A Photo-induced C-O Bond Formation Methodology to Construct Tetrahydroxanthones

Zheming Xiao, Shujun Cai, Yingbo Shi, Baochao Yang, Shuanhu Gao *

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.

> Email: shgao@chem.ecnu.edu.cn Fax: (+) 86-21-62604784

Supporting Information

Condition Screening:	S2
A Curve of the Progress of the Reaction for the Photolysis:	S3
General Experimental Procedures:	S5
Reference:	S24
¹ H and ¹³ C NMR Spectra of the Synthetic Intermediates and Products:	S25

Condition Screening:

	OM€ ↓		, , , , , , , , , , , , , , , , , , ,	^	MeO J		
		condi	tions	$\left(\right)$		\sum	
	✓ CI ² ✓ 1d		~ 0 3	✓ ¹ O ² ✓ 3		لا کے لیے 4d	
entry	λ	sol.	base	time	conversion	yield (3) ^a	yie l d (4d) ^a
1	300 nm	CH ₃ CN	none	2 h	88 %	17 %	trace
2	300 nm	CH₃CN	ⁱ Pr ₂ NH (1 equiv.)	40 min	100 %	62 %	11 %
3	300 nm	CH₃CN	NEt ₃ (1 equiv.)	40 min	100 %	42 %	trace
4	300 nm	DCE	none	2 h 10 min	100 %	trace	12 %
5	300 nm	DCE	ⁱ Pr ₂ NH (1 equiv.)	45 min	100 %	48 %	18 %
6	300 nm	DCE	NEt ₃ (1 equiv.)	45 min	100 %	46 %	6 %
7	300 nm	CH ₃ CN	TMP (1 equiv.)	40 min	100 %	66 %	9 %
8	300 nm	DCE	TMP (1 equiv.)	40 min	100 %	60 %	22 %
9	300 nm	THF	TMP (1 equiv.)	40 min	100 %	14 %	trace
10	300 nm	Toluene	TMP (1 equiv.)	40 min	100 %	32 %	20 %
11	300 nm	DMF	TMP (1 equiv.)	40 min	100 %	19 %	trace
12	300 nm	CH ₃ CN:H ₂ O (9:1)	TMP (1 equiv.)	40 min	100 %	82 %	5 %
13	300 nm	CH ₃ CN:H ₂ O (4:1)	TMP (1 equiv.)	40 min	100 %	74 %	5 %
14	300 nm	CH ₃ CN:H ₂ O (3:1)	TMP (1 equiv.)	40 min	100 %	75 %	7 %
15	300 nm	CH ₃ CN:H ₂ O (5:3)	TMP (1 equiv.)	50 min	100 %	67 %	9 %
16	300 nm	CH ₃ CN:H ₂ O (9:1)	ⁱ Pr ₂ NH (1 equiv.)	40 min	100 %	74 %	6 %
17	300 nm	CH ₃ CN:H ₂ O (9:1)	NEt ₃ (1 equiv.)	40 min	100 %	31 %	trace
18	300 nm	CH ₃ CN:H ₂ O (9:1)	DABCO (1 equiv.)	40 min	100 %	78 %	9 %
19	300 nm	CH ₃ CN:H ₂ O (9:1)	K ₂ CO ₃ (1 equiv.)	50 min	100 %	69 %	trace
20	300 nm	CH ₃ CN:H ₂ O (9:1)	None	1 h 20 min	100 %	37 %	trace
21	300 nm	CH ₃ CN:H ₂ O (9:1)	HCI (1 equiv.)	1 h 30 min	91 %	32 % ^b	trace
22	300 nm	CH ₃ CN:H ₂ O (9:1)	TMP (0.2 equiv.)	40 min	100 %	64 %	trace
23	300 nm	CH ₃ CN:H ₂ O (9:1)	TMP (0.5 equiv.)	40 min	100 %	77 %	trace
24	300 nm	CH ₃ CN:H ₂ O (9:1)	TMP (5 equiv.)	40 min	100 %	85 %	4 %
25	300 nm	CH ₃ CN:H ₂ O (9:1)	TMP (10 equiv.)	40 min	100 %	82 %	10 %
26	254 nm	CH ₃ CN:H ₂ O (9:1)	TMP (1 equiv.)	40 min	100 %	79 %	5 %
27	366 nm	CH ₃ CN:H ₂ O (9:1)	TMP (1 equiv.)	3 h	100 %	84 %	8 %

^a Yields were determined by ¹H NMR crude analysis using CH₂Br₂ as an internal standard, unless otherwise noted. ^b Based on conversion.

A Curve of the Progress of the Reaction for the Photolysis:

OMe O CI		N:H₂O (9:1), (1 equiv.), ≫ 300 nm		MeO 0 +
1d			3	4d
entry	time	conversion	yield (3) ª	yield (4d) ª
1	5 min	45 %	40 % (88 %) ^b	5 % (10 %) ^b
2	10 min	69 %	62 % (89 %) ^b	9 % (13 %) ^b
3	20 min	92 %	83 % (90 %) ^b	11 % (11 %) ^b
4	30 min	95 %	81 % (85 %) ^b	9 % (9 %) ^b
5	40 min	100 %	82 %	5 %
6	1 h	100 %	77 %	3 %
7	1.5 h	100 %	69 %	0

 $^{\rm a}$ Yields were determined by $^{\rm 1}{\rm H}$ NMR crude analysis using CH_2Br_2 as an internal standard, unless otherwise noted. $^{\rm b}$ Based on conversion.

General Experimental Procedures:

All reactions were carried out under nitrogen except noted. Anhydrous dichloromethane (CH₂Cl₂) was distilled from calcium hydride. Tetrahydrofuran (THF) was distilled from sodium. Flash column sodium-benzophenone ketyl, and anhydrous toluene was prepared from sodium. Flash column chromatography was performed as described by Still (Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923–2925), employing Qingdao Haiyang silica gel 60 (200–300 mesh). TLC analyses were performed on EMD 250 µm Silica Gel HSGF₂₅₄ plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm), or by staining ceric ammonium molybdate, ammonium molybdate, or potassium permanganate. ¹H and ¹³C NMR spectra were recorded on a Bruker-500, 400 spectrometer. Chemical shifts for ¹H and ¹³C NMR spectra are reported in ppm (δ) relative to residue protium in the solvent (CDCl₃: δ 7.26, 77.00 ppm;) and the multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were acquired on a waters GCT premier. The photo reactor used for this photolysis is Rayonet RPR-200 (Southern New England Ultraviolet Company).

General procedure for the preparation of substrates:

S2 and **S3** were prepared according to the known procedure. ^[1,2]

To a solution of Brominated (1.0 ~ 1.5 equiv.) in dry THF was added *n*-BuLi (1.0 ~ 1.5 equiv.) at 0 $^{\circ}$ C ~ -83 $^{\circ}$ C dropwised. After about 10 min ~ 1 h, aldehyde (1.0 equiv.) in dry THF was added dropwised at the same temperature. TLC monitored the reaction and showed all aldehyde was consumed, the reaction was quenched with water. It was extracted with EtOAc, and the organic layer was washed with water and brine. The combined organic phase was dried over Na₂SO₄,

filtered, concentrated, and purified by silica gel column chromatography to give the corresponding alcohol.

