Supporting Information

Enantioselective Black Rearrangement Catalyzed by Chiral Bicyclic Imidazole

Mingli Wang,^a Zhenfeng Zhang,^{*b} Shan Liu,^a Fang Xie^a and Wanbin Zhang^{*a,b}

^aSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

^bSchool of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China. wanbin@sjtu.edu.cn

Table of Contents

1. General Details	S2
2. Preparation of Catalysts	S3
3. Preparation of Substrates ¹⁻³	S6
4. Catalytic Enantioselective Rearrangements	\$13
5. Reference	
6. NMR Spectra	S23
7. HPLC Charts	S107

1. General Details

All air- and moisture-sensitive manipulations were carried out under a nitrogen atmosphere. The solvents used in the reactions were distilled under nitrogen after dehydration. All other chemicals and solvents were purchased from commercial company and used as received. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 100 MHz, ¹³C; 162 MHz, ³¹P; 376 MHz, ¹⁹F) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvents or the internal standard tetramethylsilane. Infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR. Mass spectrometery analysis was carried out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Melting points were measured with SGW X-4 micro melting point apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. Chiral HPLC analyses were performed using a Shimadzu LC-10Avp system using isopropanol-hexane mobile phase and UV detection.

2. Preparation of Catalysts

(R)-6,7-Dihydro-5H-pyrrolo[1,2-a]imidazol-7-yl acetate ((R)-2a)

To a dried 25 mL two-necked bottle was added (*R*)-1 (41.5 mg, 0.33 mmol), Et₃N (0.10 mL, 0.72 mmol, 2.2 eq) and DCM (3 mL). AcCl (0.04 mL, 0.57 mmol, 1.7 eq) was added dropwise at rt and stirred for 2 h. The reaction mixture was extracted by DCM (15 mL × 3) and the combined organic phase was dried over Na₂SO₄. After filtration and removal of DCM, the residue was purified by chromatography (EtOAc/MeOH = 70/1, Rf = 0.38) to give (*R*)-2a (48.5 mg, Yield = 88%) as pale yellow oil. $[\alpha]_D^{20} = 39$ (*c* 0.129, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 7.19 (s, 1H, Imi-*H*), 6.97 (s, 1H, Imi-*H*), 5.99 (dd, *J* = 7.2 Hz, 2.4 Hz, 1H, OC*H*), 4.22-4.11 (m, 1H, NC*H*₂), 4.05-3.95 (m, 1H, NC*H*₂), 3.14-3.01 (m, 1H, C*H*₂), 2.61-2.49 (m, 1H, C*H*₂), 2.11 (s, 3H, C*H*₃). ¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 150.5, 134.0, 115.2, 66.6, 42.4, 34.3, 20.5. IR (thin film): v 3433, 2974, 1736, 1523, 1372, 1238 cm⁻¹. HRMS (ESI): calcd. for C₈H₁₁N₂O₂ (M+H)⁺ 167.0821, found 167.0832.

(R)-6,7-Dihydro-5H-pyrrolo[1,2-a]imidazol-7-yl isobutyrate ((R)-2b)

To a dried 25 mL two-necked bottle was added (*R*)-1 (80.0 mg, 0.64 mmol), Et₃N (0.13 mL, 0.97 mmol, 1.5 eq) and DCM (3 mL). (*i*PrCO)₂O (0.128 mL, 0.77 mmol, 1.2 eq) was added dropwise at rt and stirred for 2 h. The reaction mixture was extracted with DCM (15 mL × 3) and the combined organic phase was dried over Na₂SO₄. After filtration and removal of DCM, the residue was purified by chromatography (EtOAc/ Petroleum ether = 10/1, Rf = 0.38) to give (*R*)-2b (123.1 mg, Yield = 99%) as pale yellow oil. $[a]_D^{20} = 40$ (*c* 0.381, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 7.19 (s, 1H, Imi-*H*), 6.96 (s, 1H, Imi-*H*), 5.98 (dd, *J* = 8.0 Hz, 2.4 Hz, 1H, OC*H*), 4.19-4.12 (m, 1H, NC*H*₂), 4.02-3.96 (m, 1H, NC*H*₂), 3.13-3.04 (m, 1H, C*H*(CH₃)₂), 2.61-2.58 (m, 1H, C*H*₂), 2.54-2.47 (m, 1H, C*H*₂), 1.18 (d, J = 1.6 Hz, CH(C*H*₃)₂), 1.16 (d, J = 2.4 Hz, CH(C*H*₃)₂). ¹³C NMR (CDCl₃, 100 MHz): δ 176.8, 151.4, 135.0, 115.7, 67.1, 43.1, 35.2, 34.0, 19.2, 18.9. IR (thin film): v 3421, 2976, 1734, 1527, 1388, 1270 cm⁻¹. HRMS (ESI): calcd. for C₈H₁₅N₂O₂ [M+H]⁺ 195.1134, found 195.1139.

COPh R)-2c

(*R*)-6,7-Dihydro-5*H*-pyrrolo[1,2-*a*]imidazol-7-yl benzoate ((*R*)-2c)

To a dried 25 mL two-necked bottle was added (*R*)-1 (80.0 mg, 0.64 mmol), Et₃N (0.13 mL, 0.97 mmol, 1.5 eq) and DCM (3 mL). BzCl (0.11 mL, 0.96 mmol, 1.5 eq) was added dropwise at rt and stirred for 2 h. The reaction mixture was extracted with DCM (15 mL × 3) and the combined organic phase was dried over Na₂SO₄. After filtration and removal of DCM, the residue was purified by chromatography (EtOAc/Petroleum ether = 10/1, Rf = 0.34) to give (*R*)-2c (144.6 mg, Yield = 99%) as pale yellow oil. $[\alpha]_D^{20} = 11$ (*c* 0.243, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 8.05-8.02 (m, 2H, Ar-*H*), 7.57-7.53 (m, 1H, Ar-*H*), 7.43-7.39 (m, 2H, Ar-*H*), 7.23 (s, 1H, Imi-*H*), 7.00 (s, 1H, Imi-*H*), 6.22 (dd, *J* = 5.6 Hz, 2.8 Hz, 1H, OC*H*), 4.26-4.19 (m, 1H, NC*H*₂), 4.08-4.02 (m, 1H, NC*H*₂), 3.24-3.16 (m, 1H, C*H*₂), 2.74-2.67 (m, 1H, C*H*₂). ¹³C NMR (CDCl₃, 100 MHz): δ 166.3, 151.3, 135.1, 133.4, 130.1, 129.8, 128.5, 115.8, 68.0, 43.2, 35.3. IR (thin film): v 2948, 1717, 1525, 1451, 1343, 1269 cm⁻¹. HRMS (ESI): calcd. for C₁₃H₁₃N₂O₂ [M+H]⁺ 229.0977, found 229.0975.

