Room-Temperature Pd-Catalyzed C-H Chlorination by Weak Coordination: One-Pot Synthesis of 2-Chlorophenols with Excellent Regioselectivity

Xiuyun Sun ‡, Yonghui Sun ‡, Chao Zhang, and Yu Rao*

Department of Pharmacology and Pharmaceutical Sciences, School of life sciences and School of Medicine, Tsinghua University, Beijing 100084, China <u>yrao@mail.tsinghua.edu.cn</u>

SUPPORTING INFORMATION

Table of Contents	Page
Materials and Methods	S1
General procedure for synthesis of carbamates	S1
General procedure for palladium-catalyzed the synthesis of Ortho-halogenated carbamates	
	S1
Preliminary mechanism study	S2
References	S4
Data of products	S 4

Materials and Methods

All commercial materials (Alfa Aesar, Aladdin, J&K Chemical LTD.) were used without further purification. All solvents were analytical grade. The ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃ using TMS or solvent peak as a standard. All ¹³C-NMR spectra were recorded with complete proton decoupling. Low-resolution mass spectral analyses were performed with a Waters AQUITY UPLCTM/MS. All reactions were carried out in oven-dried sealed tube. Analytical TLC was performed on Yantai Chemical Industry Research Institute silica gel 60 F254 plates and flash column chromatography was performed on Qingdao Haiyang Chemical Co. Ltd silica gel 60 (200-300 mesh). The rotavapor was BUCHI's Rotavapor R-3. Benzoates were commercially available or easily synthesized from benzoic acid.

General procedure

I Synthesis of carbamates^[1]

A mixture of the phenol (1.0 equivl) and Me₂NCOCl (1.2 equiv) and K₂CO₃ (1.5 equiv) in MeCN was refluxed for 2h. The reaction mixture was cooled to room temperature and concentrated under a vacuum. The residue was dissolved in H₂O and extracted with dichloroethane. The organic fractions were combined and then washed successively with 1 M KOH and water. Finally the organic layer was separated, dried over anhydrous Na₂SO₄, and concentrated under a vacuum to yield the corresponding carbamates.

II Synthesis of halogenated carbamates

Substituted carbamates (1.0 equiv), NCS or NBS (1.1 equiv), $Pd(OAc)_2(0.05 - 0.10 equiv)$ and oxidant (1.2 equiv) were dissolved in commercial dichloroethane in a 15 mL sealed tube. Following that, TfOH (0.5~3.0 equiv) was added into the reaction solution. Then the reaction mixture was stirred at room temperature for 3-24 h. The reaction was monitored by TLC and LC-MS. After completion of the reaction, the mixture was cooled to room temperature and then saturated NaHCO₃ was added to quench the reaction. The reaction mixture was diluted with dichloromethane and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography to give corresponding halogenated products.

In some cases, NCS or NBS was 1.0 equiv and starting material was from 1.5 equiv to 2.0 equiv. For this reaction, the cooxidant could drive the reaction faster generally, but in some cases, the yields were higher than the conditions without cooxidants.

III Intermolecular Competition Experiments

To two separated sealed tubes, following the general procedure **I**, phenyl dimethylcarbamate (33 mg, 0.20 mmol) or 3-fluorophenyl dimethylcarbamate (37 mg, 0.20 mmol), Pd(OAc)₂ (2.3 mg, 0.010 mmol), NCS (30 mg, 0.22 mmol), Na₂S₂O₈ (57 mg, 0.22 mmol), TfOH (1.8 equiv, 32 uL) and DCE was added. The mixture was stirred at room temperature. After 10min, two reactions were quenched and added 4-nitrobenzaldyhyde as internal standard. Then, the mixture was washed once with saturated aqueous NaHCO₃ and extracted with dichloromethane and concentrated on rotavapor under reduced pressure. The conversion ratio was determined by crude ¹H-NMR. The ratio of (**2a**) to (**5a**) was 2.13.

IV Procedure for preliminary mechanistic study

1. Preparation of 2-deuterio phenyl dimethylcarbamate^[2,3,4].

In an oven-dried 100-mL round-bottomed flask, a solution of 2-bromophenol (1g, 5.78 mmol) and Et₂O (15 mL) were cooled to 0 $^{\circ}$ C. After 5 min, t-BuLi (1.6 M, 8 mL, 12.7 mmol) was added dropwise over 10 min. The mixture was stirred for 3.5 h at 0 $^{\circ}$ C. Then, D₂O (500 mg, 24.9 mmol) was added via syringe. The mixture was then warmed to room temperature slowly overnight. The cloudy, white mixture was diluted with H₂O (20 mL). The layers were separated. The organic layer was washed with H₂O (20 mL x 3), dried (Na₂SO₄), filtered and concentrated.