To a solution of fresh prepared alcohol (1.0 equiv.) in dry CH_2Cl_2 was added DMP (1.5 equiv.) at 25 °C. After stirring for 5 min, water solution (1 µL water / 1 mL CH_2Cl_2) was added. TLC showed all alcohol was consumed, CH_2Cl_2 was evaporated, then EtOAc and an aqueous solution of 1:1 10% $Na_2S_2O_3$ to saturated NaHCO₃ was then added. After stirring for another 10 min, the biphasic mixture was extracted with EtOAc, the combined organic phase was washed with saturated NaHCO₃ and brine, dried over Na_2SO_4 , filtered, concentrated, and purified by silica gel column chromatography to give the precursor of the photolysis.

To a solution of **S4** (1.40 g, 7.5 mmol, 1.5 equiv.) in dry THF (40 mL) was added *n*-BuLi (3.1 mL, 1.6 M solution in pentane, 5.0 mmol, 1.0 equiv.) dropwise at -20 °C. After 0.5 h, **S2** (0.72 g, 5.0 mmol, 1.0 equiv.) was added dropwise. After about 2 h, TLC showed all **S2** was consumed; the reaction was quenched with water (10 mL). It was extracted with EtOAc (15 mL×3), and the organic layer was washed with water (25 mL) and brine (25 mL). The organic phase was dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (2 % ~ 5 % ethyl acetate–hexanes) to give **S5** as a colorless liquid (0.94 g).

To a solution of the **S5** (0.94 g, 4.2 mmol, 1.0 equiv.) in dry CH_2Cl_2 (30 mL) was added DMP (2.7 g, 6.3 mmol, 1.5 equiv.) at 25 °C. After stirring for 5 min, water solution (1 µL water /1 mL CH_2Cl_2 , 30 µL) was added. After about 10 min, TLC showed all **S5** was consumed, CH_2Cl_2 was evaporated, then EtOAc (20 mL) and an aqueous solution of 1:1 10% $Na_2S_2O_3$ to saturated $NaHCO_3$ (20 mL) was then added. After stirring for another 10 min, the biphasic mixture was extracted with EtOAc (15 mL×3), the combined organic phase was washed with saturated $NaHCO_3$ (20 mL), brine (20 mL), dried over Na_2SO_4 , filtered, concentrated, and purified by silica gel column chromatography

(3% ethyl acetate–hexanes) to give enone **1d** as a white solid (668 mg, 63 % over 2 steps). $R_f = 0.37$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 7.7, 1.5 Hz, 1H), 7.48 (td, J = 8.1, 1.2 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 3.87 (s, 3H), 2.78 – 2.15 (m, 4H), 1.84 – 1.67 (m, 4H) ppm.¹³C NMR (100 MHz, CDCl₃) δ 196.7 , 159.0, 136.8, 133.9, 131.2, 129.1, 127.5, 120.8, 111.8, 56.0, 33.7, 28.0, 23.5, 21.7 ppm. MS (m/z): EI [M] calcd for C₁₄H₁₅O₂Cl [M]⁺: 250, Found 250 (15 %), 235 (2 %), 215 (40 %).

^{TBSO} CI Enone **1b** was prepared using the general procedure (using the *t*-BuLi instead of *n*-BuLi) in 57 % yield over 2 steps, purified by silica gel column chromatography (1 % ethyl acetate-petroleum ether) as a colorless liquid. $R_f = 0.39$ (5 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 7.7, 1.7 Hz, 1H), 7.34 (td, J = 8.2, 1.8 Hz, 1H), 6.98 (t, J = 8.2 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 2.52 – 2.34 (m, 4H), 1.86 – 1.64 (m, 4H), 0.99 (s, 9H), 0.24 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 154.7, 135.4, 133.0, 132.9, 131.1, 130.1, 121.0, 120.5, 34.3, 28.3, 25.8 (3 C), 23.3, 21.5, 18.4, -4.1 (2 C) ppm. MS (m/z): ESI [M] calcd for C₁₉H₂₇O₂ClSi [M]⁺: 350, Found 351 [M+H]⁺.

Enone **1e** was prepared using the general procedure in 47 % yield over 2 steps, purified by silica gel column chromatography (1 % ~ 2 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.22$ (5 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 7.7, 1.7 Hz, 1H), 7.52 – 7.32 (m, 6H), 7.08 – 6.98 (m, 2H), 5.08 (s, 2H), 2.29 – 2.21 (m, 2H), 2.21 – 2.12 (m, 2H), 1.47 – 1.31 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 158.0, 136.8, 136.2, 133.8, 131.2, 129.5, 128.6 (2C), 128.3, 128.0 (3C), 121.0, 112.4, 70.8, 33.6, 27.9, 22.9, 21.1 ppm. HRMS (m/z): EI [M] calcd for C₂₀H₁₉O₂Cl [M]⁺: 326.1074, Found 326.1080.

^{MOMO} \cap_{Cl} Enone **1f** was prepared using the gerneral procedure in 72 % yield over 2 steps, purified by silica gel column chromatography (2 % ~ 3 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.37$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.7, 1.7 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.15 (d, J = 8.3 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 5.21 (s, 2H), 3.49 (s, 3H), 2.45 – 2.37 (m, 4H), 1.83 – 1.69 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 156.3, 136.9, 133.6, 130.8, 129.6, 128.6, 121.9, 114.9, 94.7, 56.2, 33.9, 28.1, 23.5, 21.7 ppm. MS (m/z): EI [M] calcd for C₁₅H₁₇O₃Cl [M]⁺: 280, Found 280 (0.6 %) 249 (2 %) 245 (54 %).

Enone **1a** was prepared from enone **1b**. *Procedure*: To a solution of enone **1b** (250.5 mg, 0.7 mmol) in CH₃CN (5 mL) was added 40 % HF aqueous solution (500 µL) at 45 °C. After 1 h, TLC showed all enone **1b** was consumed, it was quenched by TMSOMe (2 mL), and saturated NaHCO₃ was added until no gas generated, then extracted with EtOAc (20 mL), the combined organic phase was washed with saturated NaHCO₃ (10 mL) and brine (10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (20 % ~ 25 % dichloromethane-petroleum ether) as a white solid (168.7 mg, 100 %). R_f = 0.41 (50 % toluene-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 11.90 (s, 1H), 7.60 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.53 - 7.47 (m, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 2.53 - 2.45 (m, 2H), 2.40 - 2.32 (m, 2H), 1.92 - 1.82 (m, 2H), 1.82 - 1.74 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 163.1, 136.9, 133.2, 132.4, 130.2, 119.2, 118.4, 118.0, 32.9, 28.8, 23.3, 21.3 ppm. MS (M/Z): EI [M] calcd for C₁₃H₁₃O₂Cl [M]⁺: 236, Found 236 (2 %) 201 (100 %) 121 (21 %).