(R)-6,7-Dihydro-5H-pyrrolo[1,2-a]imidazol-7-yl 4-(trifluoromethyl)benzoate ((R)-2d)

To a dried 25 mL two-necked bottle was added (*R*)-1 (62.1 mg, 0.50 mmol), Et₃N (84.0 μ L, 0.60 mmol, 1.2 eq) and DCM (5 mL). 4-(trifluoromethyl)benzoyl chloride (89.0 μ L, 0.60 mmol, 1.2 eq) was added dropwise at rt and stirred for 2 h. The reaction mixture was extracted with DCM (15 mL × 3) and the combined organic phase was dried over Na₂SO₄. After filtration and removal of DCM, the residue was purified by chromatography (EtOAc/Petroleum ether = 10/1, Rf = 0.35) to give (*R*)-2d (131.8 mg, Yield = 89%) as pale yellow oil. [α]_D²⁰ = 10 (*c* 0.262, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 8.18-8.13 (m, 2H, Ar-*H*), 7.70-7.66 (m, 2H, Ar-*H*), 7.25 (d, *J* = 0.8 Hz, 1H, Imi-*H*), 7.03 (d, *J* = 0.8 Hz, 1H, Imi-*H*), 6.26 (dd, *J* = 7.2 Hz, 2.4 Hz, 1H, OC*H*), 4.30-4.21 (m, 1H, NC*H*₂), 4.12-4.05 (m, 1H, NC*H*₂), 3.28-3.17 (m, 1H, C*H*₂), 2.77-2.68 (m, 1H, C*H*₂). ¹³C NMR (CDCl₃, 100 MHz): δ 165.0, 150.9, 135.3, 134.9 (q, *J* = 32.5 Hz), 133.1, 130.5, 125.5 (q, *J* = 3.9 Hz), 123.8 (q, *J* = 270.9 Hz), 115.9, 68.5, 43.2, 35.2. ¹⁹F NMR (CDCl₃, 376 MHz): 10.4. IR (thin film): v 2948, 1717, 1525, 1451, 1343, 1269 cm⁻¹. HRMS (ESI): calcd. for C₁₄H₁₂F₃N₂O₂ [M+H]⁺ 297.0851, found 297.0830.

(*R*)-6,7-Dihydro-5*H*-pyrrolo[1,2-*a*]imidazol-7-yl 4-methoxybenzoate ((*R*)-2e)

To a dried 25 mL two-necked bottle was added (*R*)-1 (62.1 mg, 0.50 mmol), Et₃N (84.0 μ L, 0.60 mmol, 1.2 eq) and DCM (5 mL). 4-methoxybenzoyl chloride (89.0 μ L, 0.60 mmol, 1.2 eq) was added dropwise at rt and stirred for 2 h. The reaction mixture was extracted with DCM (15 mL × 3) and the combined organic phase was dried over Na₂SO₄. After filtration and removal of DCM, the residue was purified by chromatography (EtOAc/Petroleum ether = 10/1, Rf = 0.35) to give (*R*)-2e (118.8 mg, Yield = 92%) as pale yellow oil. [α]_D²⁰ = -5 (*c* 0.225, MeOH). ¹H NMR (CDCl₃, 400 MHz): δ 8.01-7.96 (m, 2H, Ar-*H*), 7.22 (s, 1H, Imi-*H*), 7.00 (d, *J* = 1.2 Hz, 1H, Imi-*H*), 6.90-6.86 (m, 2H, Ar-*H*), 6.19 (dd, *J* = 7.2 Hz, 2.4 Hz, 1H, OC*H*), 4.26-4.17 (m, 1H, NC*H*₂), 4.08-4.00 (m, 1H, NC*H*₂), 3.84 (s, 3H), 3.23-3.11 (m, 1H, CH₂), 2.73-2.64 (m, 1H, CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 165.9, 163.7, 151.4, 134.8, 132.1, 122.1, 115.8, 113.7, 67.6, 55.6, 43.2, 35.2. IR (thin film): v 2948, 1717, 1525, 1451, 1343, 1269 cm⁻¹. HRMS (ESI): calcd. for C₁₄H₁₅N₂O₃ [M+H]⁺ 259.1083, found 259.1088.

3. Preparation of Substrates¹⁻³

General procedure:

To a solution of Et_3N and benzofuran-2(3*H*)-one in THF was added chloroformate. The reaction mixture was stirred for approximately 3 h until the starting material disappeared according to TLC. After the reaction was completed, THF was evaporated under reduced pressure and the reaction mixture was extracted with EtOAc (15 mL × 3) and the combined organic phase were dried over Na₂SO₄. After filtration and removal of EtOAc, the residue was purified by chromatography (petroleum: ethyl acetate) to give the corresponding product.

3-Methylbenzofuran-2-yl phenyl carbonate (3a)¹

Following the general procedure, Et₃N (0.88 mL, 6.9 mmol), 3-methylbenzofuran-2(3*H*)-one (602 mg, 4.1 mmol), and phenyl chloroformate (0.764 mL, 6.9 mmol) in 20 mL THF gave 3-methylbenzofuran-2-yl phenyl carbonate 773 mg (72% yield) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 2.19 (s, 3H, CH₃), 7.25-7.32 (m, 5H, Ar-*H*), 7.40-7.49 (m, 4H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 99.0, 111.3, 119.7, 120.9, 123.2, 124.4, 127.0, 129.6, 130.0, 149.3, 149.8, 150.4, 151.0.

Benzyl 3-methylbenzofuran-2-yl carbonate (3b)

Following the general procedure, Et₃N (0.55)mL, 3.75 mmol), 3-methylbenzofuran-2(3H)-one (371 mg, 2.5 mmol), and benzyl chloroformate (0.54 mL, 3.75 mmol) in 20 mL THF gave benzyl 3-methylbenzofuran-2-yl carbonate 565 mg (80% yield) as a white solid. M.p.: 43-45 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.11 (s, 3H, CH₃), 5.32 (s, 2H, CH₂), 7.21-7.29 (m, 2H, Ar-H), 7.36-7.47 (m, 7H, Ar-H). ¹³C NMR (CDCl₃, **100 MHz):** δ 6.8, 71.7, 98.7, 111.2, 119.6, 123.1, 124.3, 128.9, 129.0, 129.3, 129.6, 134.2, 149.6, 149.7, 152.0. IR (thin film): v 2926, 1771, 1669, 1457, 1384, 1240, 1108, 920, 745 cm^{-1} . **HRMS (ESI):** calcd. for C₁₇H₁₄NaO₄ (M+Na)⁺ 305.0790, found 305.0820.