Following the general procedure I, the above compounds without further purification (5.78 mmol, 1.0 equiv), K_2CO_3 (1.2 g, 8.68 mmol), dimethylcarbamoyl chloride (6.4 mL, 6.94 mmol) and MeCN (15 mL) was added. The reaction mixture was refluxed for 4h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 10:1). Finally, compound 5b (670 mg) was isolated in 70% yield.

2. Intramolecular experiments

Following the general procedure **I**, to a 15 mL sealed tube, 2-deuterio phenyl dimethylcarbamate (33 mg, 0.20 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), NCS (30 mg, 0.22 mmol) and TfOH (1.5 equiv, 27 uL) were added and dissolved in 1.0 mL DCE. The mixture was stirred at room temperature for 10min. Then the mixture was quenched, washed once with saturated aqueous NaHCO₃, extracted by dichloromethane and concentrated on rotavapor under reduced pressure. The conversion ratio was determined by crude ¹H-NMR. ¹H-NMR showed k_H/k_D = 3.00.

V Gram Scale Reactions

1. 2-Chloro-5-methylphenyl dimethylcarbamate 10

To a 50 mL round bottom flask, following the general procedure **II**, m-tolyl dimethylcarbamate (1.15 g, 6.42 mmol), NCS (0.90 g, 6.74 mmol), $Pd(OAc)_2$ (15 mg, 1% mmol) and TfOH (1.0 equiv, 570 uL) were used. The reaction mixture was stirred at room temperature for 8h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 6:1). Finally, compound **10** (1.03 g) was isolated in 75% yield.

2. 2-Chloro-6-methylphenyl dimethylcarbamate 2

To a 100 mL round bottom flask, following the general procedure **II**, o-tolyl dimethylcarbamate (2.00 g, 11.17 mmol), NCS (1.57 g, 11.7 mmol), Pd(OAc)₂ (25 mg, 1% mmol) and TfOH (1.05 equiv, 1.08 mL) were used. The reaction mixture was stirred at room temperature for 8h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 6:1). Finally, compound **2** (1.14 g) was isolated in 48% yield. Starting material remained 43%. The yield based on recovered materials was 84%.

VI Deprotection of products in one pot.

After the completion of the first step, DCE was removed by rotavapor under reduced pressure directly. Then hydrazine hydride (1.0 mL) was added to the mixture as solvent and stirred at room temperature or 60° C until the reaction finished. When the deprotection was finished, the mixture was acidified by conc. HCl, washed by water and extracted by dichloromethane. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography to give corresponding deprotected products.

References

1. Alex, J.; Kenneth, M. N. J. Org. Chem. 2012, 77, 5600

2. John, J. T.; Irene, Q. E.; J. Org. Chem. 1984, 49(26), 5267

3. Cong, Y. W.; Isabel, P.; Frank, G. J. Am. Chem. Soc. 2009, 131, 4194

4. Danielle, M. S.; Srimoyee, D.; Mary, P. W. Org. Lett. 2011, 13(13), 3490

Date of products

2-Chloro-6-methylphenyl dimethylcarbamate 2

Following the general procedure **II**, o-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (1.5 equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 11h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **2** (32 mg) was isolated in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm)

7.25 (d, J = 8.76 Hz, 1H), 7.11 (d, J = 7.44 Hz, 1H), 7.04 (t, J = 7.72 Hz, 1H), 3.17 (s, 3H), 3.04 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.6, 146.5, 133.5, 129.4, 127.8, 127.7, 126.3, 37.1, 36.7, 16.7; LRMS (ESI) calcd for C₁₀H₁₃ClNO₂ [M+H]⁺: 214.06, found 214.14

2-chlorophenyl dimethylcarbamate 3

Following the general procedure **II**, phenyl dimethylcarbamate (33 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.5 equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 11h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **3** (30 mg) was isolated in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.39 (d, *J* = 7.96 Hz, 1H), 7.24-7.14 (m, 2H), 7.14 (t, *J* = 7.72 Hz, 1H), 3.13 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.0, 147.8, 130.2, 127.7, 127.2, 126.5, 124.3, 37.0, 36.7; LRMS (ESI) calcd for C₉H₁₁ClNO₂ [M+H]⁺: 200.05, found 200.14

2,6-Dichlorophenyl dimethylcarbamate 4

Following the general procedure **II**, 2-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and TfOH (2.0 equiv, 36 uL) were used. The reaction mixture was stirred at room temperature for 10h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **4** (25 mg) was isolated in 54% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.33 (d, *J* = 8.12 Hz, 2H), 7.09 (t, *J* = 8.20 Hz, 1H), 3.18 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 152.7, 144.8, 129.7, 128.6, 126.8, 37.2, 36.8; LRMS (ESI) calcd for C₉H₁₀CINO₂ [M+H]⁺: 234.01, found 234.05

2-Bromo-6-chlorophenyl dimethylcarbamate 5

Following the general procedure **II**, 2-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), NCS (29 mg, 0.22 mmol), $Pd(OAc)_2$ (4.6 mg, 0.02 mmol) and TfOH (1.8 equiv, 32 uL) were used. The reaction mixture was stirred at room temperature for 14h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 6:1). Finally, compound **5** (40 mg) was isolated in 72% yield.