Enone 1c was prepared from enone 1a. *Procedure*: To a solution of enone 1a (222.3 mg, 0.94 mmol) in CH₂Cl₂ was added NEt₃ (197 μ L, 1.4 mmol, 1.5 equiv.) at 0 °C, then added CH₃COCl (80 μ L, 1.1 mmol, 1.2 equiv.) dropwise, then warmed to r.t.. After TLC showed all enone 1a was consumed, it was quenched by NH₄Cl, then extracted with EtOAc (20 mL), the combined organic phase was washed with saturated NH₄Cl (10 mL) and brine (10 mL),

dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (5 % ethyl acetate-petroleum ether) as a white solid (219.4 mg, 84 %). $R_{\rm f} = 0.18$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 7.7, 1.6 Hz, 1H), 7.56 (td, J = 8.0, 1.7 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.14 (d, J = 7.4 Hz, 1H), 2.50 – 2.43 (m, 2H), 2.38 – 2.32 (m, 5H), 1.85 - 1.78 (m, 2H), 1.76 - 1.69 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 169.3, 149.7, 135.1, 133.7, 132.1, 131.6, 129.2, 126.1, 123.9, 33.7, 28.4, 23.4, 21.4, 21.0 ppm. HRMS (M/Z): EI [M] calcd for C₁₅H₁₅O₃Cl [M]⁺: 278.0710, Found 278.0712.

)Me(

Enone **S6** was prepared using the general procedure in 55 % yield over 2 steps, purified by silica gel column chromatography ($2 \% \sim 3 \%$ ethyl acetate-petroleum ether) as a colorless liquid. $R_{\rm f} = 0.27$ (10 % ethyl acetate-petroleum ether). ¹H NMR

 $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.25 \text{ (d, } J = 3.2 \text{ Hz}, 1\text{H}), 7.04 \text{ (dd, } J = 9.0, 3.2 \text{ Hz}, 1\text{H}), 6.89 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H})$ 1H), 3.82 (s, 3H), 3.80 (s, 3H), 2.48 – 2.30 (m, 4H), 1.86 – 1.64 (m, 4H) ppm.¹³C NMR (100 MHz, CDCl₃) § 196.3, 153.7, 153.6, 137.0, 128.6, 127.9, 120.6, 114.3, 113.7, 56.75, 55.8, 33.6, 28.0, 23.5, 21.7 ppm. HRMS (m/z): EI [M] calcd for C₁₅H₁₇O₃Cl [M]⁺: 280.0866, Found 280.0867.

Enone **S7** was prepared using the general procedure in 25 % yield over 2 steps, purified by silica gel column chromatography ($2 \% \sim 3 \%$ ethyl acetate-petroleum ether) as a white solid. $R_f = 0.42$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.6, 3.2 Hz, 1H), 7.16 (ddd, *J* = 9.0, 7.6, 3.2 Hz, 1H), 6.89 (dd, *J* = 9.0, 4.0 Hz, 1H), 3.84 (s, 3H), 2.54 – 2.21 (m, 4H), 1.90 – 1.62 (m, 4H) ppm.¹³C NMR (100 MHz, $CDCl_3$) δ 195.4 (d, J = 1.4 Hz), 156.9 (d, J = 240.4 Hz), 155.1 (d, J = 1.8 Hz), 136.3, 130.0, 128.8 (d, J = 5.9 Hz), 120.1 (d, J = 23.4 Hz), 116.9 (d, J = 24.0 Hz), 113.3 (d, J = 7.5 Hz), 56.6, 33.7, 27.9,23.4, 21.6 ppm. HRMS (M/Z): EI [M] calcd for C₁₄H₁₄O₂FCl [M]⁺: 268.0666, Found 268.0667.

Enone **S8** was prepared using the general procedure in 42 % yield over 2 steps, purified by silica gel column chromatography ($2 \% \sim 3 \%$ ethyl acetate-petroleum ether) as a colorless liquid. $R_f = 0.47 (10 \% \text{ ethyl acetate-petroleum ether})$. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.62 \text{ (d, } J = 2.7 \text{ Hz}, 1\text{H}), 7.41 \text{ (dd, } J = 8.8, 2.7 \text{ Hz}, 1\text{H}), 6.88 \text{ (d, } J = 8.8 \text{ Hz}, 10.2 \text{ Hz})$

S9

1H), 3.85 (s, 3H), 2.44 – 2.30 (m, 4H), 1.83 – 1.66 (m, 4H) ppm. 13 C NMR (100 MHz, CDCl₃) δ 195.3, 157.3, 136.2, 133.2, 130.4, 130.3, 129.2, 126.1, 113.3, 56.3, 33.8, 27.9, 23.4, 21.6 ppm. HRMS (M/Z): EI [M] calcd for $C_{14}H_{14}O_2Cl_2$ [M]⁺: 284.0371, Found 284.0369.

Enone **S9** was prepared using the general procedure in 58 % yield over 2 steps, OMe O purified by silica gel column chromatography ($2 \% \sim 3 \%$ ethyl acetate-petroleum ether) as a colorless liquid. $R_f = 0.47 (10 \% \text{ ethyl acetate-petroleum ether})$. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.52 \text{ (d, } J = 2.2 \text{ Hz}, 1\text{H}), 7.27 \text{ (dd, } J = 8.4, 2.2 \text{ Hz}, 1\text{H}), 6.84 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H})$ 1H), 3.83 (s, 3H), 2.42 – 2.34 (m, 4H), 2.31 (s, 3H), 1.87 – 1.68 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) § 196.7, 157.1, 137.0, 134.6, 131.2, 130.2, 128.6, 127.2, 112.0, 56.1, 33.6, 28.0, 23.5, 21.7, 20.3 ppm. HRMS (m/z): EI [M] calcd for $C_{15}H_{17}O_2Cl$ [M]⁺: 264, Found 264 (30 %) 249 (28 %) 149 (100 %).

Enone **S10** was prepared using almost the general procedure (the equiv. of DMP is 4 instead of 1.5) in 18 % yield over 2 steps, purified by silica gel column

chromatography (70 % dichloromethane-petroleum ether) as a white solid. $R_{\rm f} = 0.26$ (pure dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 2.0 Hz, 1H), 7.72 (dd, J = 8.7, 2.0 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 3.92 (s, 3H), 2.51 – 2.34 (m, 4H), 1.85 – 1.68 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 161.2, 137.0, 135.5, 134.7, 132.4, 129.4, 118.3, 112.4, 104.5, 56.3, 34.0, 27.8, 23.3, 21.5 ppm. HRMS (M/Z): EI [M] calcd for C₁₅H₁₄NO₂Cl [M]⁺: 275.0714, Found 275.0713.

QMe Q

Enone **S11** was prepared using the general procedure in 59 % yield over 2 steps, purified by silica gel column chromatography (15 % \sim 20 % ethyl acetate-petroleum ether) as a white solid. $R_{\rm f} = 0.26$ (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 2.1 Hz, 2H), 7.69 (dd, J = 8.6, 2.1 Hz, 2H), 7.00 (d, J =8.6 Hz, 2H), 3.89 (s, 6H), 2.47 – 2.30 (m, 8H), 1.85 – 1.66 (m, 8H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.4 (2 C), 158.3 (2 C), 136.8 (2 C), 132.5 (2 C), 131.9 (2 C), 129.3 (2 C), 128.9 (2 C),

TBSC

127.8 (2 C), 112.3 (2 C), 56.1 (2 C), 33.7 (2 C), 28.0 (2 C), 23.5 (2 C), 21.7 (2 C) ppm. HRMS (M/Z): EI [M] calcd for C₂₈H₂₈O₄Cl₂ [M]⁺: 498.1365, Found 498.1368.