3-Methylbenzofuran-2-yl 3-(4-nitrophenyl)propanoate (3c)

Following procedure, the general Et₃N (0.56)mL. 4.0mmol), 3-methylbenzofuran-2(3H)-one (445 mg, 3 mmol), and 4-nitrobenzyl carbonochloridate (776 mg, 3.6 mmol) in 20 mL THF gave 3-methylbenzofuran-2-yl 3-(4-nitrophenyl)propanoate 752 mg (77% yield) as a yellow solid. M.p.: 83-85 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.13 (s, 3H, CH₃), 5.42 (s, 2H, CH₂), 7.25-7.29 (m, 2H, Ar-H), 7.37-7.46 (m, 2H, Ar-H), 7.61 (d, J = 9.2 Hz, 2H, Ar-H), 8.27-8.30 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.7, 69.8, 98.9, 111.2, 119.7, 123.3, 124.1, 124.5, 128.8, 129.5, 141.3, 148.3, 149.3, 149.7, 151.8. IR (thin film): v 2930, 1782, 1659, 1545, 1441, 1354, 1354, 1198, 1089, 880 cm⁻¹. HRMS (ESI): calcd. for $C_{17}H_{13}NNaO_6 (M+Na)^+$ 350.0641, found 350.0649.

3-Ethylbenzofuran-2-yl phenyl carbonate (3d)¹

Following the general procedure, Et₃N (0.88 mL, 6.9 mmol), 3-ethylbenzofuran-2(3*H*)-one (601.6 mg, 4.1 mmol), and phenyl chloroformate (0.764 mL, 6.9 mmol) in 20 mL THF gave 3-ethylbenzofuran-2-yl phenyl carbonate 856.5 mg (74% yield) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.32 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.68 (q, J = 7.2 Hz, 2H, CH₂CH₃), 7.25-7.32 (m, 4H, Ar-*H*), 7.40-7.45 (m, 3H, Ar-*H*), 7.51-7.52(m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 13.4, 16.0, 104.8, 111.4, 119.9, 120.8, 123.1, 124.3, 126.9, 128.8, 129.9, 148.7, 149.9, 150.6, 151.0.

3-Benzylbenzofuran-2-yl phenyl carbonate (3e)^{1,2}

Following the general procedure, Et₃N (0.88 mL, 6.9 mmol), 3-benzylbenzofuran-2(3*H*)-one (897 mg, 4.0 mmol), and phenyl chloroformate (0.764 mL, 6.9 mmol) in 20 mL THF gave 3-benzylbenzofuran-2-yl phenyl carbonate 1005 mg (73% yield) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.01 (s, 2H, CH₂), 7.16-7.19 (m, 1H, , Ar-*H*), 7.22-7.30 (m, 10H, Ar-*H*), 7.39-7.44 (m, 3H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 28.8, 102.4, 111.4, 120.3, 120.8, 121.2, 123.4, 124.5, 126.5, 126.8, 127.0, 128.7, 128.8, 128.9, 129.8, 129.9, 138.4, 149.8, 150.0, 150.4, 151.0.

3-Isopropylbenzofuran-2-yl phenyl carbonate (3f)²

Following the general procedure, Et₃N (0.88 mL, 6.9 mmol), 3-isopropylbenzofuran-2(3*H*)-one (723 mg, 4.1 mmol), and phenyl chloroformate (0.764 mL, 6.9 mmol) in 20 mL THF gave 3-isopropylbenzofuran-2-yl phenyl carbonate 842 mg (71% yield) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.43 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 3.10-3.18 (m, 1H, C*H*(CH₃)₂), 7.25-7.33 (m, 5H, Ar-*H*), 7.42-7.44 (m, 3H, Ar-*H*), 7.59-7.62 (m, 1H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 21.9, 24.4, 108.8, 111.5, 120.6, 120.8, 123.0, 124.2, 127.0, 128.1, 130.0, 148.0, 150.0, 150.7, 151.1.

Phenyl 3-phenylbenzofuran-2-yl carbonate (3g)¹

Following the general procedure, Et₃N (0.16 mL, 1.1 mmol), 3-phenylbenzofuran-2(3*H*)-one (150 mg, 0.7 mmol), and phenyl chloroformate (0.13 mL, 1.06 mmol) in 8 mL THF gave phenyl 3-phenylbenzofuran-2-yl carbonate 183 mg (79% yield) as a light orange oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.20-7.22 (m, 2H, Ar-*H*), 7.25-7.36 (m, 4H, Ar-*H*), 7.38-7.42 (m, 3H, Ar-*H*), 7.49-7.53 (m, 3H, Ar-*H*), 7.65-7.75 (m, 1H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 105.2, 111.7, 120.6, 120.8, 121.2, 124.0, 125.0, 126.6, 127.0, 127.8, 128.0, 128.5, 129.3, 129.9, 130.0, 130.3, 149.0, 150.1, 150.3, 151.1, 151.3.

3,5-Dimethyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate (3h)

Following procedure, Et₃N (0.43)3.0 the general mL, mmol). 3,5-dimethylbenzofuran-2(3H)-one (408 mg, 2.5 mmol), and phenyl chloroformate (0.38 mL, 3.0 mmol) in 10 mL THF gave 3,5-dimethyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate 600 mg (85% yield) as a white solid. M.p.: 57-59 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.17 (s, 3H, CH₃), 2.45 (s, 3H, Ar-CH₃), 7.08-7.10 (m, 1H, Ar-H), 7.25-7.32 (m, 5H, Ar-H), 7.41-7.45 (t, J = 8.0 Hz, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 21.7, 98.7, 110.8, 119.6, 120.9, 125.5, 127.0, 129.6, 130.0, 132.7, 148.1, 149.4, 150.5, 151.1. IR (thin film): v 3044, 2916, 1782, 1660, 1593, 1495, 1458, 1239, 1069, 870, 823 cm⁻¹. HRMS (ESI): calcd. for $C_{17}H_{14}O_4Na (M+Na)^+$ 305.0790, found 305.0804.

5-Ethyl-3-methyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate (3i)

Following the general procedure, Et₃N (1.04)mL, 7.2 mmol), 5-ethyl-3-methylbenzofuran-2(3H)-one (1057 mg, 6 mmol), phenyl chloroformate (0.91 mL, 7.2 mmol) in 20 mL THF gave 5-ethyl-3-methyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate 1438 mg (81% vield) as a white solid. M.p.: 28-29 °C. ¹H NMR (CDCl₃, 400 **MHz):** δ 1.28 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.17 (s, 3H, CH₃), 2.73 (q, J = 7.2 Hz, 2H, CH₂CH₃), 7.10-7.14 (m, 1H, Ar-H), 7.27-7.33 (m, 5H, Ar-H), 7.39-7.45 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 16.6, 29.2, 98.9, 110.9, 118.4, 120.9, 124.5, 126.9, 129.6, 129.9, 139.4, 148.3, 149.4, 150.5, 151.0. IR (thin film): v 3024, 2965, 2929, 1785, 1660, 1593, 1493, 1455, 1211, 867, 734 cm⁻¹. **HRMS (ESI):** calcd. for $C_{18}H_{17}O_4$ (M+H)⁺ 297.1127, found 297.1131.

