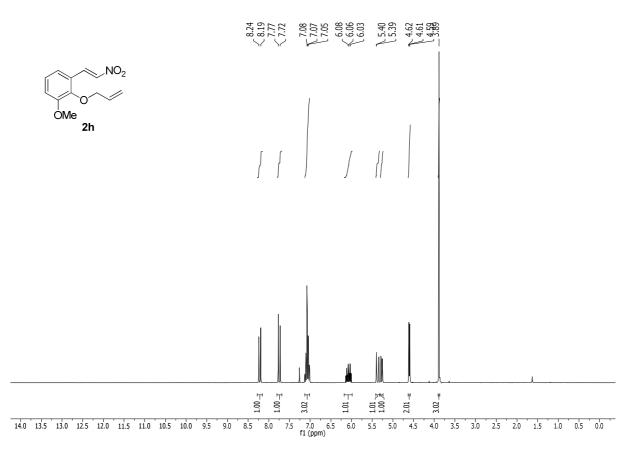


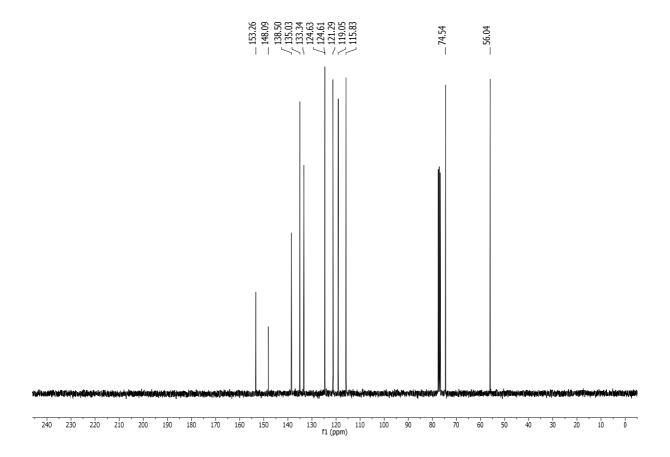


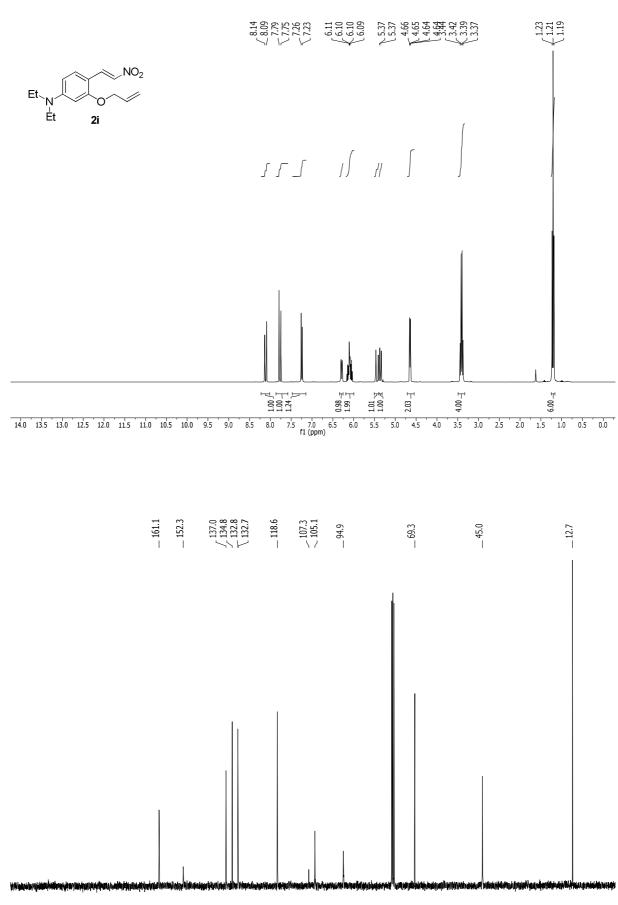


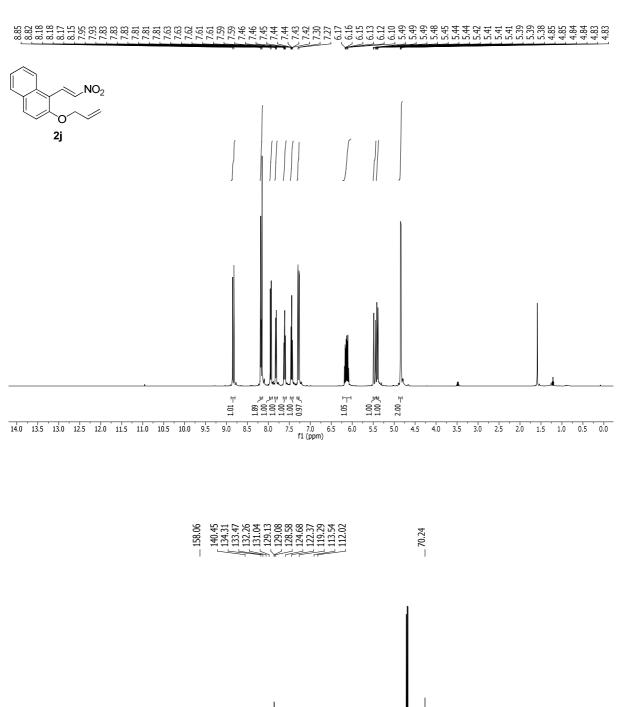


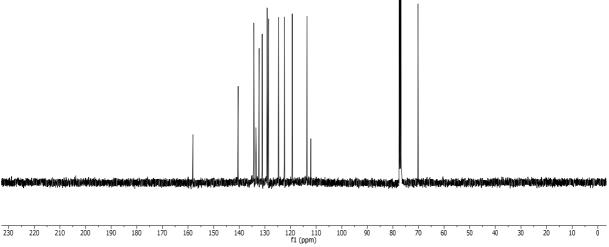


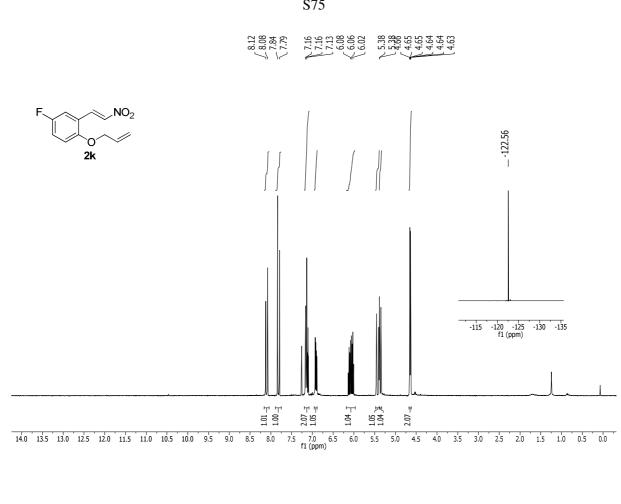




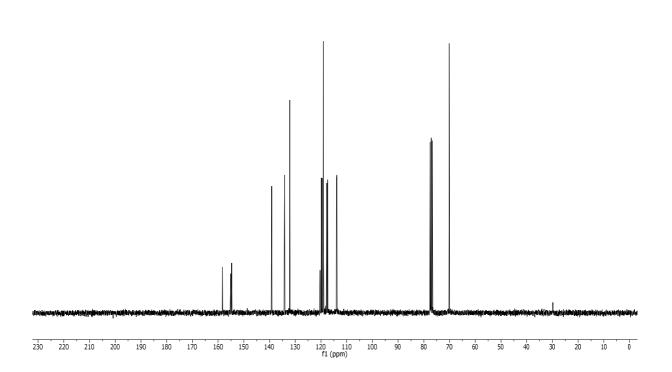


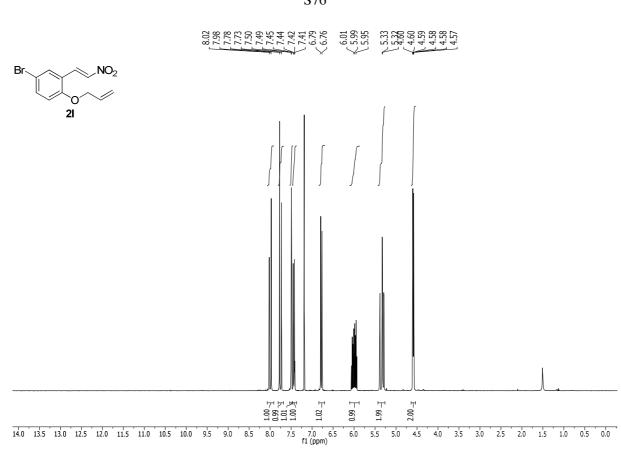

210 200 110 100 f1 (ppm) ó

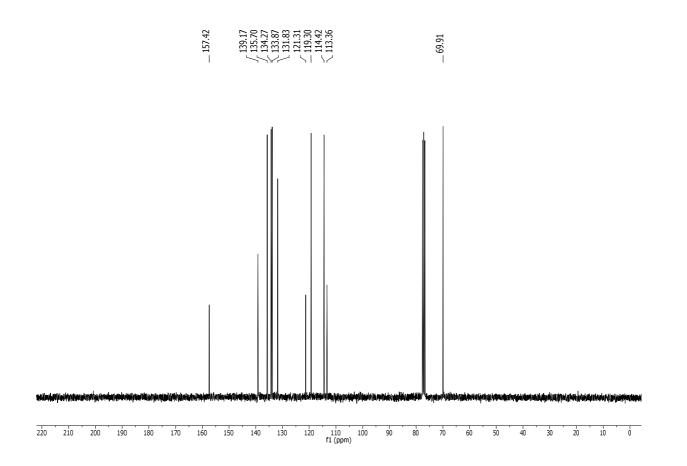


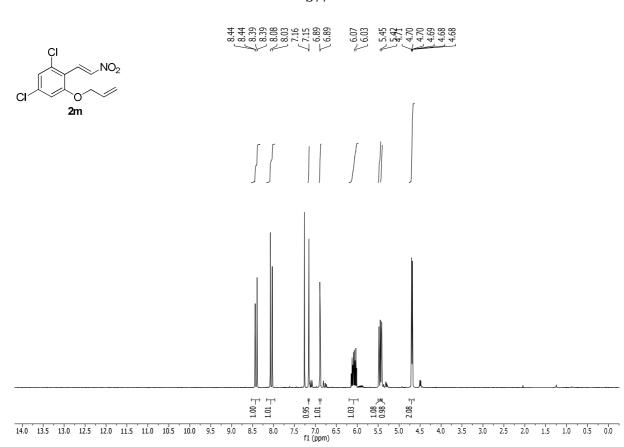