Enone **S12** was prepared using the general procedure in 49 % yield over 2 steps, purified by silica gel column chromatography (2 % ~ 4 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.46$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 1.8 Hz, 1H), 7.70 (dd, J = 8.7, 1.8 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 3.91 (s, 3H), 2.46 – 2.31 (m, 4H), 1.87 – 1.54 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 160.8, 136.0, 131.0, 130.5 (q, J = 3.5 Hz), 128.3, 128.1 (q, J = 3.7 Hz), 123.9 (d, J = 271.5 Hz), 123.2 (q, J = 33.4 Hz), 111.8, 56.2, 33.9, 27.9, 23.4, 21.6 ppm. HRMS (M/Z): EI [M] calcd for C₁₅H₁₄O₂F₃Cl [M]⁺: 318.0634, Found 318.0635.

Substrate **S15** was prepared from **S13** in 98 % yield over 2 steps. *Procedure*: **Step 1**: To a solution of **S13** (1.1242g, 5 mmol, 1 equiv.) in MeOH (25 mL) was added NaBH₄

(237 mg, 6 mmol, 1.2 equiv.) at 26 °C, after 15 min, TLC showed **S13** was completely consumed, it was quenched by saturated NH₄Cl, MeOH was evaporated, extracted with EtOAc (20 mL), washed with brine (20 mL), dried over Na₂SO₄, filtered, concentrated, and the crude product was used in the next step without purification. **Step 2:** To a solution of **S14** in CH₂Cl₂ (30 mL) was added imidazole (890 mg, 13 mmol, 2.5 equiv.) and TBSCl (946 mg, 6.3 mmol, 1.2 equiv.) at 26 °C, after 15 min, TLC showed All **S14** was completely consumed, it was quenched by saturated NH₄Cl, extracted with EtOAc (30 mL), washed with brine (20 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (2 % ethyl acetate-petroleum ether) as a white solid (1.696 g, 98 %). R_f = 0.67 (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 1.8 Hz, 1H), 7.22 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 4.65 (s, 2H), 3.88 (s, 3H), 0.93 (s, 9H), 0.09 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 135.1, 131.3, 126.2, 111.7, 111.4, 64.0, 56.3, 25.9 (3 C), 18.4, -5.3 (2 C) ppm. MS (M/Z): EI [M] calcd for C₁₄H₂₃BrO₂Si [M]⁺: 330, Found 330 (4 %) 273 (63 %) 199 (100 %).

Enone **S16** was prepared using the general procedure in 70 % yield over 2 steps, purified by silica gel column chromatography (2 % ~ 3 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.53$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 1.9 Hz, 1H), 7.46 (dd, J = 8.5, 1.9 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 4.70 (s, 2H), 3.86 (s, 3H), 2.52 - 2.26 (m, 4H), 1.91 - 1.65 (m, 4H), 0.93 (s, 9H), 0.08 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 158.2, 136.8, 133.8, 131.9, 129.0, 129.0, 127.0, 111.9, 64.2, 56.1, 33.7, 28.1, 25.9 (3 C), 23.5, 21.7, 18.3, -5.2 (2 C) ppm. MS (M/Z): ESI [M] calcd for C₂₁H₃₁ O₃ClSi [M]⁺: 394, Found 395 [M+H]⁺.

Enone **S17** was prepared from enone **S16**. *Procedure*: To a solution of enone **S16** (379.2 mg, 0.96 mmol) in C₂H₅OH (2 mL) was added 1 % HCl-C₂H₅OH (5 mL) at

29 °C. After 15 min, TLC showed all enone **S16** was consumed, saturated NaHCO₃ was added until no gas generated, then extracted with EtOAc (30 mL), the combined organic phase was washed with saturated NaHCO₃ (10 mL) and brine (10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (30 ~ 35 % ethyl acetate-petroleum ether) as a light yellow liquid (252.4 mg, 94 %). R_f = 0.4 (40 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 4.66 (s, 2H), 3.87 (s, 3H), 2.45 – 2.34 (m, 4H), 1.84 – 1.69 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 158.5, 136.7, 133.4, 132.9, 129.7, 129.3, 127.5, 112.1, 64.4, 56.1, 33.7, 28.0, 23.5, 21.7 ppm. HRMS (M/Z): EI [M] calcd for C₁₅H₁₇O₃Cl [M]⁺: 280.0866, Found 280.0863.

OMe O CI CHO Enone **S18** was prepared from enone **S17**. *Procedure*: To a solution of enone **S17** (125.2 mg, 0.45 mmol, 1 equiv.) in CH_2Cl_2 (10 mL) was added MnO_2 (390 mg, 4.5

mmol, 10 equiv.) at 30 °C. After 40 h, TLC showed all enone **S17** was consumed, it was filtered through celite, washed with EtOAc, concentrated, and purified by silica gel column chromatography (15 % ethyl acetate-petroleum ether) as a light yellow solid (252.4 mg, 94 %). $R_{\rm f}$ = 0.34 (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.12 (d, J = 2.0 Hz, 1H), 7.99 (dd, J = 8.6, 2.0 Hz, 1H), 7.06 (d, J = 8.6 Hz, 1H), 3.94 (s, 3H), 2.45 – 2.33 (m, 4H), 1.93 – 1.57 (m, 4H) ppm.¹³C NMR (100 MHz, CDCl₃) δ 195.4, 190.2, 163.0, 135.9, 134.3, 133.3, 131.5, 129.7, 128.7, 112.0, 56.3, 33.9, 27.9, 23.4, 21.6 ppm. HRMS (M/Z): EI [M] calcd for C₁₅H₁₅O₃Cl [M]⁺: 278.0710, Found 278.0709.

COMe OCICOOMe mm

Enone **S19** was prepared from enone **S18**^[3]. *Procedure*: To a solution of enone **S18** (76.4 mg, 0.27 mmol, 1 equiv.) in MeOH (2 mL) was added KOH (92.1 mg, 1.64 mmol, 6 equiv.) and I₂ (208.7 mg, 0.82 mmol, 3 equiv.) at 0 °C. After 20 min, TLC

showed all enone **S18** was consumed, it was quenched by an aqueous solution of 1:1 10% Na₂S₂O₃ to saturated NaHCO₃ (5 mL) then exctracted with EtOAc (20 mL), washed with brine (10 mL), dried over Na₂SO₄, filtered, concentrated and purified by silica gel column chromatography (12 % ethyl acetate-petroleum ether) as a white solid (252.4 mg, 94 %). $R_f = 0.36$ (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 2.2 Hz, 1H), 8.14 (dd, J = 8.7, 2.2 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 2.60 – 2.29 (m, 4H), 1.83 – 1.67 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 166.1, 161.9, 136.1, 135.0, 132.5, 131.0, 128.0,

122.8, 111.3, 56.2, 52.0, 33.9, 28.0, 23.4, 21.6 ppm. MS (M/Z): EI [M] calcd for C₁₆H₁₇O₄Cl [M]⁺: 308, Found 308 (20 %) 293 (5 %) 249 (87 %).