5-Isopropyl-3-methyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate (3j)

Following the general procedure, Et₃N (1.04)mL, 7.2 mmol), 5-isopropyl-3-methylbenzofuran-2(3H)-one (1140 mg, 6 mmol), phenyl chloroformate (0.91 mL, 7.2 mmol) in 20 mL THF gave 5-isopropyl-3-methyl-2,3-dihydrobenzofuran-2-yl phenyl carbonate 1489 mg (80% vield) as a white solid. M.p.: 30-31 °C. ¹H NMR (CDCl₃, 400 **MHz):** δ 1.29 (d, J = 7.6 Hz, 6H, CH(CH₃)₂), 2.18 (s, 3H, CH₃), 2.90-3.05 (m, 1H, CH(CH₃)₂), 7.14-7.17 (m, 1H, Ar-H), 7.24-7.33 (m, 5H, Ar-H), 7.40-7.45 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 24.8, 34.5, 98.9, 110.9, 116.9, 120.9, 123.2, 126.9, 129.5, 129.9, 144.1, 148.3, 149.4, 150.5, 151.0. IR (thin film): v 3023, 2962, 2927, 2870, 1797, 1664, 1592, 1493, 1458, 1224, 1122, 876, 734 cm⁻¹. HRMS (ESI): calcd. for $C_{19}H_{19}O_4$ (M+H)⁺ 311.1283, found 311.1280.

5-tert-Butyl-3-methylbenzofuran-2-yl phenyl carbonate (3k)

Following the general procedure, Et₃N (0.87)mL, 6 mmol). 5-tert-butyl-3-methylbenzofuran-2(3H)-one (1021 mg, 5 mmol), phenyl chloroformate (0.76 mL, 6 mmol) in 20 mL THF gave 5-tert-butyl-3-methylbenzofuran-2-yl phenyl carbonate 1281 mg (79% yield) as a white solid. M.p.: 83-85 °C. ¹H NMR (CDCl₃, 400 MHz): δ 1.38 (s, 9H, C(CH₃)₃), 2.20 (s, 3H, CH₃), 7.27-7.37 (m, 5H, Ar-H), 7.40-7.48 (m, 3H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 32.1, 35.0, 99.1, 110.6, 115.9, 120.9, 122.3, 127.0, 129.1, 130.0, 146.3, 148.0, 149.4, 150.5, 151.0. IR (thin film): v 3068, 2959, 1797, 1664, 1591, 1494, 1458, 1393, 1366, 1224, 1125, 885, 730 cm⁻¹. HRMS (ESI): calcd. for $C_{20}H_{21}O_4$ $(M+H)^+$ 325.1440, found 305.1431.

5-Methoxy-3-methylbenzofuran-2-yl phenyl carbonate (3l)

Following the general procedure, Et₃N (0.87)mL, 6 mmol), 5-methoxy-3-methylbenzofuran-2(3H)-one (890.9 mg, 5 mmol), phenyl chloroformate (0.76 mL, 6 mmol) in 20 mL THF gave 5-methoxy-3-methylbenzofuran-2-vl phenyl carbonate 1163 mg (78% yield) as a white solid. M.p.: 78-80 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.17 (s, 3H, CH_3), 3.86 (s, 3H, OCH₃), 6.86-6.94 (m, 2H, Ar-H), 7.30 (d, J = 9.2 Hz, 4H, Ar-H), 7.44 (t, J = 7.6 Hz, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 56.1, 99.2, 102.7, 111.9, 112.6, 120.8, 127.0, 129.9, 135.2, 144.5, 149.7, 150.4, 151.0, 156.3. IR (thin film): v 3070, 2966, 2913, 1779, 1658, 1595, 1497, 1457, 1247, 1174, 879, 728 cm⁻¹. HRMS (ESI): calcd. for $C_{17}H_{15}O_5 (M+H)^+$ 299.0919, found 299.0902.

3,6-Dimethylbenzofuran-2-yl phenyl carbonate (3m)

mmol). Following the general procedure. Et₃N (1.34)9.6 mL, 3,6-dimethylbenzofuran-2(3H)-one (1300 mg, 8 mmol), phenyl chloroformate (1.21 mL, 8 mmol) in 30 mL THF gave 3,6-dimethylbenzofuran-2-yl phenyl carbonate 1827 mg (81% yield) as a white solid. M.p.: 76-78 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.17 (s, 3H, CH₃), 2.46 (s, 3H, Ar-CH₃), 7.07-7.09 (m, 1H, Ar-H), 7.21-7.32 (m, 4H, Ar-H), 7.35 (d, J = 8.4 Hz, 1H, Ar-H), 7.41-7.46 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 21.9, 98.8, 111.6, 119.2, 120.9, 121.2, 124.5, 127.0, 129.9, 134.7, 148.9, 150.1, 150.6, 151.1. IR (thin film): v 3064, 2938, 1815, 1762, 1495, 1452, 1138, 1071, 815, 744 cm⁻¹. HRMS (ESI): calcd. for $C_{17}H_{14}NaO_4 (M+Na)^+ 305.0790$, found 305.0815.

3,7-Dimethylbenzofuran-2-yl phenyl carbonate (3n)

Following the general procedure, Et₃N (1.34 mL, 9.6 mmol), 3,7-dimethylbenzofuran-2(3*H*)-one (1300 mg, 8 mmol), phenyl chloroformate (1.21 mL, 8 mmol) in 30 mL THF gave 3,7-dimethylbenzofuran-2-yl phenyl carbonate 1895 mg (84% yield) as a white solid. **M.p.:** 67-68 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.18 (s, 3H, CH₃), 2.49 (s, 3H, Ar-CH₃), 7.08-7.10 (m, 1H, Ar-H), 7.17 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.26-7.46 (m,

6H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 7.0, 15.1, 99.2, 117.1, 120.9, 121.5, 123.3, 125.6, 126.9, 129.1, 130.0, 148.8, 149.2, 150.5, 151.0. IR (thin film): v 3065, 2937, 1813, 1762, 1492, 1456, 1189, 1095, 874, 746 cm⁻¹. HRMS (ESI): calcd. for C₁₇H₁₅O₄ (M+H)⁺ 283.0970, found 283.0977.