Following the general procedure I, 2-chlorophenyl dimethylcarbamate (40 mg, 0.20

mmol), NBS (35 mg, 0.20 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol) and TfOH (2.5 equiv, 45 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 6:1). Finally, compound **5** (42 mg) was isolated in 75% yield.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49 (d, *J* = 8.08 Hz, 1H), 7.38 (d, *J* = 8.04 Hz, 1H), 7.03 (t, *J* = 8.00 Hz, 1H), 3.19 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 152.6, 145.8, 131.6, 129.5, 129.4, 127.3, 118.8, 37.2, 36.8; LRMS (ESI) calcd for C₉H₁₀BrClNO₂ [M+H]⁺: 277.96, found 278.05; HRMS (ESI) calcd for C₉H₁₀BrClNO₂ [M+H]⁺: 277.9578, found 277.9589

2-Chloro-5-methoxyphenyl dimethylcarbamate 6

Following the general procedure **II**, 3-methoxyphenyl dimethylcarbamate (39 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.2 equiv, 21 uL) were used. The reaction mixture was stirred at room temperature for 8h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **6** (30 mg) was isolated in 66% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.28 (d, J = 8.88 Hz, 1H), 6.78 (d, J = 2.72 Hz, 1H), 6.71 (dd, $J_1 = 2.76$ Hz, $J_2 = 8.84$ Hz, 1H), 3.78 (s, 3H), 3.14 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.0, 153.9, 130.1, 118.5, 112.8, 109.9, 55.8, 37.0, 36.7; LRMS (ESI) calcd for C₁₀H₁₃ClNO₃ [M+H]⁺: 230.0578, found 230.0590

2-Chloro-5-fluorophenyl dimethylcarbamate 7

Following the general procedure **II**, 3-fluorophenyl dimethylcarbamate (37 mg, 0.20 mmol), NCS (30 mg, 0.25 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (2.5 equiv, 44 uL) were used. The reaction mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **7** (23 mg) was isolated in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.36 (dd, $J_1 = 5.72$ Hz, $J_2 = 8.80$ Hz, 1H), 7.02 (dd, $J_1 = 2.68$ Hz, $J_2 = 8.88$ Hz, 1H), 6.90 (t*d, $J_1 = 2.72$ Hz, $J_2 = 8.12$ Hz, 1H), 3.14 (s, 3H), 3.03 (s, 3H); ¹⁹F-NMR (400 MHz, CDCl₃) -112.99 (s, 1F); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 161.3 (d, $J_{C-F} = 246$ Hz, 1C), 153.4, 148.4 (d, $J_{C-F} = 11$ Hz, 1C), 130.5 (d, $J_{C-F} = 9$ Hz,

1C), 122.5 (d, $J_{C-F} = 4$ Hz, 1C), 113.6 (d, $J_{C-F} = 22$ Hz, 1C), 112.3 (d, $J_{C-F} = 25$ Hz, 1C), 37.0, 36.7; LRMS (ESI) calcd for C₉H₁₀ClFNO₂ [M+H]⁺: 218.04, found 218.10

5-Bromo-2-chlorophenyl dimethylcarbamate 8

Following the general procedure **II**, 3-bromophenyl dimethylcarbamate (40 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and TfOH (1.85equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 13h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **8** (38 mg) was isolated in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (s, 1H), 7.27 (s, 2H), 3.13 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.4, 148.3, 131.0, 129.6, 127.6, 126.5, 120.2, 37.0, 36.7; LRMS (ESI) calcd for C₉H₁₀BrClNO₂ [M+H]⁺: 277.96, found 278.01

2-Chloro-5-iodophenyl dimethylcarbamate 9

Following the general procedure **II**, 3-iodophenyl dimethylcarbamate (58 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 24h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **9** (44 mg) was isolated in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.56 (d, *J* = 1.36 Hz, 1H), 7.46 (d, *J* = 8.40 Hz, 1H), 7.12 (d, *J* = 8.44 Hz, 1H), 3.12 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.4, 148.2, 135.6, 133.3, 131.4, 127.6, 90.7, 37.0, 36.7; LRMS (ESI) calcd for C₉H₁₀CIINO₂ [M+H]⁺: 325.94, found 326.04