Enone **S20** was prepared using the general procedure in 52 % yield over 2 steps, purified by silica gel column chromatography (3 % ethyl acetate-petroleum ether) as a colorless liquid. $R_f = 0.48$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.25 - 8.21 (m, 1H), 7.88 - 7.83 (m, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.61 -7.52 (m, 2H), 4.03 (s, 3H), 2.53 - 2.44 (m, 4H), 1.92 - 1.73 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 157.6, 137.1, 137.0, 130.7, 128.4, 128.1 (2C), 126.5 (2C), 126.1, 124.1, 123.6, 63.8, 33.9, 28.4, 23.5, 21.8 ppm. MS (M/Z): EI [M] calcd for C₁₈H₁₇O₂Cl [M]⁺: 300, Found 300 (73 %) 285 (15 %) 265 (41 %).

Enone **S21** was prepared using the general procedure in 30 % yield over 2 steps, purified by silica gel column chromatography (40 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.38$ (2 % methanol-dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.55 (d, J = 5.0 Hz, 1H), 6.86 (d, J = 5.8 Hz, 1H), 3.91 (d, J = 0.8 Hz, 3H), 2.39 (d, J = 5.8 Hz, 4H), 1.74 (dd, J = 25.3, 5.7 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 164.3, 154.3, 152.1, 135.7, 131.8, 123.8, 107.0, 55.8, 33.9, 27.9, 23.4, 21.6 ppm. MS (M/Z): EI [M] calcd for $C_{13}H_{14}NO_2CI [M]^+$: 251, Found 251 (34 %) 236 (25 %) 216 (58 %).

Enone **S22** was prepared using the general procedure in 43 % yield over 2 steps, purified by silica gel column chromatography (8 % ~ 12 % ethyl acetate-petroleum ether) as a yellow liquid. $R_f = 0.53$ (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.21 (m, 1H), 7.88 – 7.84 (m, 1H), 7.65 (s, 2H), 7.63 – 7.54 (m, 2H), 4.51 (t, J =2.4 Hz, 2H), 4.03 (s, 3H), 3.97 (t, J = 5.6 Hz, 2H), 2.66 – 2.56 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 157.2, 137.0, 135.8, 130.1, 128.5, 128.1, 127.9, 127.0, 126.6, 125.6, 124.2, 123.5, 67.2, 64.8, 64.0, 33.6 ppm. MS (M/Z): EI [M] calcd for C₁₇H₁₅O₃Cl [M]⁺: 302, Found 302 (76 %) 267 (24 %) 185 (100 %). Enone **S23** was prepared using the general procedure in 27 % yield over 2 steps, purified by silica gel column chromatography (50 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.28$ (50 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.57 (d, J = 5.9 Hz, 1H), 6.86 (d, J = 5.9 Hz, 1H), 4.43 (t, J = 2.4 Hz, 2H), 3.92 (s, 3H), 3.88 (t, J = 5.6 Hz, 2H), 2.55 – 2.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 164.0, 154.3, 151.2, 134.6, 131.8, 124.8, 106.9, 66.7, 64.7, 55.9, 33.7 ppm. MS (M/Z): EI [M] calcd for $C_{12}H_{12}NO_3Cl [M]^+$: 253, Found 253 (19 %) 218 (30 %) 136 (100 %).

Enone S24 was prepared using the general procedure in 29 % yield over 2 steps, purified by silica gel column chromatography (5 % ethyl acetate-petroleum ether) as a white solid. $R_{\rm f} = 0.22$ (50 % dichloromethane-petroleum ether). ¹H NMR (400 MHz,

CDCl₃) δ 7.29 (dd, J = 8.4, 3.1 Hz, 1H), 7.21 – 7.14 (m, 1H), 6.90 (dd, J = 9.0, 3.9 Hz, 1H), 4.42 (s, 2H), 3.90 (t, J = 5.5 Hz, 2H), 3.85 (s, 3H), 2.57 – 2.48 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 192.8 (d, J = 1.6 Hz), 156.9 (d, J = 240.9 Hz), 154.7 (d, J = 1.9 Hz), 135.2, 129.6, 129.4 (d, J = 6.2 Hz), 120.0 (d, J = 23.4 Hz), 116.4 (d, J = 24.2 Hz), 113.0 (d, J = 7.5 Hz), 66.8, 64.7, 56.6, 33.5 ppm. MS (M/Z): EI [M] calcd for C₁₃H₁₂O₃FCI [M]⁺: 270, Found 270 (16 %) 235 (26 %) 153 (100 %).

Enone S25 was prepared using the general procedure in 34 % yield over 2 steps, purified by silica gel column chromatography (6 % ~ 8 % ethyl acetate-petroleum ether) as a white solid. $R_f = 0.33$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 2.7 Hz, 1H), 7.41 (dd, J = 8.8, 2.7 Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H), 4.42 (t, J = 2.5 Hz, 2H), 3.89 (t, J = 5.6 Hz, 2H), 3.85 (s, 3H), 2.56 – 2.48 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 157.0, 135.0, 133.2, 130.1, 129.8, 129.7, 126.2, 113.1, 66.8, 64.7, 56.3, 33.6 ppm. MS (M/Z): EI [M] calcd for C₁₃H₁₂O₃Cl₂ [M]⁺: 286, Found 286 (13 %) 251 (27 %) 169 (100 %).

Enone **S26** was prepared using the general procedure in 20 % yield over 2 steps, purified by silica gel column chromatography (5 % ~ 8 % ethyl acetate-petroleum ether) as a white solid. $R_{\rm f} = 0.41$ (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 2.1 Hz, 1H), 7.30 – 7.25 (dd, J = 8.4, 2.1 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H) 1H), 4.40 (t, J = 2.4 Hz, 2H), 3.89 (t, J = 5.5 Hz, 2H), 3.83 (s, 3H), 2.54 – 2.45 (m, 2H), 2.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 156.8, 135.9, 134.5, 130.6, 130.3, 127.8 (2C), 111.7, 66.9, 64.7, 56.1, 33.4, 20.2 ppm. MS (M/Z): EI [M] calcd for C₁₄H₁₅O₂Cl [M]⁺: 266, Found 266 (15 %) 231 (29 %) 149 (100 %).

Enone **S27** was prepared using the general procedure in 12 % yield over 2 steps, purified by silica gel column chromatography ($25 \% \sim 35 \%$ ethyl acetate-petroleum ether) as a white solid. $R_f = 0.31$ (30 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 2.4 Hz, 2H), 7.69 (dd, J = 8.6, 2.4 Hz, 2H), 7.01 (d, J =8.6 Hz, 2H), 4.45 (t, J = 2.3 Hz, 4H), 3.95 – 3.88 (m, 10H), 2.59 – 2.48 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 193.9 (2 C), 158.0 (2 C), 135.6 (2 C), 132.7 (2 C), 131.9 (2 C), 129.0 (2 C), 128.6 (2 C), 128.3 (2 C), 112.2 (2 C), 66.9 (2 C), 64.8 (2 C), 56.2 (2 C), 33.5 (2 C) ppm. HRMS (M/Z): EI [M] calcd for C₂₆H₂₄O₆Cl₂ [M]⁺: 502.0950, Found 502.0953.

General procedure for the photolysis of substrates:

To a solution of substrate in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.01 M) in quartz tube was added the base TMP (1.0 equiv.). After homogeneous mixing, the solution was photolyzed at r.t. in a Rayonet chamber reactor at 300 nm for 25 min ~ 70 min shown in table 3. TLC showed all substrate consumed, then CH₃CN was evaporated, an saturated NH₄Cl solution was added, then extracted with EtOAc, the combined organic phase was washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography to give corresponding products.