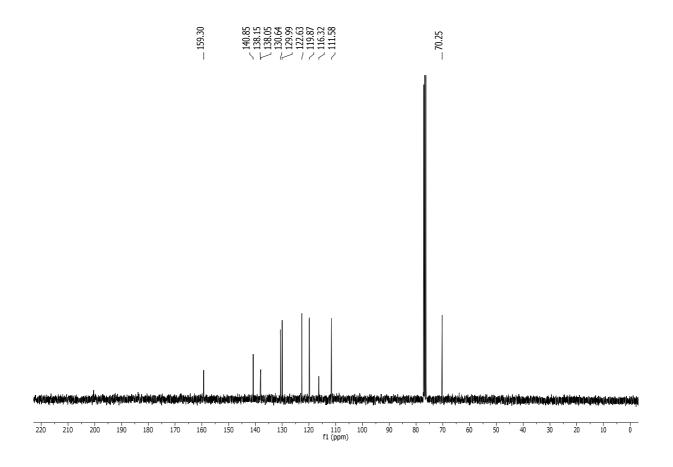
110 100 f1 (ppm) 140 130 ó

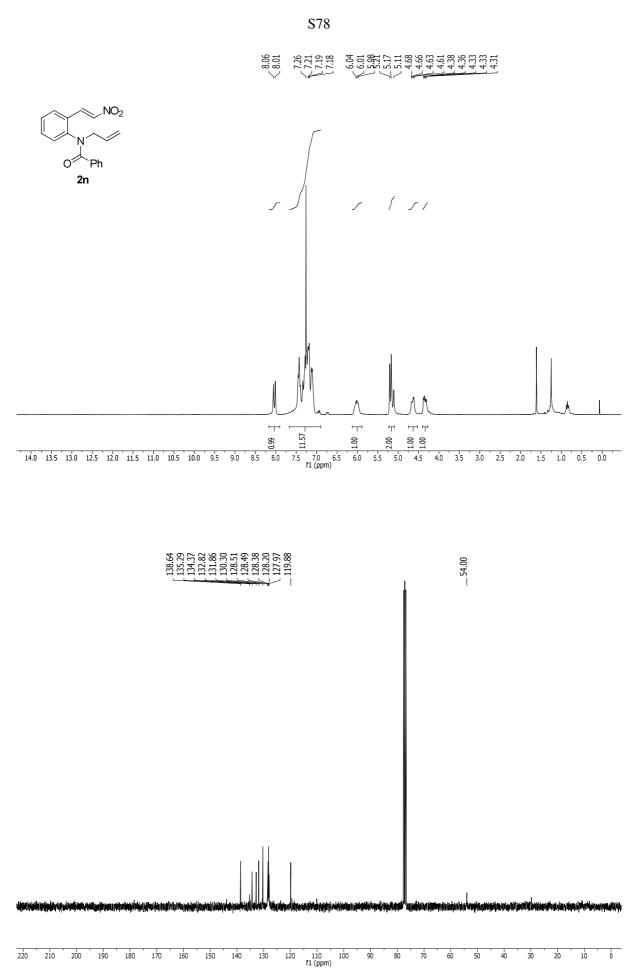


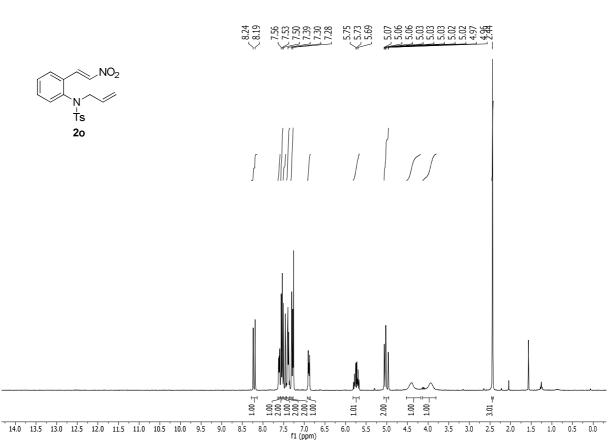


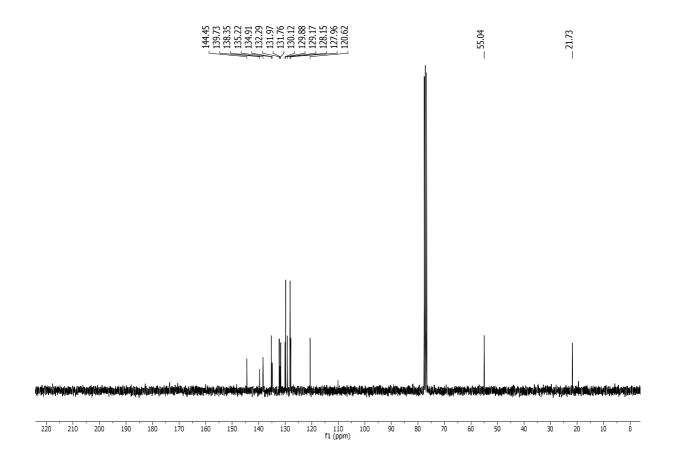


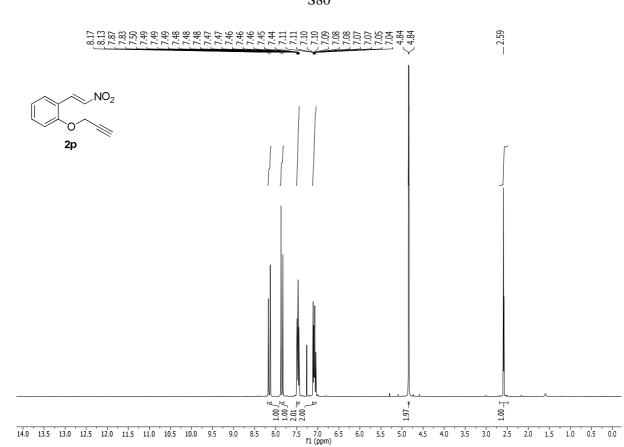


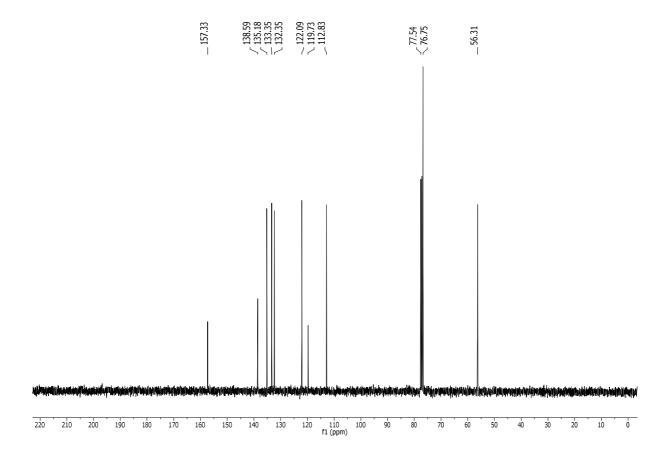


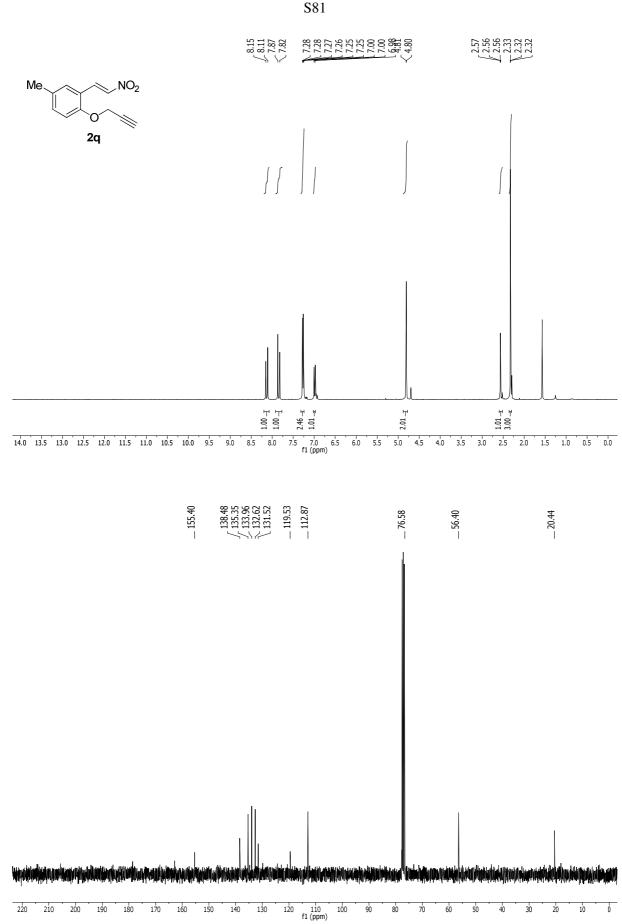


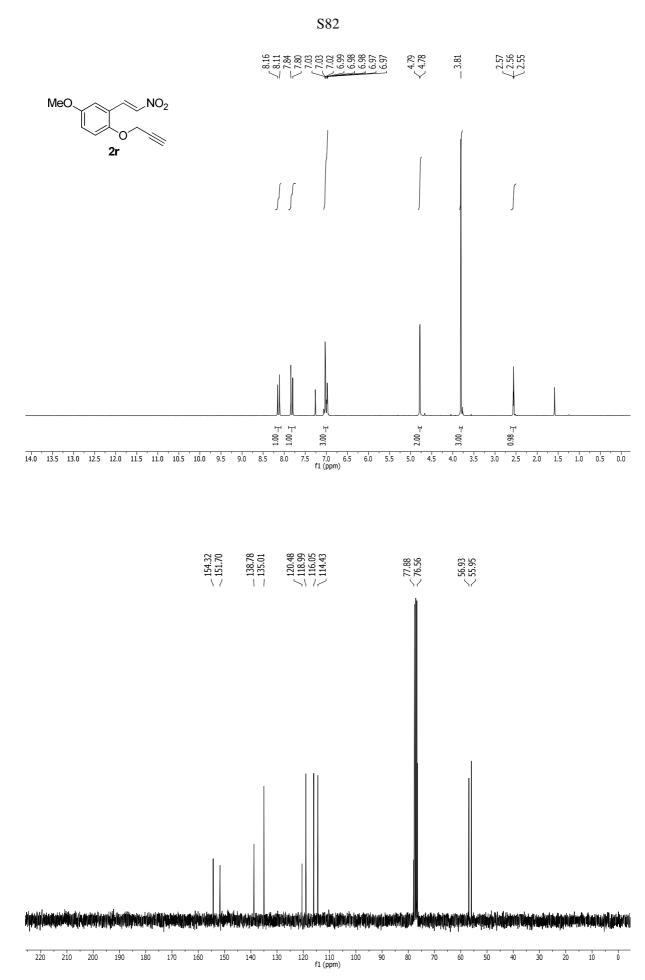


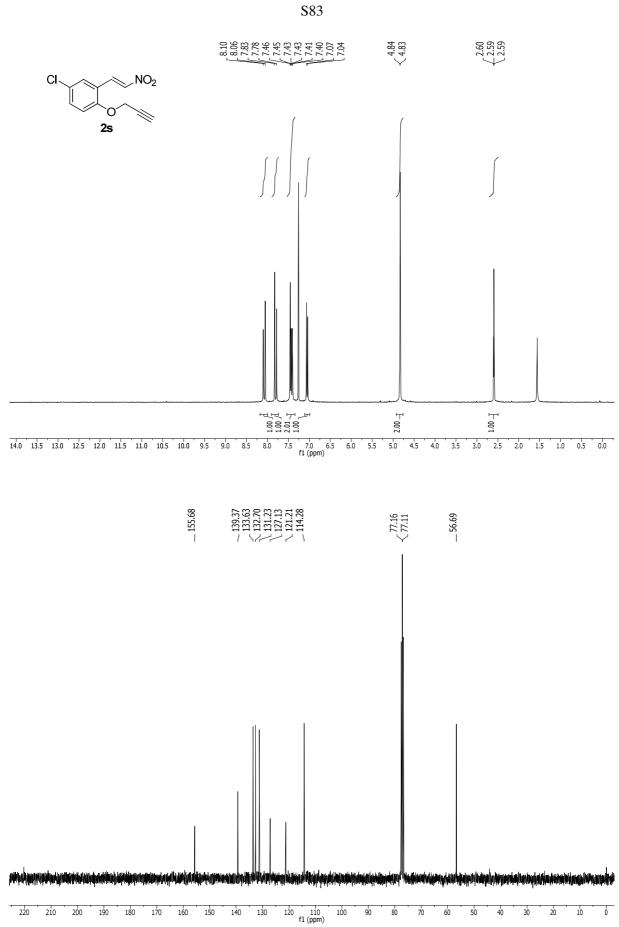