2-Chloro-5-methylphenyl dimethylcarbamate 10

Following the general procedure **II**, m-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally,

compound **10** (37 mg) was isolated in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 (d, J = 8.32 Hz, 1H), 7.02 (s, 1H), 6.95 (d, J = 8.08 Hz, 1H), 3.14 (s, 3H), 3.02 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.1, 147.4, 138.0, 129.7, 124.8, 124.0, 36.9, 36.6, 21.0; LRMS (ESI) calcd for C₁₀H₁₃ClNO₂ [M+H]⁺: 214.06, found 214.16

2,5-Dichlorophenyl dimethylcarbamate 11

Following the general procedure **II**, 3-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.8 equiv, 32 uL) were used. The reaction mixture was stirred at room temperature for 5h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **11** (34 mg) was isolated in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.26 (d, *J* = 8.56 Hz, 1H), 7.19 (s, 1H), 7.06 (d, *J* = 8.56 Hz, 1H), 3.06 (s, 3H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.4, 148.2, 132.9, 130.7, 126.7, 125.8, 124.8, 37.0, 36.7; LRMS (ESI) calcd for C₉H₁₀Cl₂NO₂ [M+H]⁺: 234.01, found 234.08

Methyl 4-chloro-3-((dimethylcarbamoyl)oxy)benzoate 12

Following the general procedure **II**, methyl 3-((dimethylcarbamoyl)oxy)benzoate (45 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and TfOH (2.5 equiv, 45 uL) were used. The reaction mixture was stirred at room temperature for 5h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **12** (29 mg) was isolated in 56% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88 (s, 1H), 7.83 (d, J = 8.36 Hz, 1H), 7.48 (d, J = 8.32 Hz), 3.90 (s, 3H), 3.16 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.8, 153.6, 147.8, 132.6, 130.2, 130.0, 127.6, 125.5, 52.5, 37.1, 36.7; LRMS (ESI) calcd for C₁₁H₁₃ClNO₄ [M+H]⁺: 258.0528, found 258.0540

2-Chloro-5-(trifluoromethyl)phenyl dimethylcarbamate 13

Following the general procedure **II**, 3-(trifluoromethyl)phenyl dimethylcarbamate (47 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH

(3.0 equiv, 53 uL) were used. The reaction mixture was stirred at room temperature for 5h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **13** (12 mg) was isolated in 23% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.54 (d, *J* = 8.52 Hz, 1H), 7.52 (s, 1H), 7.41 (d, *J* = 7.80 Hz), 3.16 (s, 3H), 3.04 (s, 3H); ¹⁹F-NMR (400 MHz, CDCl₃) -62.60 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.3, 148.1, 130.9 (q, *J*_{C-F} = 88 Hz, 1C), 130.0 (q, *J*_{C-F} = 40 Hz, 1C), 130.8, 123.4 (q, *J*_{C-F} = 271 Hz, 1C), 123.3 (q, *J*_{C-F} = 4 Hz, 1C), 121.7 (q, *J*_{C-F} = 4 Hz, 1C), 37.1, 36.7; LRMS (ESI) calcd for C₁₀H₁₀ClF₃NO₂ [M+H]⁺: 268.03, found 268.11; HRMS (ESI) calcd for C₁₀H₁₀ClF₃NO₂ [M+H]⁺: 268.0360

2-Chloro-4-methylphenyl dimethylcarbamate 14

Following the general procedure **II**, p-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.5 equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **14** (35 mg) was isolated in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.22 (s, 1H), 7.08 (d, J = 8.00 Hz, 1H), 7.04 (d, J = 8.28 Hz), 3.14 (s, 3H), 3.02 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.2, 145.5, 136.6, 130.5, 128.3, 126.6, 123.8, 37.0, 36.6, 20.8; LRMS (ESI) calcd for C₁₀H₁₃ClNO₂ [M+H]⁺: 214.06, found 214.14

2-Chloro-4-fluorophenyl dimethylcarbamate 15

Following the general procedure **II**, 4-fluorophenyl dimethylcarbamate (37 mg, 0.20 mmol), NCS (30 mg, 0.25 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), N-Fluoropyridium trifluorormethylsulfonate (66 mg, 0.24 mmol) and TfOH (2.0 equiv, 36 uL) were used. The reaction mixture was stirred at room temperature for 5h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **15** (31 mg) was isolated in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.19-7.14 (m, 2H), 6.99-6.95 (m, 1H), 3.14 (s, 3H), 3.02 (s, 3H); ¹⁹F-NMR (400 MHz, CDCl₃) -115.34 (s, 1F); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 159.7 (d, *J*_{C-F} = 246 Hz, 1C), 153.9, 144.1 (d, *J*_{C-F} = 3 Hz, 1C), 128.0 (d, *J*_{C-F} = 21 Hz, 1C), 125.0 (d, *J*_{C-F} = 9 Hz, 1C), 117.3 (d, *J*_{C-F} = 26 Hz, 1C), 114.6 (d, *J*_{C-F} = 22 Hz, 1C), 37.0, 36.6; LRMS (ESI) calcd for C₉H₁₀ClFNO₂ [M+H]⁺: 218.0379, found 218.0391;