Phenyl 3,4,6-trimethylbenzofuran-2-yl carbonate (30)

Following Et_3N 7.2 the general procedure, (1.04)mL. mmol). 3,4,6-trimethylbenzofuran-2(3H)-one (1057 mg, 6 mmol), phenyl chloroformate (0.91 mL, 7.2 mmol) in 20 mL THF gave phenyl 3,4,6-trimethylbenzofuran-2-yl carbonate 1367 mg (77% yield) as a white solid. M.p.: 55-57 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.31 (s, 3H, CH₃), 2.40 (s, 3H, Ar-CH₃), 2.58 (s, 3H, Ar-CH₃), 6.81 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H), 7.29-7.31 (m, 3H, Ar-H), 7.41-7.44 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 9.3, 19.0, 21.8, 99.5, 109.3, 120.9, 125.0, 126.1, 126.9, 129.9, 131.5, 134.4, 148.7, 150.3, 150.7, 151.0. **IR (thin film):** v 3076, 2917, 1786, 1665, 1590, 1496, 1458, 1261, 1066, 850, 768 cm⁻¹. **HRMS (ESI):** calcd. for $C_{18}H_{17}O_4$ (M+H)⁺297.1127, found 297.1128.

6-tert-Butyl-3-methylbenzofuran-2-yl phenyl carbonate (3p)

Et₃N 6.0 Following the general procedure, (0.84)mL, mmol). 6-tert-butyl-3-methylbenzofuran-2(3H)-one (1200 mg, 5 mmol), phenyl chloroformate (0.70 mL, 6.0 mmol) in 20 mL THF gave 6-tert-butyl-3-methylbenzofuran-2-yl phenyl carbonate 1257 mg (77% yield) as a white solid. M.p.: 75-77 °C. ¹H NMR (CDCl₃, 400 MHz): δ 1.37 (s, 9H, C(CH₃)₃), 2.18 (s, 3H, CH₃), 7.27-7.35 (m, 4H, Ar-H), 7.38-7.46 (m, 4H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 6.9, 31.9, 35.3, 98.8, 108.1, 119.1, 120.9, 121.0, 126.6, 127.0, 130.0, 148.5, 149.2, 150.2, 150.6, 151.1. IR (thin film): v 3057, 2962, 1794, 1666, 1591, 1492, 1459, 1228, 1145, 876, 738 cm⁻¹. HRMS (ESI): calcd. for $C_{20}H_{20}NaO_4$ (M+Na)⁺ 347.1259, found 347.1235.

3-Methylnaphtho[1,2-b]furan-2-yl phenyl carbonate (3q)

Following the general procedure. Et₃N (0.59)4.2 mL, mmol). 3-methylnaphtho[1,2-b]furan-2(3H)-one (694 mg, 3.5 mmol), phenyl chloroformate (0.53 mL, 4.2 mmol) in 10 mL THF gave 3-methylnaphtho[1,2-b]furan-2-yl phenyl carbonate 858 mg (77% yield) as a white solid. M.p.: 94-96 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.28 (s, 3H, CH₃), 7.29-7.36 (m, 3H, Ar-H), 7.43-7.49 (m, 3H, Ar-H), 7.56-7.59 (m, 2H, Ar-H), 7.71 (d, J = 8.4 Hz, 1H, Ar-*H*), 7.92 (d, *J* = 8.4Hz, 1H, Ar-*H*), 8.23 (d, *J* = 8.0 Hz, 1H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 7.2, 100.4, 118.2, 119.9, 120.9, 121.2, 123.9, 125.3, 126.8, 127.1, 128.8, 129.9, 130.0, 131.6, 144.8, 148.7, 150.8, 151.2. IR (thin film): v 3061, 2954, 1779, 1660, 1591, 1240, 1066, 805, 726 cm⁻¹. **HRMS (ESI):** calcd. for $C_{20}H_{15}O_4 (M+H)^+$ 319.0970, found 319.0981.

1-Methylnaphtho[2,1-b]furan-2-yl phenyl carbonate (3r)

Following procedure, Et₃N the general (0.59 mL, 4.2 mmol), 3-methylnaphtho[1,2-b]furan-2(3H)-one (694 mg, 3.5 mmol), phenyl chloroformate (0.53 mL, 4.2 mmol) in 10 mL THF gave 3-methylnaphtho[1,2-b]furan-2-yl phenyl carbonate 880 mg (79% yield) as a white solid. M.p.: 84-85 °C. ¹H NMR (CDCl₃, 400 MHz): δ 2.58 (s, 3H, CH₃), 7.28-7.34 (m, 3H, Ar-H), 7.43-7.57 (m, 5H, Ar-H), 7.59 (d, J = 4.8 Hz, 1H, Ar-H), 7.95 (d, J = 9.6 Hz, 1H, Ar-H), 8.33 (d, J = 8.8 Hz, 1H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 10.0, 101.2, 112.3, 120.9, 122.8, 123.2, 124.7, 125.4, 126.5, 127.0, 129.1, 129.4, 130.0, 131.0, 147.0, 148.9, 150.8, 151.1. IR (thin film): v 3031, 2961, 1781, 1648, 1582, 1239, 1068, 789, 683 cm⁻¹. **HRMS (ESI):** calcd. for $C_{20}H_{15}O_4$ (M+H)⁺ 319.0970, found 319.0977.

4. Catalytic Enantioselective Rearrangements

General procedure:

The substrate (0.075 mmol) was dissolved in *tert*-amyl alcohol (1 mL) and cooled to 0 °C. The catalyst (*R*)-**2a** (0.10 eq) in *tert*-amyl alcohol (0.5 mL) was added and the vial was sealed with a septum. The reaction mixture was stirred at 0 °C for 36 h. The conversion (product relative to SM) was calculated from ¹H NMR spectra. The ee value was determined by chiral HPLC analysis after purification by column chromatography (petroleum ether: ethyl acetate). The absolute configuration of **4a**, **4d**, **4e**, **4f** and **4g** was assigned by comparing the HPLC retention times with the literature data.¹ The absolute configuration of other products were considered to be the same as **4a**.

	OPhAlkoxy-E 	PPI (10 mol %) MS, 20 °C, 24 h	Me U OPh	N OCH ₂ R
3a			4a	Alkoxy-DPI
entry	Alkoxy-DPI	solvent	conv. (%) ^b	ee (%) ^c
1	R = H	Toluene	99	43
2	R = Ph	Toluene	97	46

Table S1. Initial attempts using Alkoxy-DPI (R = H, Ph) as catalysts

^a Conditions: **3a** (0.05 mol/L), (*R*)-**2** (10 mol%), Toluene (1.0 mL), 20 °C, 24 h;

^b Conversions were determined by ¹H NMR;

^c Ees were determined by HPLC with chiral columns.