To a solution of substrate in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.01 M) in quartz tube was added the base TMP (1.0 equiv.). After all substrate dissolved, the solution was photolyzed at r.t. in a Rayonet chamber reactor at 300 nm for 40 min. TLC showed all **1d** consumed, then CH₃CN was evaporated, an saturated NH₄Cl solution was added, then extracted with EtOAc (10 mL), the combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (1 % acetone-petroleum ether). The product **3** was generated in 78 % yield as a white solid (37.8 mg). R_f = 0.25 (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.61 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.43 – 7.30 (m, 2H), 2.68 (t, *J* = 6.4 Hz, 2H), 2.58 (t, *J* = 6.2 Hz, 2H), 1.88 (m, 2H), 1.82 – 1.72 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 163.7, 155.8, 132.8, 125.6, 124.3, 123.0, 118.3, 117.5, 28.1, 21.8, 21.5, 20.9 ppm. The NMR data is same as reported.⁴ MS (M/Z): EI [M] calcd for C₁₃H₁₂O₂ [M]⁺: 200, Found 200 (86 %) 199 (100 %) 185 (72 %).

Ketone **5** was prepared according to the general procedure in 69 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (2 % ~ 4 % ethyl acetate-petroleum ether) as a white solid (47.3 mg): $R_{\rm f}$ = 0.39 (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 2.2 Hz, 1H), 7.40 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 2.65 (t, *J* = 6.3 Hz, 2H), 2.57 (t, *J* = 6.2 Hz, 2H), 2.43 (s, 3H), 1.89 – 1.82 (m, 2H), 1.79 – 1.71 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 163.6, 154.2, 134.1, 134.1, 125.0, 122.8, 118.2, 117.3, 28.1, 21.9, 21.7, 21.0, 20.9 ppm. MS (m/z): EI [M] calcd for C₁₄H₁₄O₂ [M]⁺: 214, Found 214 (85 %) 213 (100 %) 199 (57 %).

 $\begin{array}{l} \underset{MeO}{\overset{\circ}{\longleftarrow}} & \text{Ketone } \mathbf{6} \text{ was prepared according to the general procedure in 72 \% yield. The} \\ \text{reaction time is 40 min under 300 nm light. The product was isolated through} \\ \text{silica gel flash chromatography (1 \% acetone-petroleum ether)as a white solid (50.1 mg): } $R_{\rm f}$= 0.10 \\ (10 \% \text{ ethyl acetate-petroleum ether). } {}^{1}\text{H NMR} (400 \text{ MHz, CDCl}_{3}) \delta 7.54 (d, J = 3.0 \text{ Hz, 1H}), 7.30 \\ \end{array}$

(d, J = 9.1 Hz, 1H), 7.18 (dd, J = 9.1, 3.0 Hz, 1H), 3.87 (s, 3H), 2.65 (t, J = 6.1 Hz, 2H), 2.57 (t, J = 6.0 Hz, 2H), 1.91 – 1.81 (m, 2H), 1.78 – 1.69 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 163.6, 156.3, 150.7, 123.6, 123.0, 119.0, 117.6, 104.8, 55.8, 28.1, 21.9, 21.7, 21.0 ppm. The NMR data is same as reported.⁵ HRMS (M/Z): EI [M] calcd for C₁₄H₁₄O₃ [M]⁺: 230.0943, Found 230.0945.

Ketone **7** was prepared according to the general procedure in 73 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (2 % ~ 4 % ethyl acetate-petroleum ether) as a white solid (47.3 mg): $R_f = 0.39$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 2.3 Hz, 1H), 7.54 (dd, J = 8.8, 2.3 Hz, 1H), 7.34 (d, J = 8.8 Hz, 1H), 2.71 – 2.61 (m, 2H), 2.61 – 2.52 (m, 2H), 1.95 – 1.87 (m, 2H), 1.81 – 1.68 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 164.1, 154.2, 133.2, 130.2, 125.1, 124.1, 119.4, 118.6, 28.1, 21.8, 21.5, 21.0 ppm. HRMS (M/Z): EI [M] calcd for C₁₃H₁₁O₂Cl [M]⁺: 234.0448, Found 234.0447.

Ketone **8** was prepared according to the general procedure in 71 % yield. The reaction time is 50 min under 300 nm light. The product was isolated through silica gel flash chromatography (3 % ethyl acetate-petroleum ether)as a white solid (30.0 mg): $R_f = 0.34$ (10 % ethyl acetate-petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.4, 2.9 Hz, 1H), 7.32 (m, 2H), 2.65 (t, J = 6.3 Hz, 2H), 2.55 (t, J = 6.1 Hz, 2H), 1.93 – 1.81 (m, 2H), 1.79 – 1.70 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.9 (d, J = 2.2 Hz), 164.2, 159.0 (d, J = 245.2 Hz), 152.0 (d, J = 1.4 Hz), 124.1 (d, J = 7.2 Hz), 121.1 (d, J = 25.5 Hz), 119.6 (d, J = 8.0 Hz), 117.8, 110.3 (d, J = 23.4 Hz), 28.1, 21.8, 21.5, 20.9 ppm. HRMS (M/Z): EI [M] calcd for C₁₃H₁₁O₂F [M]⁺: 218.0743, Found 218.0741.

Ketone **9** was prepared according to the general procedure in 67 % yield. The reaction time is 50 min under 300 nm light. The product was isolated through silica gel flash chromatography (60 % ~ 80 % dichloromethane-petroleum ether) as a white solid (36.0 mg): $R_{\rm f} = 0.24$ (67 % dichloromethane-petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H),

7.81 (d, J = 8.6 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 2.69 (t, J = 5.7 Hz, 2H), 2.57 (t, J = 5.4 Hz, 2H), 1.95 – 1.83 (m, 2H), 1.84 – 1.72 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 164.6, 157.6, 135.2, 131.5, 123.5, 119.6, 119.3, 117.8, 108.5, 28.0, 21.7, 21.3, 20.9 ppm. HRMS (M/Z): EI [M] calcd for C₁₄H₁₁NO₂ [M]⁺: 225.0790, Found 225.0791.

Ketone **10** was prepared according to the general procedure in 66 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (2 % ~ 5 % dichloromethane-petroleum ether) as a white solid (42.1 mg): $R_f = 0.30 (10 \%$ ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 1.9 Hz, 1H), 7.81 (dd, J = 8.8, 1.9 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 2.69 (t, J = 6.3 Hz, 2H), 2.57 (t, J = 6.2 Hz, 2H), 1.92 – 1.84 (m, 2H), 1.81 – 1.72 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 164.4, 157.3, 129.3 (q, J = 3.2 Hz), 126.8 (q, J = 33.5 Hz), 123.6 (q, J = 270.5 Hz), 123.9 (q, J = 4.0 Hz), 122.9, 119.2, 118.7, 28.1, 21.7, 21.4, 20.9 ppm. HRMS (M/Z): EI [M] calcd for C₁₄H₁₁O₂F₃ [M]⁺: 268.0711, Found 268.0712.