Methyl 3-chloro-4-((dimethylcarbamoyl)oxy)benzoate 16

Following the general procedure **II**, methyl 4-((dimethylcarbamoyl)oxy)benzoate (45 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (2.0 equiv, 35 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **16** (33 mg) was isolated in 63% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, *J* = 1.96 Hz, 1H), 7.93 (dd, *J*₁ = 2.04 Hz, *J*₂ = 8.48 Hz, 1H), 7.31 (d, *J* = 8.48 Hz, 1H), 3.90 (s, 3H), 3.15 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.6, 153.2, 151.5, 131.6, 129.2, 128.5, 127.4, 124.1, 52.5, 37.0, 36.7; LRMS (ESI) calcd for C₁₁H₁₃ClNO₄ [M+H]⁺: 258.05, found 258.14

4-(Tert-butyl)-2-chlorophenyl dimethylcarbamate 17

Following the general procedure **II**, 4-(tert-butyl)phenyl dimethylcarbamate (45 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (1.0 equiv, 18 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **17** (48 mg) was isolated in 93% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (d, *J* = 2.20 Hz, 1H), 7.25 (dd, *J*₁ = 2.24 Hz, *J*₂ = 8.48 Hz, 1H), 7.12 (d, *J* = 8.52 Hz, 1H), 3.14 (s, 3H), 3.02 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.2, 149.9, 145.3, 127.2, 126.4, 124.8, 123.5, 36.9, 36.6, 31.4; LRMS (ESI) calcd for C₁₃H₁₉CINO₂ [M+H]⁺: 256.11, found 256.20

3-Chloro-[1,1'-biphenyl]-4-yl dimethylcarbamate 18

Following the general procedure **II**, [1,1'-biphenyl]-4-yl dimethylcarbamate (73 mg, 0.30 mmol), NCS (27 mg, 0.20 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and TfOH (1.8 equiv, 32 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **18** (44 mg) was isolated in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.63 (d, *J* = 2.08 Hz, 1H), 7.53 (d, *J* = 8.76 Hz, 2H), 7.47-7.41 (m, 3H), 7.35 (t, *J* = 7.02 Hz, 1H), 7.28 (d, *J*

= 8.40 Hz, 1H), 3.17 (s, 3H), 3.05 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ (ppm) 154.0, 147.1, 140.3, 139.5, 129.0, 128.8, 127.9, 127.2, 126.4, 124.4, 37.0, 36.7; LRMS (ESI) calcd for C₁₅H₁₅ClNO₂ [M+H]⁺: 276.08, found 276.16

2-Chloro-4,5-dimethylphenyl dimethylcarbamate 19

Following the general procedure **II**, 3,4-dimethylphenyl dimethylcarbamate (39 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.6 equiv, 11 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **19** (44 mg) was isolated in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.16 (s, 1H), 6.97 (s, 1H), 3.13 (s, 3H), 3.02 (s, 3H), 2.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.3, 145.3, 136.4, 135.2, 130.7, 125.0, 123.6, 37.0, 36.6, 19.5, 19.2; LRMS (ESI) calcd for C₁₁H₁₅ClNO₂ [M+H]⁺: 228.08, found 228.14

3-Chloronaphthalen-2-yl dimethylcarbamate 20

Following the general procedure **II**, naphthalen-2-yl dimethylcarbamate (43 mg, 0.20 mmol), NCS (14 mg, 0.10 mmol), Pd(OAc)₂ (1.2 mg, 0.005 mmol), Na₂S₂O₈(28 mg, 0.12 mmol) and TfOH (0.8 equiv, 10 uL) were used. The reaction mixture was stirred at room temperature for 4.5h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **20** 12 mg) was isolated in 51% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87-7.84 (m, 3H), 7.80 (s, 1H), 7.53-7.45 (m, 2H), 2.78 (s, 3H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.3, 147.4, 133.5, 131.0, 130.8, 130.5, 127.8, 127.5, 126.4, 125.6, 119.2, 36.6, 36.1; LRMS (ESI) calcd for C₁₃H₁₃ClNO₂ [M+H]⁺: 250.06, found 250.12