(*R*)-Phenyl 3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4a)¹

Following the general procedure, enol carbonate (20.12 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 87% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **HPLC analysis:** 81% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 1.0 mL/min; retention times: 17.0 min (major), 19.0 min (minor)]. ¹H NMR (CDCl₃, 400 MHz): δ 1.89 (s, 3H, CH₃), 6.96-6.98 (m, 2H, Ar-*H*), 7.20-7.26 (m, 3H, Ar-*H*), 7.31-7.35 (m, 2H, Ar-*H*), 7.38-7.42 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 20.8, 54.2, 111.6, 121.1, 123.6, 125.1, 126.6, 128.4, 129.6,

130.5, 150.4, 153.6, 167.0, 173.9.

(R)-Benzyl 3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4b)

Following the general procedure, enol carbonate (21.20 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 14% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 43-44 °C. **HPLC analysis:** 87% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 1.0 mL/min; retention times: 23.3 min (minor), 27.1 min (major)]. ¹H NMR (CDCl₃, 400 MHz): δ 1.79 (s, 3H, CH₃), 5.14 (dd, *J* = 12.4 Hz, 6 Hz, 2H, CH₂), 7.12-7.17 (m, 4H, Ar-*H*), 7.22-7.30 (m, 4H, Ar-*H*), 7.32-7.38 (m, 1H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz, quantitative): δ 20.7, 54.1, 68.0, 111.4, 123.7, 124.9, 127.7 (2C), 128.6 (2C), 128.8 (2C), 130.3, 135.1, 153.4, 168.1, 174.3. IR (thin film): v 3058, 2931, 1822, 1760, 1479, 1148, 1066, 771, 715 cm⁻¹. HRMS (ESI): calcd. for C₁₇H₁₅O₄ (M+H)⁺ 283.0970, found 383.0989.

(R)-4-Nitrobenzyl 3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4c)

Following the general procedure, enol carbonate (24.50 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 20 °C for 36 h. The conversion (product relative to SM) of 97% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 85-87 °C. **HPLC analysis:** 80% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 1.0 mL/min; retention times: 62.7 min (minor), 68.3 min (major)]. ¹H NMR (CDCl₃, 400 **MHz):** δ 1.80 (s, 3H, CH₃), 5.22 (dd, *J* = 20.4, 14.0 Hz, 2H, CH₂), 7.16-7.18 (m, 2H, Ar-*H*), 7.19-7.29 (m, 3H, Ar-*H*), 7.37-7.42 (m, 1H, Ar-*H*), 8.41 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 20.6, 53.9, 66.4, 111.5, 123.6, 124.1, 125.0, 127.9, 128.2, 130.5, 142.2, 147.9, 153.4, 167.9, 174.1. **IR (thin film):** v 3069, 2928, 1813, 1761, 1545, 1493, 1168, 1059, 779, 720. **HRMS (ESI):** calcd. for C₁₇H₁₄NO₆ (M+H)⁺ 328.0821, found 328.0815.

(*R*)-Phenyl 3-ethyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4d)¹

Following the general procedure, enol carbonate (21.17 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 88% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **HPLC analysis:** 81% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 44.1 min (major), 59.5 min (minor)]. ¹H NMR (CDCl₃, 400 MHz): δ 0.93 (t, *J* = 7.2 Hz, 3H, CH₂CH₃), 2.27-2.52 (m, 2H, CH₂CH₃), 6.98-7.00 (m, 2H, Ar-*H*), 7.20-7.27 (m, 3H, Ar-*H*), 7.32-7.36 (m, 2H, Ar-*H*), 7.38-7.44 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 8.6, 28.4, 59.5, 111.4, 121.2, 124.0, 125.0, 126.3, 126.6, 129.7, 130.5, 150.4, 154.0, 166.7, 173.1.

(R)-Phenyl 3-benzyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4e)^{1,2}

Following the general procedure, enol carbonate (25.83 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 89% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **HPLC analysis:** 80% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 1.0 mL/min; retention times: 33.7 min (major), 46.2 min (minor)]. ¹H NMR (CDCl3, 400 MHz): δ 3.70 (s, 2H, *CH*₂), 6.94-7.02 (m, 5H, Ar-*H*), 7.10-7.14 (m, 3H, Ar-*H*), 7.20-7.24 (m, 2H, Ar-*H*), 7.30-7.38 (m, 3H, Ar-*H*), 7.43-7.47 (m, 1H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 40.5, 60.5, 111.4, 121.3, 124.5, 124.8, 125.9, 126.8, 127.7, 128.5, 129.8, 130.3, 130.6, 133.5, 150.4, 153.8, 166.6, 172.6.

(*R*)-Phenyl 3-isopropyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4f)^{1,2}

Following the general procedure, enol carbonate (22.22 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h.

The conversion (product relative to SM) of 21% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. HPLC analysis: 54% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 44.8 min (major), 61.7 min (minor)]. ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 1.22 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 2.87-2.98 (m, 1H, CH(CH₃)₂), 7.01-7.04 (m, 2 H, ArH), 7.16-7.26 (m, 3H, Ar-H), 7.33-7.42 (m, 3H, Ar-H), 7.45-7.48 (m, 1H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz, read by NUTS software): δ 16.8, 16.9, 29.3, 35.2, 110.5, 120.7, 124.1, 124.2, 125.4, 126.0, 129.1, 129.7, 149.9, 153.2, 165.9, 171.1.

(*R*)-Phenyl 2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-carboxylate (4g)¹

Following the general procedure, enol carbonate (24.77 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 29% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **HPLC analysis:** 70% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 1.0 mL/min; retention times: 47.5 min (minor), 50.6 min (major)]. ¹H NMR (CDCl₃, 400 MHz): δ 1.89 (s, 3H, CH₃), 6.95-7.42 (m, 14H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz, quantitative): δ 63.1, 111.9, 121.2(2C), 125.3, 125.4, 126.7, 126.9, 128.0(2C), 129.4(3C), 129.9(2C), 131.4, 134.5, 150.6, 154.1, 166.5, 171.5.

(R)-Phenyl 3,5-dimethyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4h)

Following the general procedure, enol carbonate (21.20 mg, 0.075 mmol), catalyst (*R*)-2a (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 88% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 69-72 °C. **HPLC analysis:** 79% ee [Daicel CHIRALPAK IE column; solvent system: 8% isopropanol / 92% hexane; 0.5 mL/min; retention times: 45.7 min (minor), 50.2 min (major)]. $[\alpha]^{25}_{D} = -48$ (*c* 0.10, CH₂Cl₂). ¹H **NMR (CDCl₃, 400 MHz):** δ 1.86 (s, 3H, CH₃), 2.39 (s, 3H, Ar-CH₃), 6.97-7.00 (m, 2H, Ar-H), 7.07-7.10 (m, 1H, Ar-H), 7.18-7.24 (m, 3H, Ar-H), 7.31-7.36 (m, 2H, Ar-H). ¹³C

NMR (CDCl₃, 100 MHz): δ 20.8, 21.4, 54.3, 111.2, 121.2, 124.0, 126.7, 128.2, 129.7, 130.9, 134.9, 150.4, 151.4, 167.2, 174.3. **IR (KBr, thin film):** v 3066, 2938, 1821, 1776, 1486, 1451, 1186, 1096, 886, 748 cm⁻¹. **HRMS (ESI):** calcd. for C₁₇H₁₄NaO₄ (M+Na)⁺ 305.0790, found 305.0780.