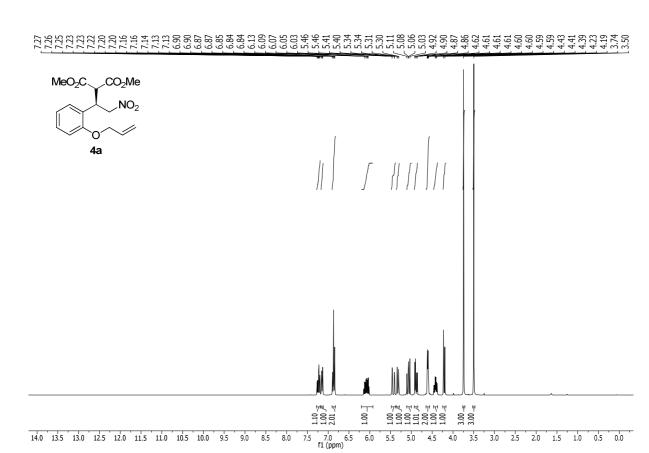


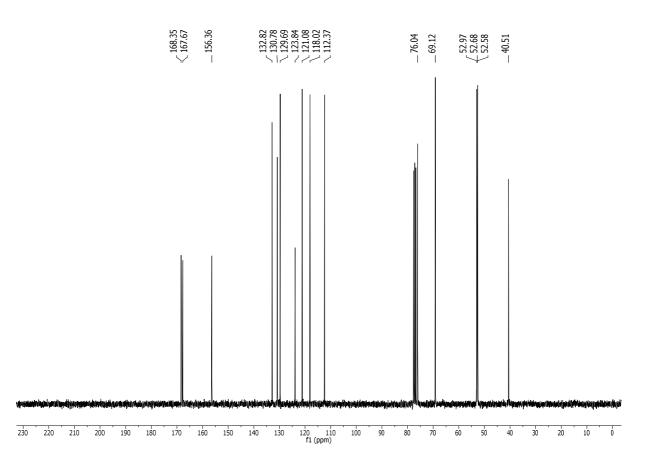


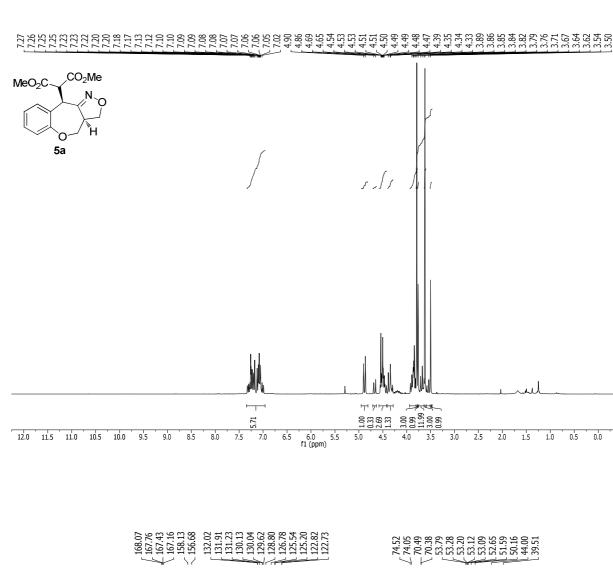


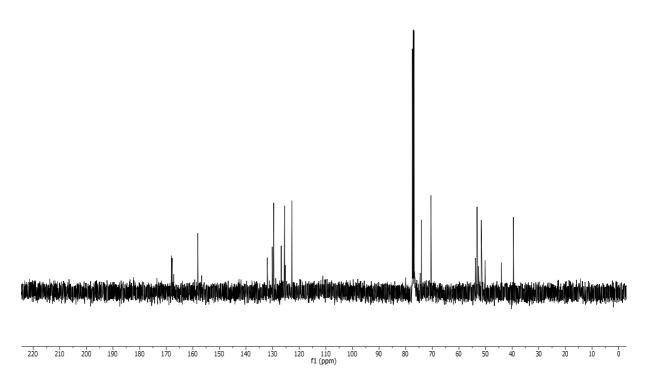


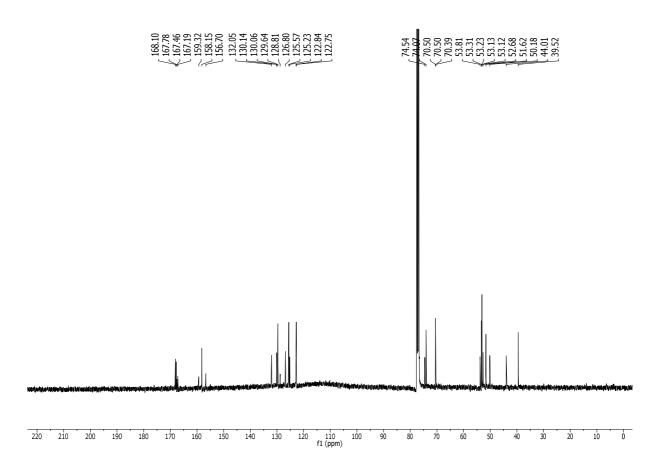












7.7.25 7.7.26 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.29 7.7.20 7. CO₂Me MeO₂C-N 0 ent-5a 0.45 2.75 1.00 1.46 0.46 6.5 6.0 5.5 f1 (ppm) 7.5 7.0 4.5 4.0 3.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0