8-Chloronaphthalen-1-yl dimethylcarbamate 21

Following the general procedure **II**, naphthalen-1-yl dimethylcarbamate (21 mg, 0.10 mmol), NCS (15 mg, 0.11 mmol), $Pd(OAc)_2$ (1.2 mg, 0.005 mmol) and TfOH (1.2 equiv, 11 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column

chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **21** (25 mg) was isolated in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.26 (d, *J* = 8.32 Hz, 1H), 7.95 (d, *J* = 8.12 Hz, 1H), 7.64-7.54 (m, 3H), 7.22 (d, *J* = 8.12 Hz, 1H), 3.27 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.7, 146.4, 131.7, 128.8, 128.6, 127.5, 127.1, 125.8, 125.0, 121.9, 118.4, 37.1, 36.8; LRMS (ESI) calcd for C₁₃H₁₃ClNO₂ [M+H]⁺: 250.06, found 250.15

6-Chlorobenzo[d][1,3]dioxol-5-yl dimethylcarbamate 22

Following the general procedure **II**, benzo[d][1,3]dioxol-5-yl dimethylcarbamate (42 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 20h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **22** (41 mg) was isolated in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.85 (s, 1H), 6.71 (s, 1H), 5.98 (s, 2H), 3.12 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.1, 146.8, 145.6, 141.9, 118.8, 109.3, 105.5, 102.3, 37.0, 36.6; LRMS (ESI) calcd for C₁₀H₁₁ClNO₄ [M+H]⁺: 244.0371, found 244.0385

(8R,9S,13S,14S)-2-chloro-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclope nta[a]phenanthren-3-yl dimethylcarbamate 23

Following the general procedure **II**, estrone dimethylcarbamate (68 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Toluene: Ethyl acetate = 6:1). Finally, compound **23** (35 mg) was isolated in 47% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.30 (s, 1H), 6.92 (s, 1H), 3.13 (s, 3H), 3.02 (s, 3H), 2.88-2.85 (m, 1H), 2.54-2.47 (m, 1H), 2.36-2.32 (m, 1H), 2.28-1.94 (m, 6H), 1.65-1.39 (m, 7H), 0.90-0.87 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 154.3, 145.4, 138.6, 136.5, 127.1, 124.1, 124.0, 50.5, 48.0, 44.1, 37.8, 37.0, 36.6, 36.0, 31.6, 29.0, 26.3, 25.8, 21.7, 13.9; LRMS (ESI) calcd for C₂₁H₂₇ClNO₃ [M+H]⁺: 376.17, found 376.29; HRMS (ESI) calcd for C₂₁H₂₇ClNO₃ [M+H]⁺: 376.1674, found 376.1694

2-Bromo-4-methylphenyl dimethylcarbamate 24

Following the general procedure **II**, p-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.5 equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 11h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 8:1). Finally, compound **24** (37 mg) was isolated in 71% yield. Without cooxidant 65%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.39 (s, 1H), 7.08 (s, 2H), 3.15 (s, 3H), 3.02 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.1, 146.6, 136.9, 133.5, 129.1, 123.8, 116.0, 37.0, 36.7, 20.7; LRMS (ESI) calcd for C₁₀H₁₃BrNO₂ [M+H]⁺: 258.01, found 258.08

2-Bromo-6-methylphenyl dimethylcarbamate 25

Following the general procedure **II**, o-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NBS (39 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈ (57 mg, 0.24 mmol) and TfOH (1.5 equiv, 27 uL) were used. The reaction mixture was stirred at room temperature for 20h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **25** (41 mg) was isolated in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (d, *J* = 7.92 Hz, 1H), 7.15 (d, *J* = 7.52 Hz, 1H), 6.98 (t, *J* = 7.76 Hz, 1H), 3.18 (s, 3H), 3.04 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.4, 147.6, 133.6, 130.7, 130.1, 126.7, 117.3, 37.0, 36.7, 16.9; LRMS (ESI) calcd for C₁₀H₁₃BrNO₂ [M+H]⁺: 258.01, found 258.13; HRMS (ESI) calcd for C₁₀H₁₃BrNO₂ [M+H]⁺: 258.0124, found 258.0139

2-Bromo-5-methylphenyl dimethylcarbamate 26

Following the general procedure **II**, m-tolyl dimethylcarbamate (36 mg, 0.20 mmol), NBS (39 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 4h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **26** (42 mg) was isolated in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm)

7.43 (d, J = 8.16 Hz, 1H), 7.03 (s, 1H), 6.89 (d, J = 8.12 Hz, 1H), 3.15 (s, 3H), 3.03 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.3, 148.6, 138.8, 132.7, 127.7, 124.9, 113.0, 37.0, 36.7, 21.1; LRMS (ESI) calcd for C₁₀H₁₃BrNO₂ [M+H]⁺: 258.01, found 258.12