(R)-Phenyl 5-ethyl-3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4i)

Following the general procedure, enol carbonate (22.22 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 99% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a yellow oil. **HPLC analysis:** 81% ee [Daicel CHIRALPAK IE column; solvent system: 8% isopropanol/92% hexanes; 0.5 mL/min; retention times: 13.5 min (major), 16.5 min (minor)]. $[a]^{20}_{D} = -12$ (*c* 0.40, CH₂Cl₂). ¹H NMR (CDCl₃, 400 MHz): δ 1.25 (t, *J* = 8.0 Hz, 3H, CH₂CH₃), 1.87 (s, 3H, CH₃), 2.68 (q, *J* = 4.0 Hz, 2H, CH₂CH₃), 6.97 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.11 (d, *J* = 7.6 Hz, 1H, Ar-*H*), 7.19-7.25 (m, 3H, Ar-*H*), 7.31-7.35 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 16.1, 20.8, 28.8, 54.4, 111.3, 121.2, 122.9, 126.7, 128.3, 129.7, 129.9, 141.5, 150.4, 151.6, 167.2, 174.4. IR (thin film): v 3066, 2968, 2937, 1812, 1761, 1486, 1467, 1190, 1040, 826, 745 cm⁻¹. HRMS (ESI): calcd. for C₁₈H₁₆NaO₄ (M+Na)⁺ 297.1127, found 297.1140.

(R)-Phenyl 5-isopropyl-3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4j)

Following the general procedure, enol carbonate (23.28 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 99% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 70-72 °C. **HPLC analysis:** 86% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 18.2 min (minor), 19.0 min (major)]. $[\alpha]^{20}{}_{\rm D} = -19 (c \ 0.40, \text{CH}_2\text{Cl}_2)$. ¹H NMR (CDCl₃, 400 MHz): δ 1.26 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.88 (s, 3H, CH₃), 2.90-3.00 (m, 1H, CH(CH₃)₂), 6.96-6.98 (m, 2H, Ar-*H*), 7.12 (d, J = 8.8 Hz, 1H, Ar-*H*), 7.20-7.27 (m, 3H, Ar-*H*), 7.31-7.36 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 17.6, 19.2, 21.9, 54.4, 109.7, 121.3, 123.6, 126.6, 127.6, 129.7, 134.9, 140.6, 150.4, 153.9, 166.9, 174.6. IR (thin

film): v 3069, 2964, 2938, 2873, 1807, 1758, 1483, 1459, 1191, 1040, 823, 742 cm⁻¹. **HRMS (ESI):** calcd. for $C_{19}H_{19}O_4$ (M+H)⁺ 311.1283, found 311.1280.

(R)-Phenyl 5-tert-butyl-3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4k)

Following the general procedure, enol carbonate (24.33 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 80% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a light yellow solid. **M.p.:** 87-88 °C. **HPLC analysis:** 88% ee [Daicel CHIRALPAK OD column; solvent system: 1% isopropanol/99% hexanes; 0.3 mL/min; retention times: 21.4 min (major), 27.5 min (minor)]. [*a*]²⁰_D = -8 (*c* 0.20, CH₂Cl₂). ¹H NMR (CDCl₃, 400 MHz): δ 1.34 (s, 9H, (CH₃)₃), 1.89 (s, 3H, CH₃), 6.97 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 7.12 (d, *J* = 8.8 Hz, 1H, Ar-*H*), 7.22-7.36 (m, 3H, Ar-*H*), 7.38-7.44 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 20.9, 31.8, 35.1, 54.5, 110.9, 120.4, 121.2, 126.7, 127.4, 127.9, 129.7, 148.6, 150.4, 151.3, 167.3, 174.4. IR (thin film): v 3065, 2964, 1812, 1760, 1487, 1458, 1193, 1040, 819, 745 cm⁻¹. HRMS (ESI): calcd. for C₂₀H₂₁O₄ (M+H)⁺ 325.1440, found 325.1435.

(R)-Phenyl 5-methoxy-3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (41)

Following the general procedure, enol carbonate (22.37 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 76% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a light yellow solid. **M.p.:** 69-71 °C. **HPLC analysis:** 73% ee [Daicel CHIRALPAK OJ column; solvent system: 7% isopropanol/93% hexanes; 1.0 mL/min; retention times: 30.1 min (minor), 39.0 min (major)]. $[\alpha]^{20}{}_{\rm D}$ = -13 (*c* 0.20, CH₂Cl₂). ¹H **NMR (CDCl₃, 400 MHz):** δ 1.86 (s, 3H, CH₃), 3.81 (s, 3H, OCH₃), 6.89-6.93 (m, 1H, Ar-*H*), 6.98 (d, *J* = 8.8 Hz, 1H, Ar-*H*), 7.11 (d, *J* = 8.2 Hz, 2H, Ar-*H*), 7.17-7.26 (m, 1H, Ar-*H*), 7.31(q, *J* = 5.6 Hz, 3H, Ar-*H*). ¹³C **NMR (CDCl₃, 100 MHz):** δ 20.8, 54.8, 56.2, 109.4, 112.1, 115.5, 121.2, 126.7, 129.1, 129.7, 147.2, 150.4, 157.3, 167.1, 174.4. **IR (thin film):** v 3072, 2940, 1810, 1760, 1487, 1457, 1190, 809, 745 cm⁻¹. **HRMS (ESI):** calcd. for C₁₇H₁₅O₅ (M+H)⁺ 299.0919, found 299.0928.

(R)-Phenyl 3,6-dimethyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4m)

Following the general procedure, enol carbonate (21.20 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 85% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as colorless oil. **HPLC analysis:** 79% ee [Daicel CHIRALPAK OD column; solvent system: 5% isopropanol/95% hexanes; 0.5 mL/min; retention times: 12.5 min (major), 14.1 min (minor)]. $[\alpha]^{25}{}_{\rm D} = -70 (c \ 0.30, \text{CH}_2\text{Cl}_2)$. ¹H NMR (CDCl₃, 400 MHz): δ 1.86 (s, 3H, CH₃), 2.42 (s, 3H, Ar-CH₃), 6.95-7.05 (m, 4H, Ar-H), 7.21-7.27 (m, 2H, Ar-H), 7.33 (t, *J* = 8.0 Hz, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 20.8, 22.1, 54.1, 112.2, 121.2, 123.2, 125.4, 125.8, 126.7, 129.7, 141.3, 150.4, 153.6, 167.3, 174.4. IR (thin film): v 3064, 2938, 1815, 1762, 1495, 1452, 1138, 1071, 815, 744 cm⁻¹. HRMS (ESI): calcd. for C₁₇H₁₄NaO₄ (M+Na)⁺ 305.0790, found 305.0775.