220 210

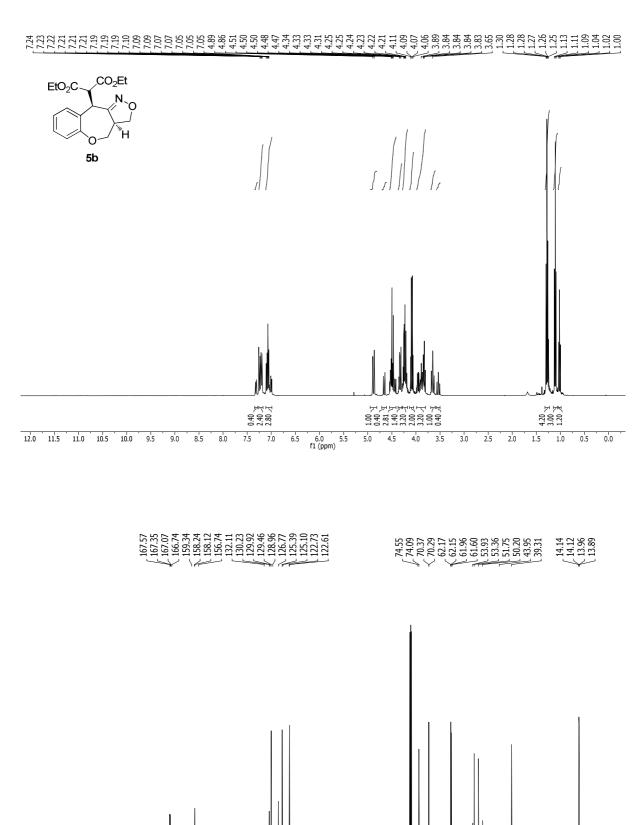
200 190

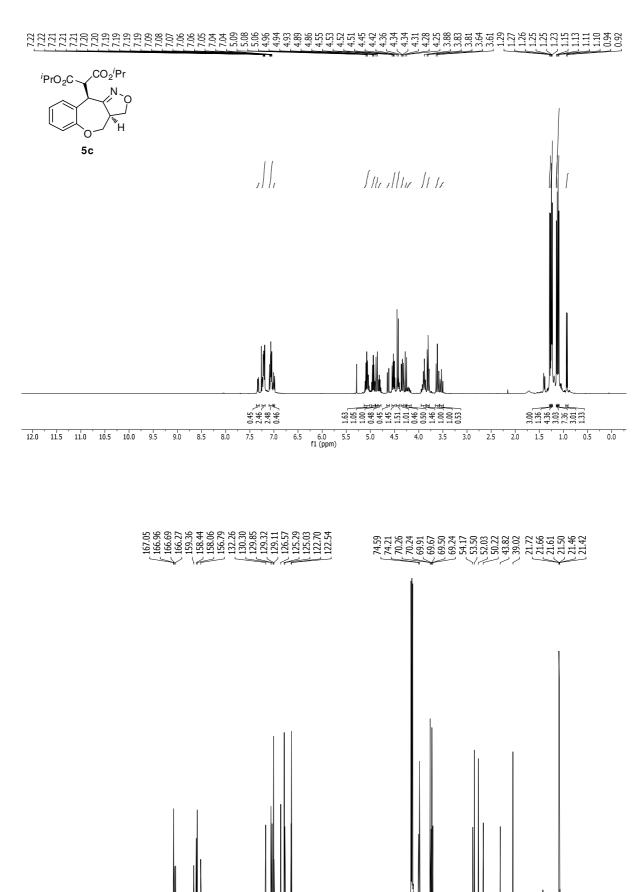
180 170

160 150

140 130

120 110 f1 (ppm) 100 90

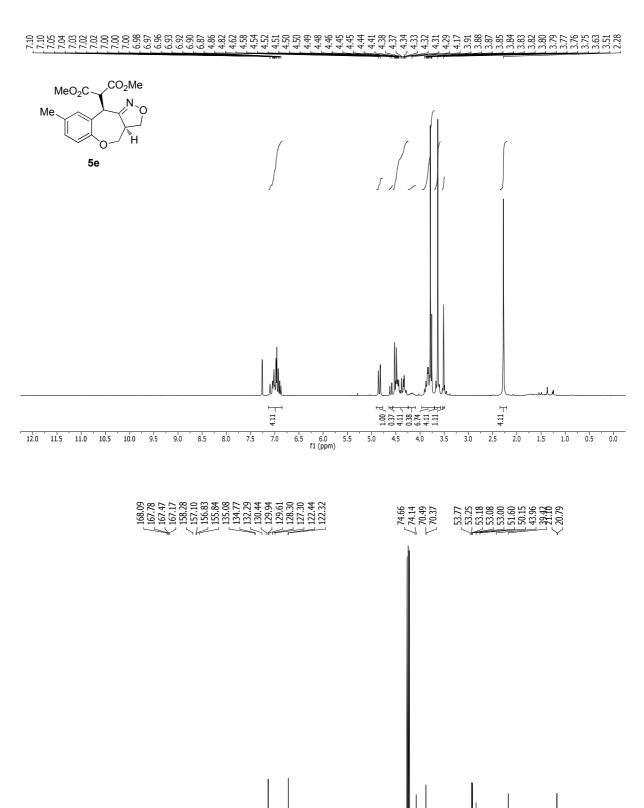

80 70 60

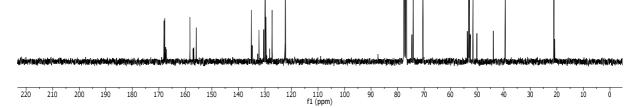

50 40

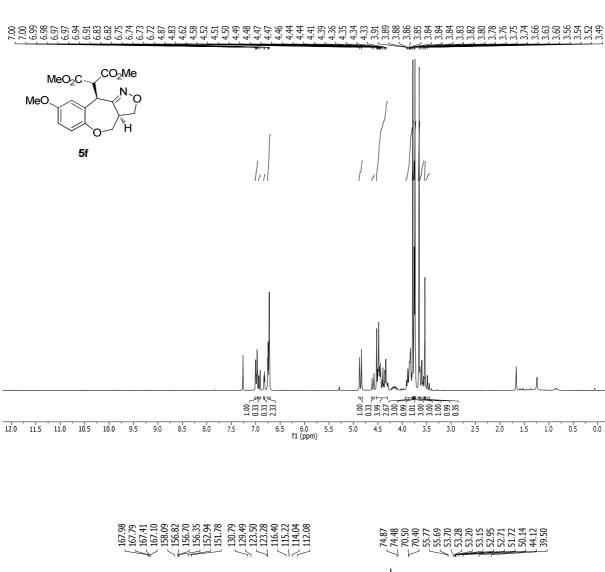
30

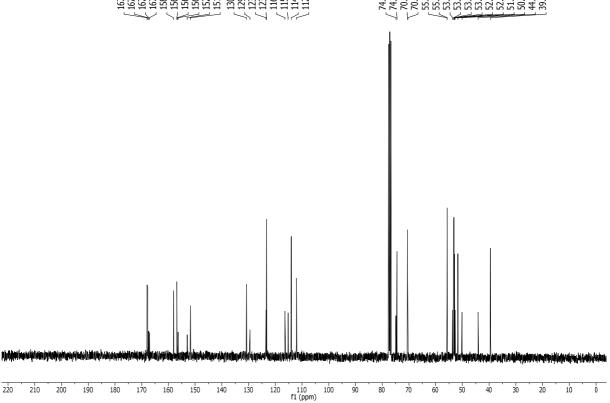
20 10

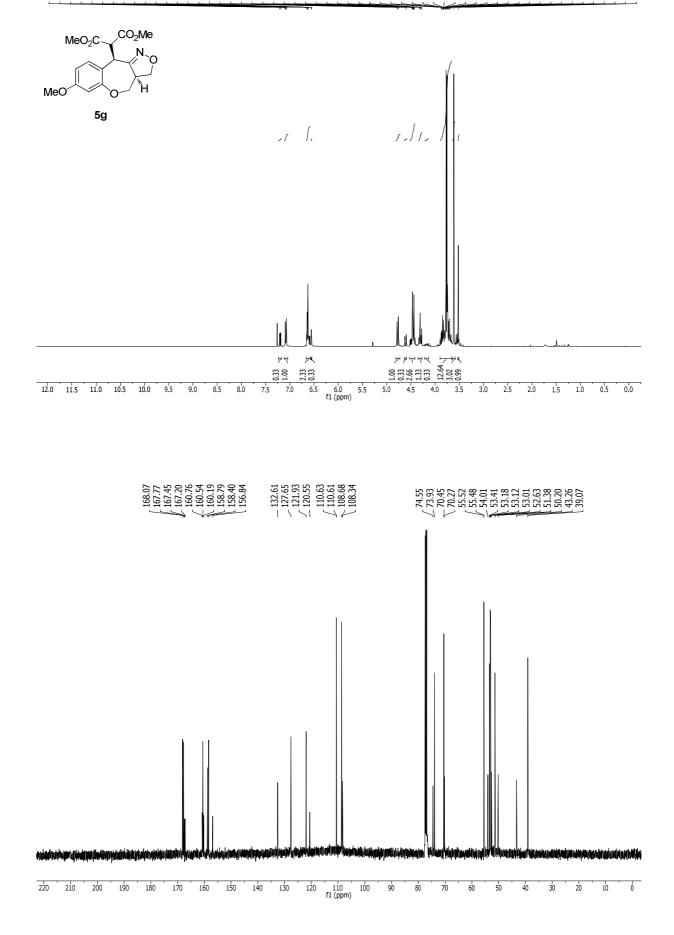
Ó

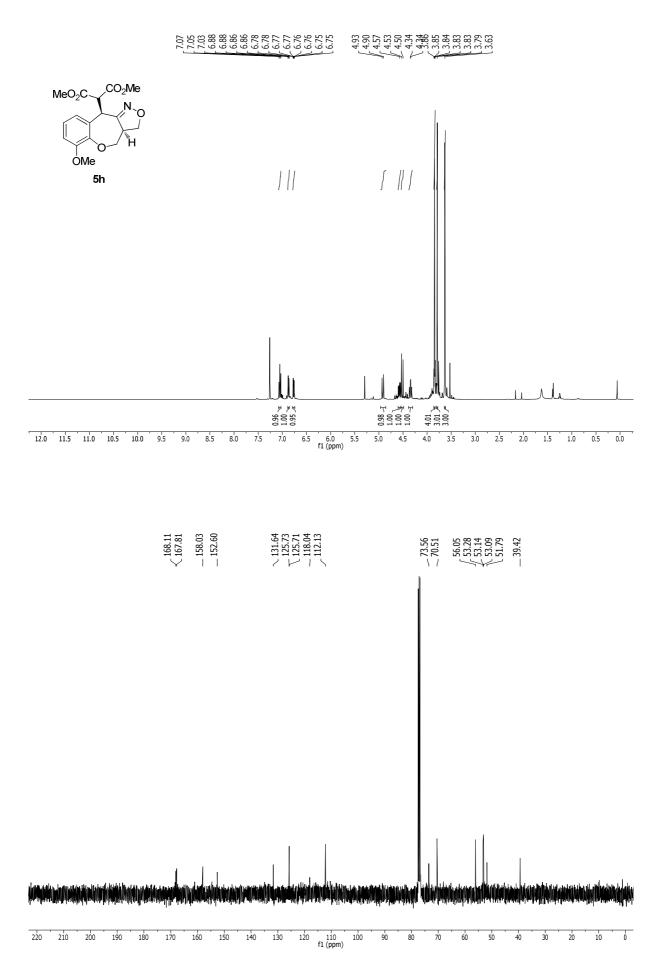




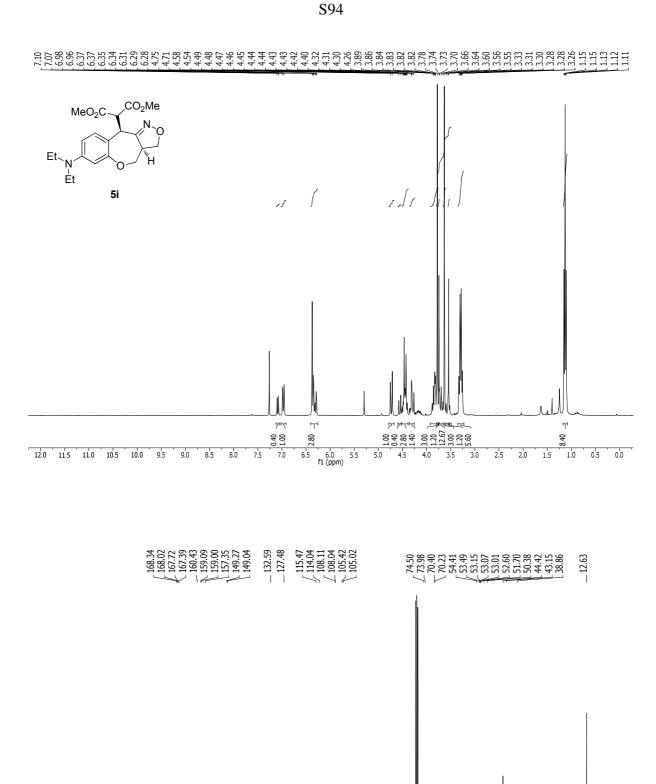

f1 (ppm) ó


 $\begin{array}{c} 7.7\\ 7.75\\$ COMe MeOC Ν Ò Ή 5d 3.42 1.43 ⊈ 1.00 漌 6.5 6.0 5.5 f1 (ppm) 7.5 7.0 4.0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 202.53 202.37 202.27 202.15 159.06156.45 132.02 130.00 129.72 128.58 126.65 125.65 125.51 122.98 122.98 74.50 70.79 70.46 70.42 69.50 52.13 49.95 33.98 32.11 29.84 26.76