2-Bromo-4-(tert-butyl)phenyl dimethylcarbamate 27

Following the general procedure **II**, 4-(tert-butyl)phenyl dimethylcarbamate (45 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈(57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 9:1). Finally, compound **27** (52 mg) was isolated in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.56 (s, 1H), 7.31 (d, *J* = 8.48 Hz, 1H), 7.12 (d, *J* = 8.48 Hz, 1H), 3.15 (s, 3H), 3.03 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.1, 150.2, 146.5, 130.2, 125.5, 123.5, 115.9, 37.0, 36.7, 34.7, 31.4; LRMS (ESI) calcd for C₁₃H₁₉BrNO₂ [M+H]⁺: 300.06, found 300.18

1-Bromonaphthalen-2-yl dimethylcarbamate 28

Following the general procedure **II**, naphthalen-2-yl dimethylcarbamate (43 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), Na₂S₂O₈ (57 mg, 0.24 mmol) and TfOH (0.8 equiv, 14 uL) were used. The reaction mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 6:1). Finally, compound **28** (34 mg) was isolated in 59% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.24 (d, *J* = 8.48 Hz, 1H), 7.81 (t, *J* = 7.20 Hz, 2H), 7.56 (t, *J* = 7.32 Hz, 1H), 7.48 (t, *J* = 7.48 Hz, 1H), 7.35 (d, *J* = 8.80 Hz, 1H), 3.22 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.1, 147.1, 132.8, 132.4, 128.6, 128.3, 127.7, 127.0, 126.2, 122.7, 115.2, 37.0, 36.8; LRMS (ESI) calcd for C₁₃H₁₃BrNO₂ [M+H]⁺: 294.0124, found 294.0138

2,6-Dibromophenyl dimethylcarbamate 29

Following the general procedure **II**, 2-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol) and TfOH (1.8 equiv, 32 uL) were used. The reaction mixture was stirred at room temperature for 6h.

After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 6:1). Finally, compound **29** (40 mg) was isolated in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.50 (d, *J* = 8.08 Hz, 2H), 6.94 (d, *J* = 8.04 Hz, 1H), 3.17 (s, 3H), 3.03 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 152.5, 146.8, 132.4, 127.8, 118.6, 37.2, 36.8; LRMS (ESI) calcd for C₉H₁₀Br₂NO₂ [M+H]⁺: 321.91, found 322.01

Methyl 4-bromo-3-((dimethylcarbamoyl)oxy)benzoate 30

Following the general procedure **II**, methyl 3-((dimethylcarbamoyl)oxy)benzoate (44 mg, 0.20 mmol), NBS (35 mg, 0.20 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and TfOH (2.5 equiv, 45 uL) were used. The reaction mixture was stirred at room temperature for 6h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 6:1). Finally, compound **30** (43 mg) was isolated in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (s, 1H), 7.74 (dd, $J_1 = 8.32$ Hz, $J_2 = 1.00$ Hz, 1H), 7.64 (d, J = 8.32 Hz, 1H), 3.88 (s, 3H), 3.16 (s, 3H), 3.03 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.8, 153.5, 149.0, 133.3, 130.7, 127.7, 125.3, 122.3, 52.5, 37.0, 36.7; LRMS (ESI) calcd for C₁₁H₁₃BrNO₄ [M+H]⁺: 302.0022, found 302.0037

2,6-Dichlorophenol 31

Following the general procedure **VI**, 2-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (2.0 equiv, 36 uL) were used. The reaction mixture was stirred at room temperature for 6h. Then DCE was removed. NH₂NH₂.H₂O (1.0 mL) was added to the reaction mixture and the mixture was stirred at 60°C for 2h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 30:1). Finally, compound **31** (16 mg) was isolated in 50% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.26 (d, *J* = 8.12 Hz, 2H), 6.82 (t, *J* = 8.04 Hz, 1H), 5.87 (bs, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 148.0, 128.4, 121.3

2-Bromo-6-chlorophenol 32

Following the general procedure VI, 2-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), NCS (30 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (1.8

equiv, 32 uL) were used. The reaction mixture was stirred at room temperature for 6h. Then DCE was removed. $NH_2NH_2.H_2O$ (1.0 mL) was added to the reaction mixture and the mixture was stirred at room temperature for 12h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 30:1). Finally, compound **32** (23 mg) was isolated in 56% yield.