Ketone **11** was prepared according to the general procedure in 75 % yield. The reaction time is 25 min under 300 nm light. The product was isolated through silica gel flash chromatography (30 % ~ 35 % ethyl acetate-petroleum ether) as a white solid (28.2 mg): $R_{\rm f} = 0.19$ (40 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.69 – 7.55 (m, 1H), 7.31 (d, J = 8.5 Hz, 1H),4.74 (s, 2H) 2.64 (t, J = 6.1 Hz, 2H), 2.54 (t, J = 5.5 Hz, 2H), 1.88-1.82 (m, 2H), 1.79 – 1.71 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 164.0, 155.2, 137.6, 132.1, 123.6, 122.7, 118.3, 117.8, 64.4, 28.1, 21.8, 21.6, 21.0 ppm. HRMS (M/Z): EI [M] calcd for C₁₄H₁₄O₃ [M]⁺: 230.0943, Found 230.0945.

Ketone 12 was prepared according to the general procedure in 64 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (2 % ~ 4 % ethyl acetate-petroleum ether) as a white solid (35.9 mg): R_f = 0.45 (10 % ethyl acetate-petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 2.0 Hz, 1H), 7.63 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 4.80 (s, 2H), 2.66 (t, *J* = 6.3 Hz, 2H), 2.58 (t,

J = 6.1 Hz, 2H), 1.92 - 1.83 (m, 2H), 1.79-1.72 (m, 2H), 0.94 (s, 9H), 0.10 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 163.7, 155.0, 137.8, 131.2, 122.7, 122.6, 118.3, 117.6, 64.4, 28.1, 25.9 (3 C), 21.9, 21.7, 21.0, 18.4, -5.3 (2 C) ppm. MS (M/Z): ESI [M] calcd for C₂₀H₂₈O₃Si [M]⁺: 344, Found 345 [M+H]⁺.

Ketone **13** was prepared according to the general procedure in 48 % yield. The reaction time is 50 min under 300 nm light. The product was isolated through silica gel flash chromatography (50 % ~ 70 % dichloromethane-petroleum ether) as a white solid (26.4 mg): $R_{\rm f} = 0.32$ (pure dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 1H), 8.68 (d, *J* = 1.7 Hz, 1H), 8.15 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 1H), 2.70 (t, *J* = 6.2 Hz, 2H), 2.60 (t, *J* = 5.9 Hz, 2H), 1.97 – 1.85 (m, 2H), 1.81-1.75 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 176.9, 164.4, 159.3, 132.8, 131.1, 131.0, 123.2, 119.4, 119.1, 28.1, 21.8, 21.4, 20.9 ppm. HRMS (M/Z): EI [M] calcd for C₁₄H₁₂O₃ [M]⁺: 228.0786, Found 228.0787.

Ketone **14** was prepared according to the general procedure in 67 % yield. The reaction time is 45 min under 300 nm light. The product was isolated through silica gel flash chromatography (70 % ~ 80 % dichloromethane-petroleum ether) as a white solid (41.5 mg): $R_{\rm f} = 0.29$ (pure dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 2.0 Hz, 1H), 8.22 (dd, J = 8.8, 2.0 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 3.92 (s, 3H), 2.65 (t, J = 6.3 Hz, 2H), 2.55 (t, J = 6.2 Hz, 2H),1.91 – 1.82 (m, 2H), 1.81 – 1.68 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 165.9, 164.0, 158.3, 133.5, 128.3, 126.4, 122.7, 119.0, 118.0, 52.3, 28.0, 21.7, 21.4, 20.9 ppm. MS (m/z): EI [M] calcd for C₁₅H₁₄O₂ [M]⁺: 258, Found 258 (100 %) 257 (85 %) 243 (48 %).

 $\begin{array}{l} \underset{Me}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}$

123.1, 117.5, 116.8, 63.8, 62.7, 27.6, 20.9 ppm. MS (m/z): EI [M] calcd for C₁₃H₁₂O₃ [M]⁺: 216, Found 216 (30 %) 188 (58 %) 187 (100 %).

Ketone **16** was prepared according to the general procedure in 74 % yield. The reaction time is 35 min under 300 nm light. The product was isolated through silica gel flash chromatography (8 % ~ 12 % ethyl acetate-petroleum ether) as a white solid (42.4mg): R_f = 0.17 (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 4.63 (s, 2H), 4.01 (t, *J* = 5.3 Hz, 2H), 2.82 – 2.72 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 161.1, 154.3, 133.6, 130.8, 125.0, 124.4, 119.5, 117.2, 63.7, 62.5, 27.6 ppm. MS (m/z): EI [M] calcd for C₁₂H₉O₃Cl [M]⁺: 236, Found 236 (31 %) 208 (67 %) 207 (100 %).

Ketone **17** was prepared according to the general procedure in 77 % yield. The reaction time is 30 min under 300 nm light. The product was isolated through silica gel flash chromatography (9 % ~ 15 % ethyl acetate-petroleum ether) as a white solid (33.4 mg): R_f = 0.32 (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.2, 3.0 Hz, 1H), 7.42 (dd, J = 9.1, 4.3 Hz, 1H), 7.39 – 7.32 (m, 1H), 4.64 (s, 2H), 4.01 (t, J = 5.6 Hz, 2H), 2.81 – 2.74 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.8 (d, J = 2.4 Hz), 161.1, 159.3 (d, J = 246.4 Hz), 152.2 (d, J = 1.6 Hz), 124.6 (d, J = 7.3 Hz), 121.6 (d, J = 25.5 Hz), 119.8 (d, J = 8.0 Hz), 116.5, 110.4 (d, J = 23.6 Hz), 63.7, 62.5, 27.6 ppm. MS (m/z): EI [M] calcd for C₁₂H₉FO₃ [M]⁺: 220, Found 220 (29 %) 192 (66 %) 191 (100 %).

Ketone **18** was prepared according to the general procedure in 52 % yield. The reaction time is 70 min under 300 nm light. The product was isolated through silica gel flash chromatography (0.5 % ~ 2 % methanol-dichloromethane) as a white solid (25.2 mg): $R_f = 0.53$ (2 % methanol-dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.69 (d, J = 5.9 Hz, 1H), 7.25 (d, J = 5.6 Hz, 1H), 2.67 (t, J = 6.3 Hz, 2H), 2.56 (t, J = 6.2 Hz, 2H), 1.94 – 1.83 (m, 2H), 1.80 – 1.71 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 164.3, 160.6, 152.4, 150.0,

120.9, 118.7, 112.1, 28.0, 21.7, 21.3, 20.8 ppm. MS (m/z): EI [M] calcd for $C_{12}H_{11}NO_2$ [M]⁺: 201, Found 201 (100 %) 200 (84 %) 186 (63 %).

Ketone **19** was prepared according to the general procedure in 45 % yield. The reaction time is 70 min under 300 nm light. The product was isolated through silica gel flash chromatography (0.5 % ~ 2 % methanol-dichloromethane) as a white solid (21.2 mg): R_f = 0.44 (2 % methanol-dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.74 (d, *J* = 5.9 Hz, 1H), 7.30 (d, *J* = 5.9 Hz, 1H), 4.62 (t, *J* = 1.6 Hz, 2H), 4.01 (t, *J* = 5.6 Hz, 2H), 2.81 – 2.74 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 161.3, 160.7, 152.9, 149.8, 119.5, 119.0, 112.2, 63.6, 62.2, 27.5 ppm. MS (m/z): EI [M] calcd for C₁₁H₉NO₃ [M]⁺: 203, Found 203 (29 %) 175 (87 %) 174 (100 %).