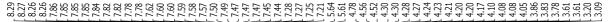

230 220 210 200 190 180 170 160 150 140 130 120 110 f1 (ppm) 100 90 80 70 60 50 40 30 20 10 ó

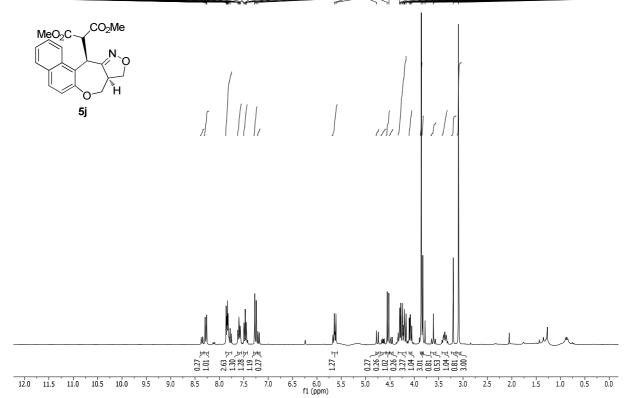


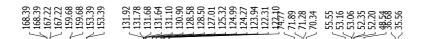
220

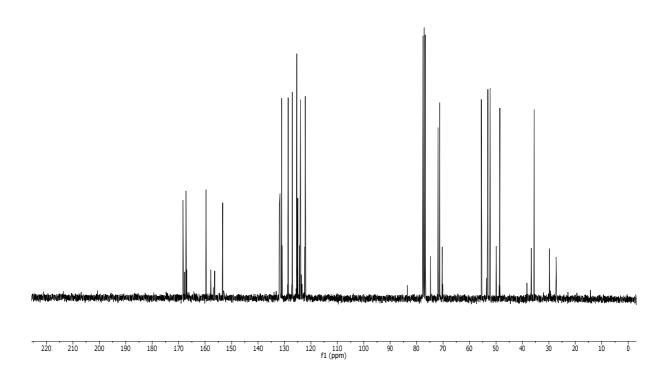

210

200 190

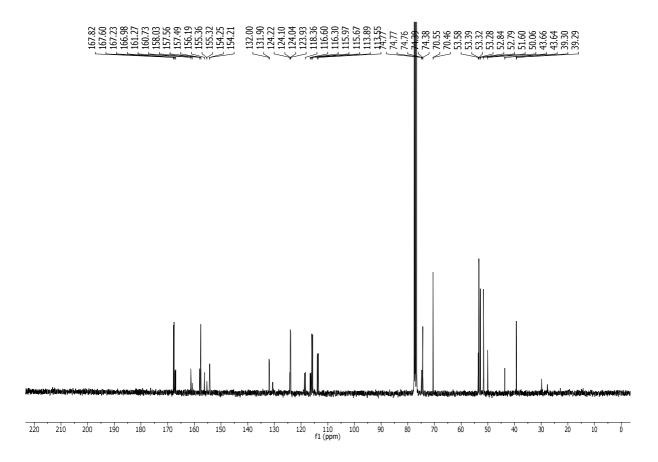

180 170 160 150


140 130


120 110 100 90 f1 (ppm)

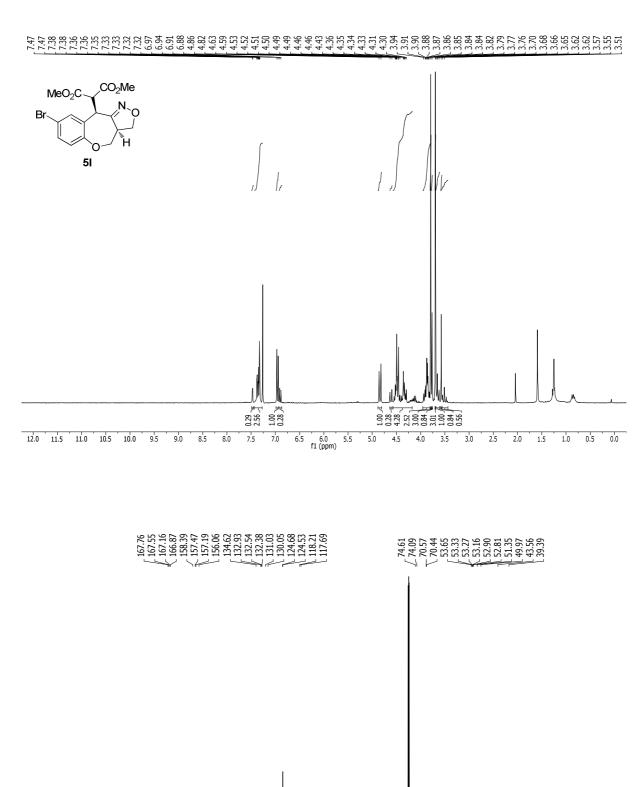


80 70 60 50 40 30 20 10 0



CO₂Me MeO₂C N Ò F `O 5k -117.14 ł -115.5 -117.5 -116.5 f1 (ppm) 4.08 6.5 6.0 5.5 f1 (ppm) 7.0 4.5 4.0 3.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0