Following the general procedure VI, 2-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (2.5 equiv, 45 uL) were used. The reaction mixture was stirred at room temperature for 5h. Then DCE was removed. NH₂NH₂.H₂O (1.0 mL) was added to the reaction mixture and the mixture was stirred at 60°C for 2h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 30:1). Finally, compound **35** (21 mg) was isolated in 51% yield.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (d, J = 8.08 Hz, 1H), 7.29 (d, J = 8.04 Hz, 1H), 6.76 (t, J = 8.04 Hz, 1H), 5.88 (bs, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 148.83, 131.5, 129.1, 122.0, 121.0, 110.4; LRMS (ESI) calcd for C₆H₃BrClO [M-H]⁻: 204.91, found 204.88

2,6-Dibromophenol 33

Following the general procedure **VI**, 2-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), NBS (40 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (2.5 equiv, 45 uL) were used. The reaction mixture was stirred at room temperature for 5h. Then DCE was removed. NH₂NH₂.H₂O (1.0 mL) was added to the reaction mixture and the mixture was stirred at 60°C for 2h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petrom ether: Ethyl acetate = 30:1). Finally, compound **33** (40 mg) was isolated in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.44 (d, *J* = 8.00 Hz, 2H), 6.70 (t, *J* = 8.00 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 149.6, 132.2, 122.6, 110.1; LRMS (ESI) calcd for C₆H₃Br₂O [M-H]⁻: 248.86, found 248.86

2-Deuterio-phenyl dimethylcarbamate

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37-7.34 (m, 2H), 7.19 (t, J = 7.40 Hz, 1H), 7.11 (d, J = 8.40 Hz, 1H), 3.10 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.0, 151.6, 129.3, 129.2, 125.2, 121.8, 121.6 ($J_{C-D} = 24.5$ Hz), 36.8, 36.5; LRMS (ESI) calcd for C₉H₁₁DNO₂ [M+H]⁺: 167.09, found 167.12

				ĺ													
and star to and	and an arrithmetic at our state, we				a maalatuunkan suu kana	an takalen yan tanan ta		news tout - structure days		- facility of a state of the st	allow a stability of a state of a			ne a su thi suanda at dasa na si suan	una da ante de la composición de la com	he states of the failed of states	entra de comentación a come de las
and an	an a fearairt a fair a fair an	سيراهم ويتركبوني يريدها والرح المراي	a di sana ana ang ang ang ang ang ang ang ang	معالاته بواجعا الكالية حمل البان معالياتهم	anna dhadi, sana an sha sana dhadi sa sa farai	a kanan da sa kana kana kana sa sa sa	। स्वतः क्रम्याः व्यक्तिः क्रम्याः स्वति क्रम्यु क्रिये क्राम्यु विद्युव्याः स्वति विद्यु	يتطعيس وإيميا يلامصالات فيتريه	an séries an an sin sin a s	a to boot the state of the state of the state	in an general general general de la fait de la ser	an a	an allaha malanan di fara	an al an	a na shi a shi ka sa shi na sa shi na sa	andana mila da da da da kana da da da kana da k	ana (amita atan da ta da ina da anga atan da ina da atan da at
1	160	150	140	130	120	110	100	90	 80	70	 60	 50	40	30	20	10	

-112.99

.....

																			1
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
				1.00									3.23						

CI

0

Ň.

37.03

200

-												
				1					1			
~	、 、	0.0	4.0	6.0	0.0	100	100	1 4 0	1 6 0	100	0.0.0	
()	-20	-4()	-60	-80	- 1 () ()	- 120	- 40	- 60	-180	-200	maa
	, ,	D 0	10	00	00	700	100	± 10	700	700	000	La L

.....L 10 -10 -20 -30 -40-50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 0 -60 ppm

.

-115.34

												[[
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

(*)	(*)	(*)	0	$\circ \circ$	0			
0	9	00	\sim	50	0	രഗ	0 0	
•	•	•	•	• •	•	4 1 0	のて	0
4	00	00	\sim	4 7	\sim		• •	•
S	4	\sim	\sim	$\sim \sim$	\leftarrow	0 1 1	00	-
1		-	\neg	-	\leftarrow		m m	\sim
							\bigvee	

Br O N O 27		

77.47 77.16 76.84 36.95 36.66 34.66 31.39

 $\langle \rangle \rangle$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2014

-154.07

— 150.15 — 146.48

-130.17

.125.53 123.50

-115.94

· 1 - - - ------Т Т · · · · T Т Т Т Т Т 3.5 10.0 9.5 8.5 7.5 7.0 5.5 5.0 4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.0 ppm 9.0 8.0 6.5 6.0 0.5 3.02 JI 1.98 1.00

..... ____ 210 200 190 180 140 90 80 70 60 50 40 30 20 10 -10 ppm 170 160 150 130 120 110 100 0

....

....

......

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

 			I															I	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

	J	

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10 ppr	m

.....