Ketone **20** was prepared according to the general procedure in 71 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (4 % ~ 8 % ethyl acetate-petroleum ether) as a white solid

(42.6 mg): $R_f = 0.30$ (10 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 7.6 Hz, 1H), 8.14 (d, J = 8.7 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.72 – 7.58 (m, 3H), 2.81 (t, J = 6.0 Hz, 2H), 2.64 (t, J = 6.0 Hz, 2H), 1.97 – 1.89 (m, 2H), 1.84 – 1.77 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 163.0, 153.1, 135.5, 128.8, 128.0, 126.7, 124.4, 124.0, 122.1, 121.1, 119.8, 119.2, 28.0, 21.9, 21.6, 21.1 ppm. MS (m/z): EI [M] calcd for C₁₇H₁₄O₂ [M]⁺: 250, Found 250 (100 %) 249 (98 %) 235 (32 %).

Ketone **21** was prepared according to the general procedure in 93 % yield. The reaction time is 40 min under 300 nm light. The product was isolated through silica gel flash chromatography (10 % \sim 12 % ethyl acetate-petroleum ether) as a white solid

(56 mg): $R_{\rm f} = 0.29$ (20 % ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.76 – 7.60 (m, 3H), 4.72 (s, 2H), 4.07 (t, J = 5.5 Hz, 2H), 2.97 – 2.88 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 159.8,

153.4, 135.7, 129.1, 128.1, 127.0, 124.9, 123.8, 122.1, 120.6, 119.6, 118.4, 63.8, 62.7, 27.5 ppm. MS (m/z): EI [M] calcd for C₁₆H₁₂O₃ [M]⁺: 252, Found 252 (49 %) 224 (79 %) 223 (100 %).

Ketone 22 was prepared according to the general procedure in 56 % yield. The reaction time is 60 min under 300 nm light. The product was isolated through silica gel flash chromatography (30 % ~ 40 % dichloromethane-petroleum ether) as a white solid (33.6 mg): $R_f = 0.14$ (20 % ethyl acetate-petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 2.2 Hz, 2H), 7.95 (dd, J = 8.7, 2.2 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 2.70 (t, J = 6.1 Hz, 4H), 2.61 (t, J = 5.9 Hz, 4H), 1.94 – 1.83 (m, 4H), 1.82 – 1.74 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.6 (2 C), 164.0 (2 C), 155.5 (2 C), 136.0 (2 C), 131.9 (2 C), 123.7 (2 C), 123.3 (2 C), 118.6 (2 C), 118.4 (2 C), 28.2 (2 C), 21.9 (2 C), 21.6 (2 C), 21.1 (2 C) ppm. HRMS (M/Z): EI [M] calcd for C₂₆H₂₂O₄ [M]⁺: 398.1518, Found 398.1514.

Ketone **23** was prepared according to the general procedure in 73 % yield. The reaction time is 60 min under 300 nm light. The product was isolated through silica gel flash chromatography (10 % ~ 20 % ethyl acetate-dichloromethane) as a white solid (33.4 mg): $R_f = 0.36$ (20 % ethyl acetate-dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 2.3 Hz, 2H), 7.95 (dd, J = 8.7, 2.3 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 4.67 (s, 4H), 4.03 (t, J = 5.6 Hz, 4H), 2.80 (t, J = 5.5 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.4 (2 C), 160.9 (2 C), 155.6 (2 C), 136.2 (2 C), 132.2 (2 C), 123.7 (2 C), 123.5 (2 C), 118.6 (2 C), 117.2 (2 C), 63.7 (2 C), 62.6 (2 C), 27.6 (2 C) ppm. HRMS (m/z): EI [M] calcd for C₂₄H₁₈O₆ [M]⁺: 402.1103, Found 402.1102.

Large Scale experiments:

To a solution of substrate **1d** (502.0 mg, 2 mmol) in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.2 M) 10 mL in quartz tube was added TMP (338 μ L, 2 mmol, 1.0 equiv.). After all substrate dissolved, the solution was photolyzed at r.t. in a Rayonet chamber reactor at 300 nm for 5 h 20 min, then CH₃CN was evaporated, an saturated NH₄Cl solution was added, then extracted with EtOAc

(20 mL), the combined organic phase was washed with brine (15 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (1 % ~ 2 % acetone-petroleum ether). The product **3** were generated as a white solid in 81 % yield (325.2 mg).

Repeat the reaction of **1d** at a scale of 507.6 mg in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.2 M) 10 mL, after irradiation at 300 nm for 5 h 30 min, we isolated product **3** in 79 % yield (318.1 mg).

We then scaled up the reaction to a gram scale (1.29 g, 5.2 mmol) in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.5 M) 10 mL, after irradiation at 300 nm for 13 h 10 min, we isolated product **3** in 80 % yield (828.0 mg).

To a solution of substrate **S7** (330.4 mg, 1.2 mmol) in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.15 M) 8 mL in quartz tube was added TMP (208 μ L, 1.2 mmol, 1.0 equiv.). After all substrate dissolved, the solution was photolyzed at r.t. in a Rayonet chamber reactor at 300 nm for 3 h 20 min, then CH₃CN was evaporated, an saturated NH₄Cl solution was added, then extracted with EtOAc (20 mL), the combined organic phase was washed with brine (15 mL), dried over Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (3 % ~ 4 % ethyl acetate-petroleum ether). The product **8** were generated as a white solid in 90 % yield (241.2 mg). Repeat the reaction of **S7** at a scale of 322.5 mg in a co-solvent of acetonitrile/H₂O (9:1, v/v) (0.15 M) 8 mL, after irradiation at 300 nm for 3 h 30 min, we isolated product **8** in 86 % yield (225.5 mg).

Reference:

- [1] P. R. Giles, and C. M. Marson, *Tetrahedron Lett.*, 1990, **31**, 5227–5230.
- [2] P. R. Giles, and C. M. Marson, Tetrahedron, 1991, 47, 1303–1310.
- [3] S. Yamada, D. Morizono, and K. Yamamoto, *Tetrahedron Lett.*, 1992, **33**, 4329–4332.
- [4] A. V. Dubrovskiy and R. C. Larock, *Tetrahedron*, 2013, 69, 2789–2798.
- [5] P. A. Turner, E. M. Griffin, J. L. Whatmore, and M. Shipman, Org. Lett., 2011, 13, 1056–1059.

¹H and ¹³C NMR Spectra of the Synthetic Intermediates and Products:

S34

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

Chemical Formula: C₁₄H₁₂O₃ 400 MHz, CDCl₃

Chemical Formula: C₁₃H₁₂O₃ 400 MHz, CDCl₃

Chemical Formula: C₁₁H₉NO₃ 400 MHz, CDCl₃

8.45 8.44 7.95 7.1.95 7.1.49 7.25 7.25 7.25 7.25 7.25 7.25

22.55 25.55

Chemical Formula: C₂₆H₂₂O₄ 400 MHz, CDCl₃