220


210

200 190

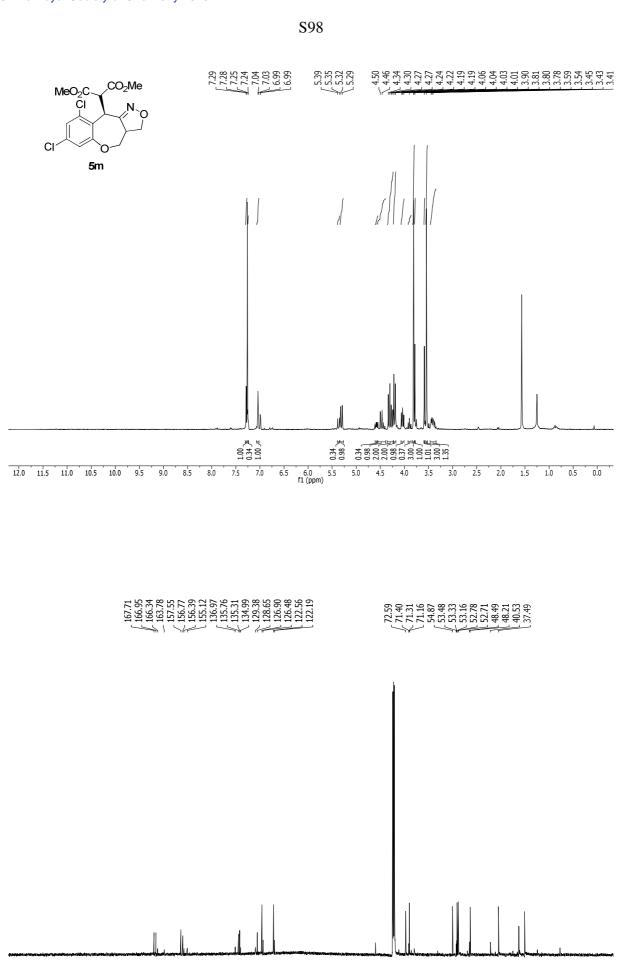
180 170

160 150

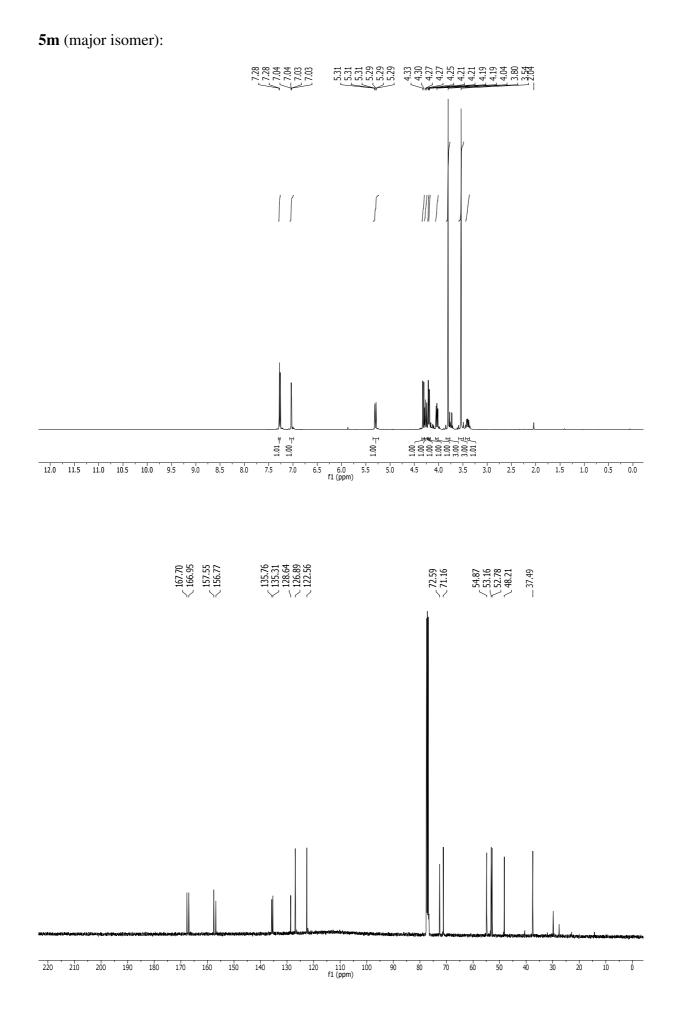
140 130

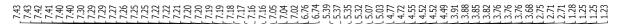
110 f1 (ppm) 100

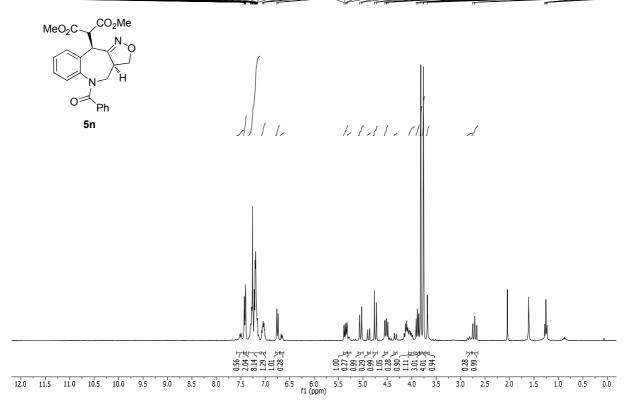
120

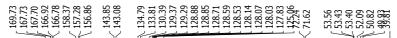

90

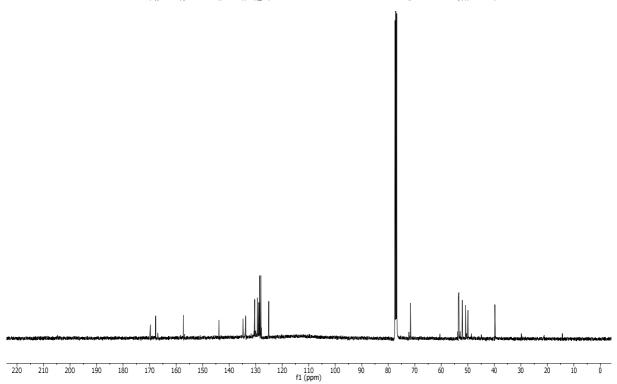
80 70 60

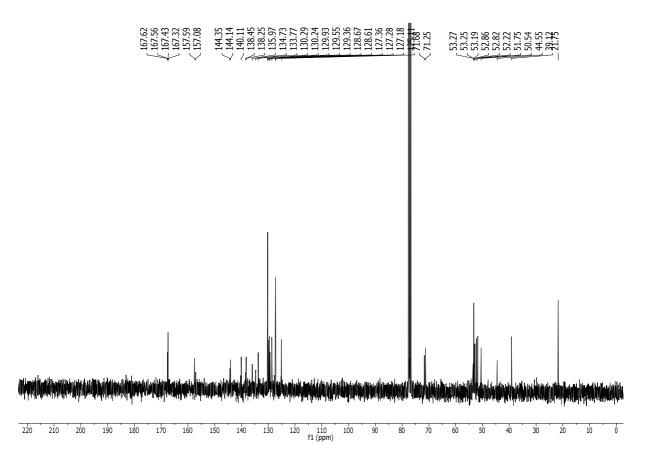

50 40 30 20

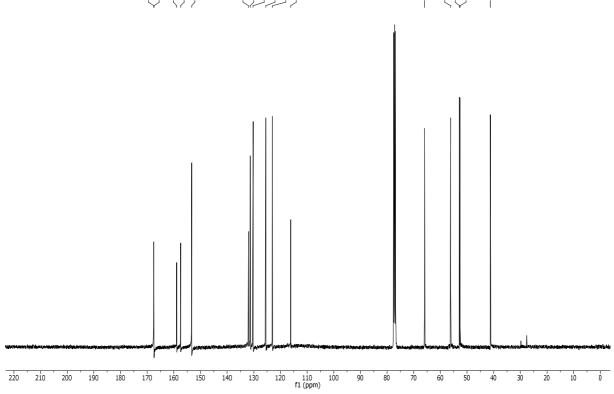

ò

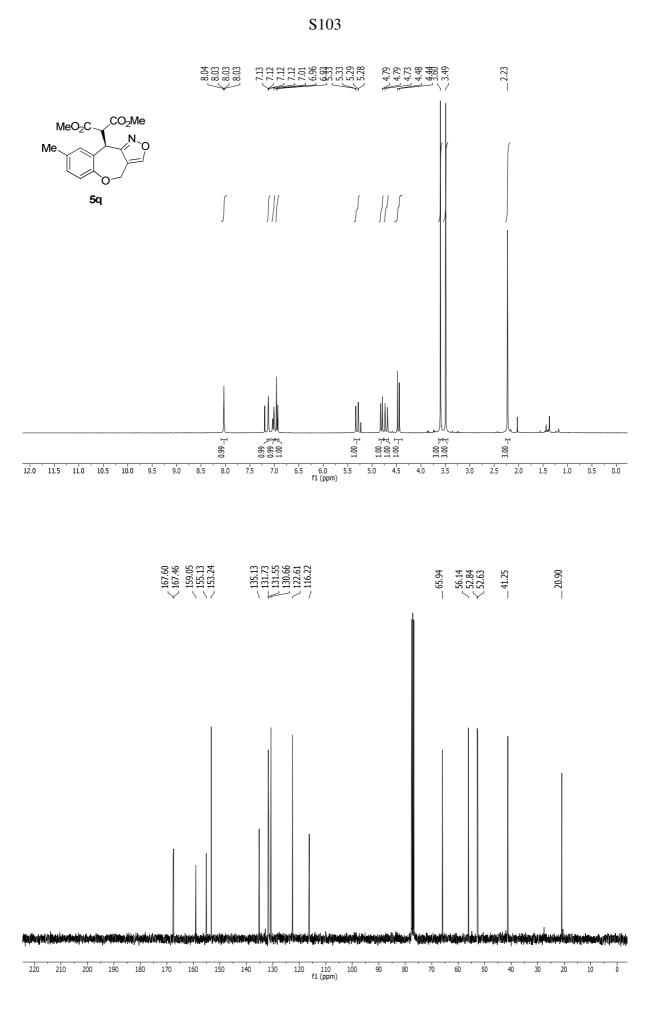

10

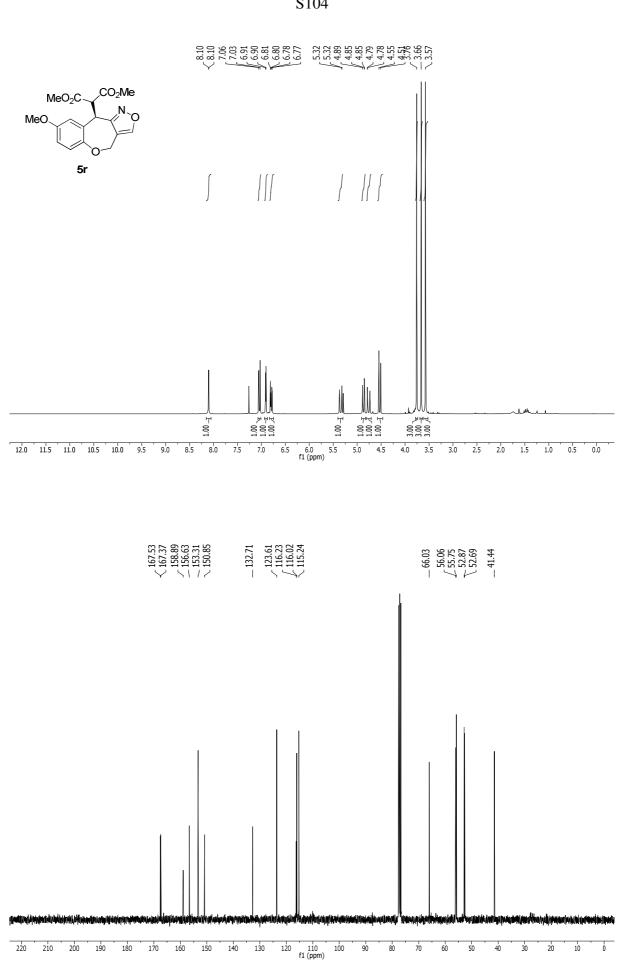


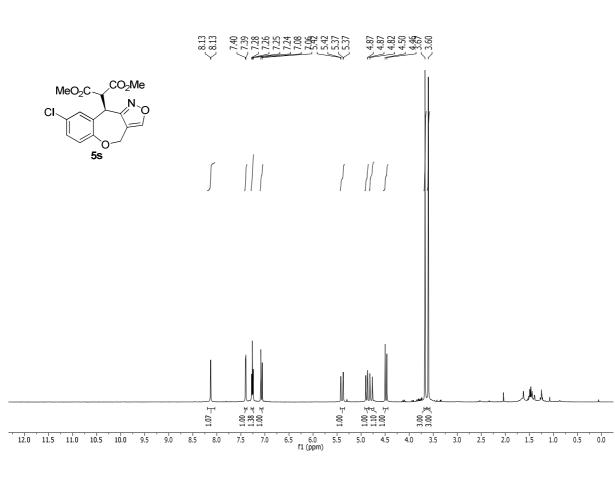

110 100 f1 (ppm) ó

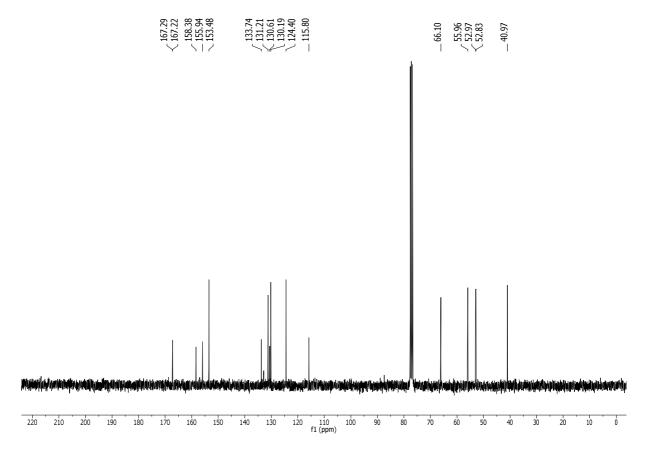


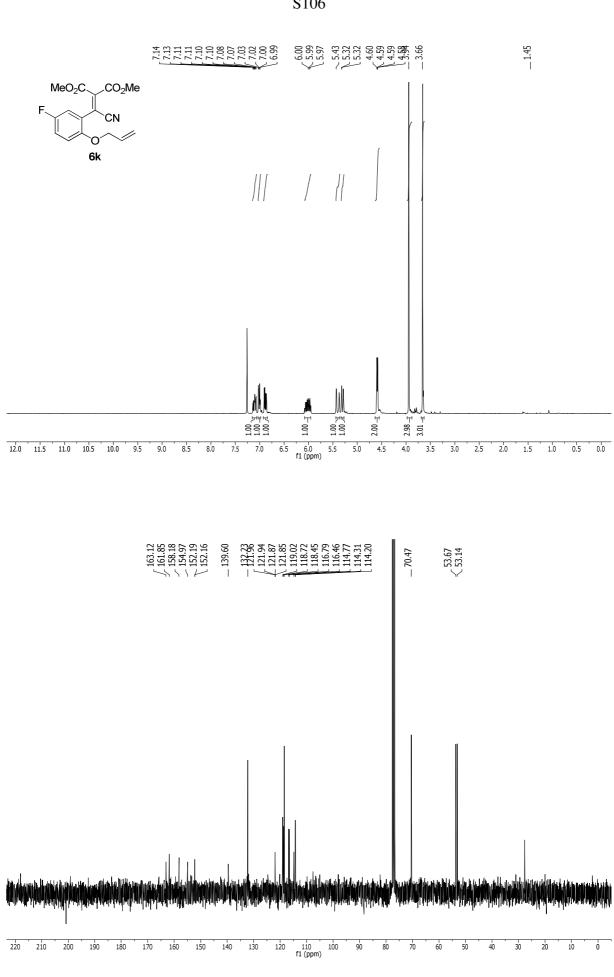




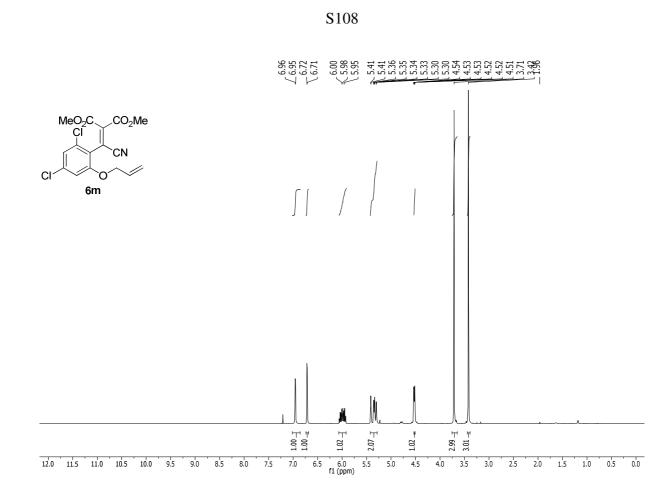

,CO₂Me MeO₂C-C N Тś ſ 50 1.44 0.44 3.88 2.44 0.88 0.44 8.91 6.5 6.0 5.5 f1 (ppm) 7.0 3.0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 0.0

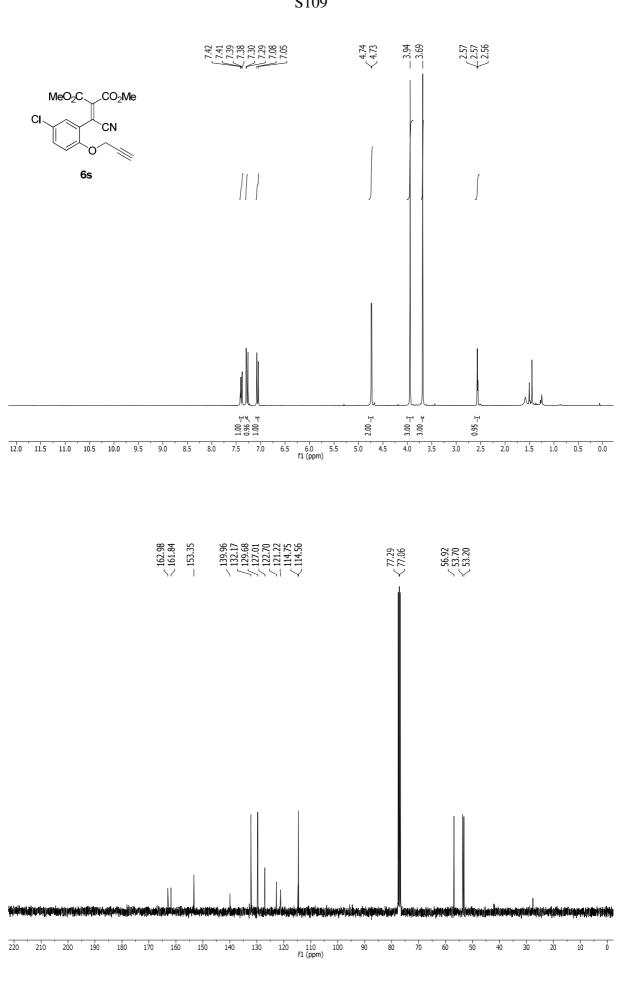


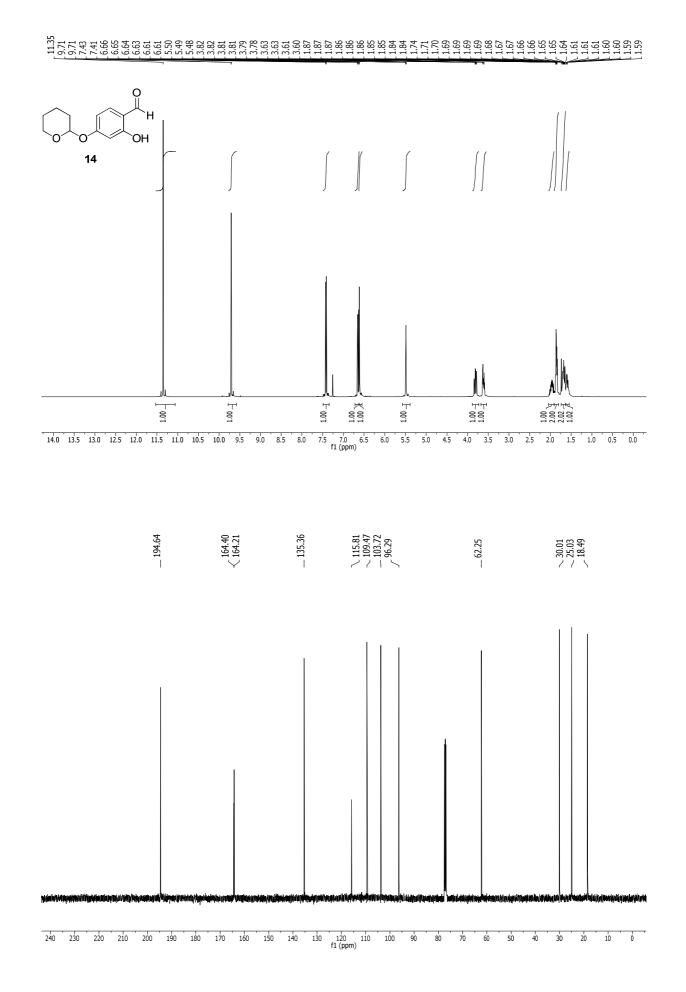


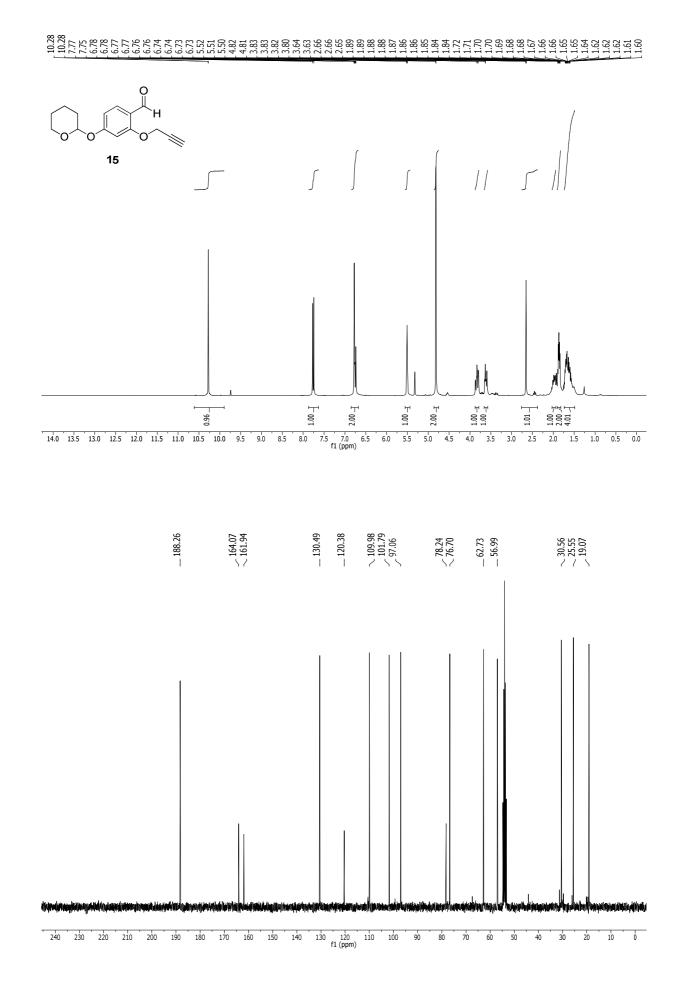


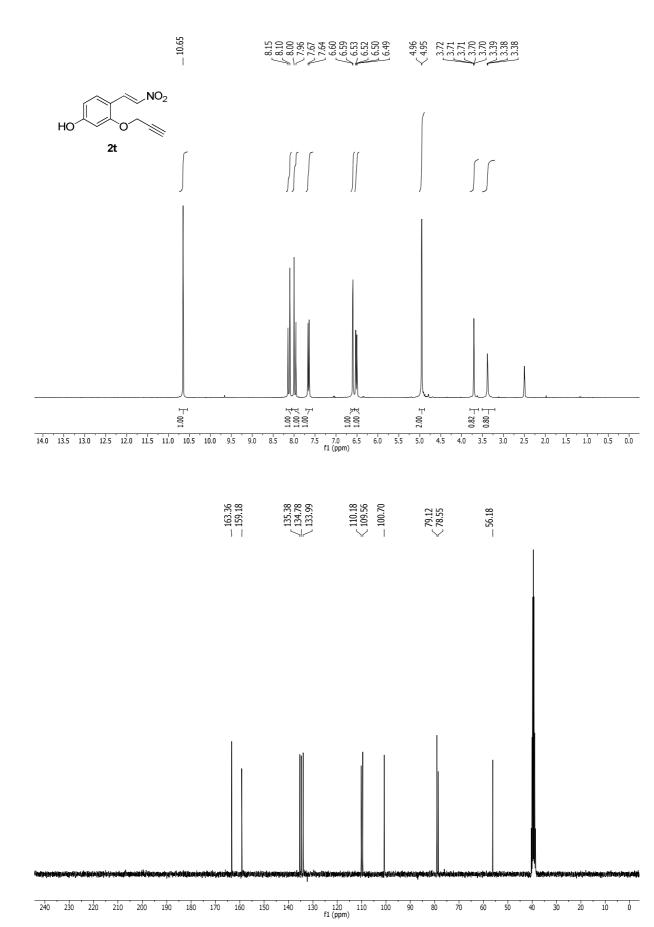


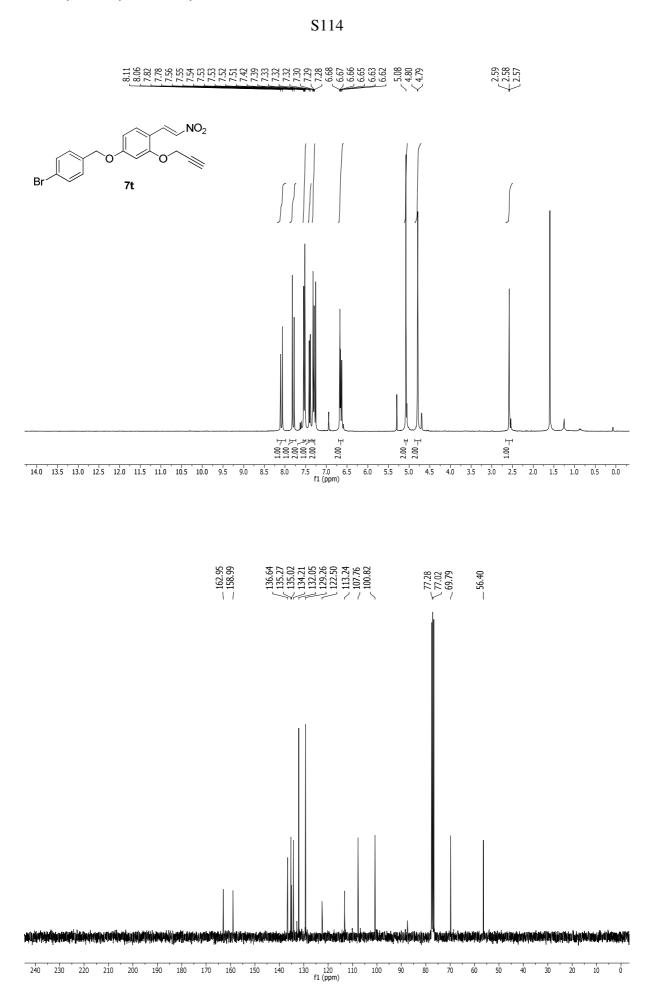


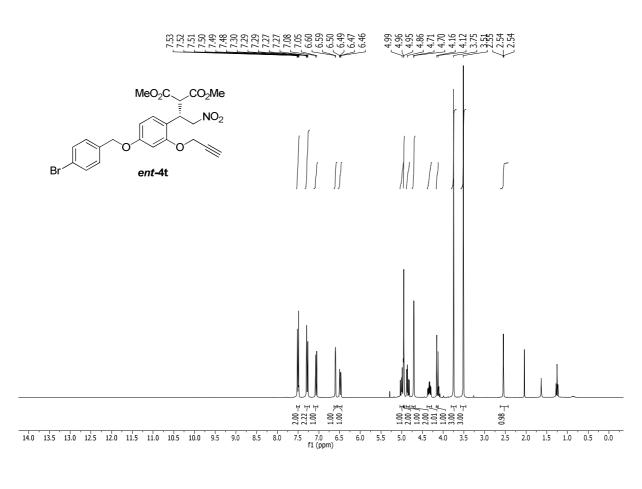


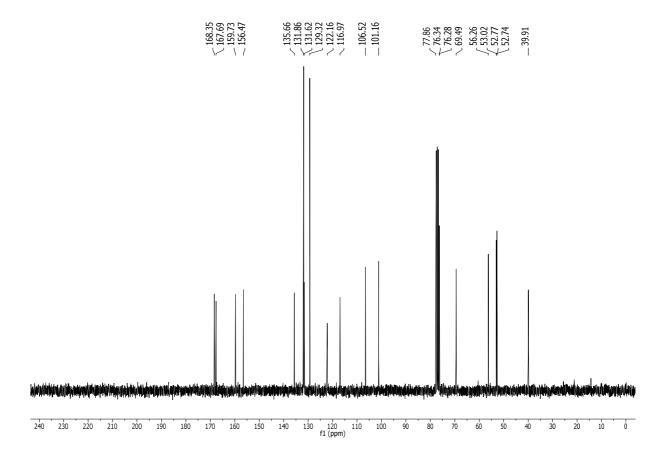


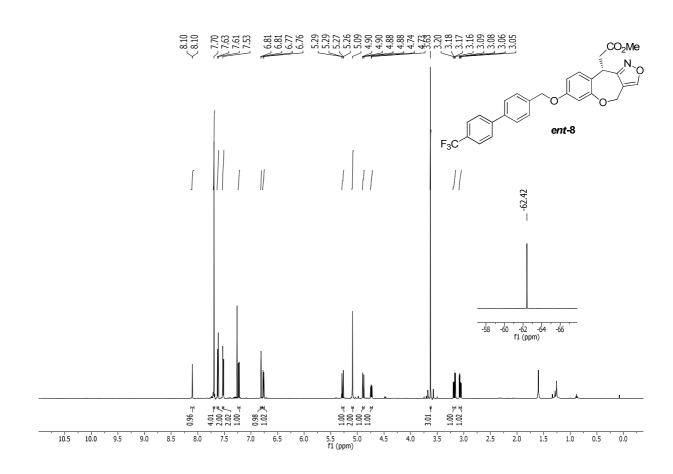


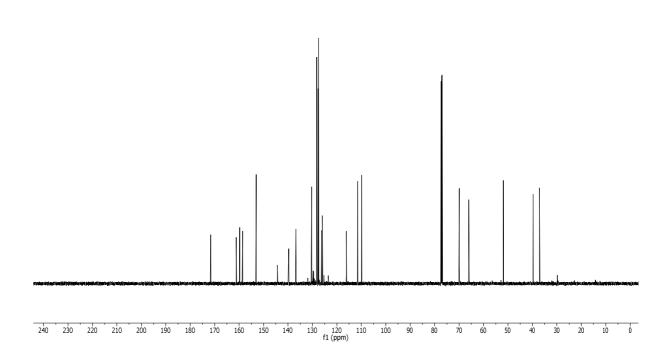









 NO_2 16 [] 11
 Image: state 1.00 1.00 1.00 1.00 -⊥ 2.01 -≖ 1.00 _ 1.01 2.01 4.00 5.5 2.0 1.5 1.0 0.5 0.0 6.0 5.0 4.5 4.0 3.5 3.0 2.5 113.28 109.78 101.70 96.57 ~ 161.78 ~ 158.96 ≤ 136.57 135.49
 133.96~ 30.16 ~ 25.12 _ 18.56 77.42 ___62.26 ___56.41 والمقارب بالمعارية ومعاور وعاقران أأمله 80 70 60 240 230 220 210 200 190 180 170 160 150 140 130 120 110 f1 (ppm) 100 90 50 40 30 20 10 Ó



$\begin{array}{c} -171.59\\ 159.178\\ 159.178\\ 159.178\\ 159.178\\ 159.178\\ 1144.33\\ 159.33\\ 1144.33\\ 139.33\\ 139.33\\ 1144.33\\ 139.33\\ 139.33\\ 1144.33\\ 139.33\\ 1144.33\\ 139.33\\ 1144.33\\ 139.33\\ 1144.33\\ 139.33\\ 1111.53\\ 11111.53\\ 11111.53\\ 1111.53\\ 1111.53\\ 1111.53\\ 1111.53\\ 1111.53\\ 1111.53\\ 11$