(R)-Phenyl 3,7-dimethyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4n)

Following the general procedure, enol carbonate (21.20 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 78% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a light yellow oil. **HPLC analysis:** 67% ee [Daicel CHIRALPAK OD column; solvent system: 1% isopropanol/99% hexanes; 1.0 mL/min; retention times: 7.0 min (minor), 9.0 min (major)]. $[\alpha]^{25}_{D} = -81$ (*c* 0.20, CH₂Cl₂). ¹H NMR (CDCl₃, 400 MHz): δ 1.87 (s, 3H, CH₃), 2.38 (s, 3H, Ar-CH₃), 6.96-6.99 (m, 2H, Ar-H), 7.13-7.24 (m, 4H, Ar-H), 7.31-7.36 (m, 2H, Ar-H). ¹³C NMR (CDCl₃, 100 MHz): δ 15.4, 20.9, 54.6, 120.8, 121.3, 121.9, 124.9, 126.7, 127.9, 129.7, 132.0, 150.4, 152.1, 167.2, 174.2. IR (thin film): v 3065, 2937, 1813, 1762, 1492, 1456, 1189, 1095, 874, 746 cm⁻¹. HRMS (ESI): calcd. for C₁₇H₁₄NaO₄ (M+Na)⁺ 305.0790, found 305.0779.

(R)-Phenyl 3,4,6-trimethyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (40)

Following the general procedure, enol carbonate (22.22 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 50% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 52-54 °C. **HPLC analysis:** 78% ee [Daicel CHIRALPAK OJ column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 21.1 min (major), 32.5 min (minor)]. $[a]^{20}{}_{D} = -45$ (*c* 0.30, CH₂Cl₂). ¹H **NMR (CDCl₃, 400 MHz):** δ 1.87 (s, 3H, CH₃), 2.32 (s, 3H, Ar-CH₃), 2.36 (s, 3H, Ar-CH₃), 6.85 (d, *J* = 15.6 Hz, 2H, Ar-*H*), 6.96-6.99 (m, 2H, Ar-*H*), 7.20-7.36 (m, 3H, Ar-*H*). ¹³C **NMR (CDCl₃, 100 MHz):** δ 20.9, 24.4, 34.2, 54.4, 111.2, 121.2, 121.4, 126.7, 128.2, 128.5, 129.7, 146.2, 150.4, 151.6, 167.3, 174.4. **IR (thin film):** v 3054, 2939, 1810, 1761, 1484, 1457, 1185, 1098, 850, 747 cm⁻¹. **HRMS (ESI):** calcd. for C₁₈H₁₆NaO₄ (M+Na)⁺ 319.0940, found 319.0943.

(R)-Phenyl 6-tert-butyl-3-methyl-2-oxo-2,3-dihydrobenzofuran-3-carboxylate (4p)

Following the general procedure, enol carbonate (24.30 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 99% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 70-73 °C. **HPLC analysis:** 75% ee [Daicel CHIRALPAK OD column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 9.4 min (major), 10.2 min (minor)]. $[\alpha]^{20}{}_{\rm D} = -68 (c \ 0.20, \text{CH}_2\text{Cl}_2)$. ¹H NMR (CDCl₃, 400 MHz): δ 1.35 (s, 9H, C(CH₃)₃), 1.87 (s, 3H, CH₃), 6.99 (m, 2H, Ar-*H*), 7.20-7.46 (m, 6H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 20.9, 31.5, 35.5, 54.2, 108.8, 121.3, 122.0, 123.1, 125.3, 126.6, 129.7, 150.5, 153.7, 154.8, 167.2, 174.4. IR (thin film): v 3065, 2965, 1815, 1760, 1494, 1185, 1062, 821, 746 cm⁻¹. HRMS (ESI): calcd. for C₂₀H₂₀NaO₄ (M+Na)⁺ 347.1259, found 347.1257.

(R)-Phenyl 3-methyl-2-oxo-2,3-dihydronaphtho[1,2-b]furan-3-carboxylate (4q)

Following the general procedure, enol carbonate (23.90 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 82% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a white solid. **M.p.:** 101-104 °C. **HPLC analysis:** 74% ee [Daicel CHIRALPAK OD column; solvent system: 1% isopropanol/99% hexanes; 1.0 mL/min; retention times: 11.1 min (major), 14.1 min (minor)]. $[\alpha]^{25}_{D} = -132$ (*c* 0.30, CH₂Cl₂). ¹H **NMR (CDCl₃, 400 MHz):** δ 1.97 (s, 3H, CH₃), 6.96 (d, *J* = 8.8 Hz, 2H, Ar-*H*), 7.20-7.34 (m, 2H, Ar-*H*), 7.46-7.63 (m, 4H, Ar-*H*), 7.75 (d, *J* = 8.4 Hz, 1H, Ar-*H*), 7.92 (d, *J* = 7.6 Hz, 2H, Ar-*H*). ¹³C **NMR (CDCl₃, 100 MHz):** δ 20.8, 55.3, 119.6, 120.1, 121.3, 121.6, 122.6, 125.3, 126.7, 127.5, 127.7, 128.6, 129.7, 134.8, 149.5, 150.4, 167.2, 174.6. **IR (thin film):** v 3060, 2937, 1812, 1760, 1483, 1459, 1184, 1041, 814, 753 cm⁻¹. **HRMS (ESI):** calcd. for C₂₀H₁₅O₄ (M+H)⁺ 319.0970, found 319.0978.

(R)-Phenyl 1-methyl-2-oxo-1,2-dihydronaphtho[2,1-b]furan-1-carboxylate (4r)

Following the general procedure, enol carbonate (23.90 mg, 0.075 mmol), catalyst (*R*)-**2a** (1.25 mg, 0.0075 mmol), and *tert*-amyl alcohol (1.5 mL) were reacted at 0 °C for 36 h. The conversion (product relative to SM) of 50% was calculated from ¹H NMR spectroscopy of the crude product. The product was isolated by column chromatography (petroleum ether: ethyl acetate = 40 : 1) as a colorless oil. **HPLC analysis:** 58% ee [Daicel CHIRALPAK OD column; solvent system: 10% isopropanol/90% hexanes; 0.5 mL/min; retention times: 13.8 min (minor), 15.5 min (major)]. $[\alpha]^{25}_{D} = 16 (c \ 0.30, CH_2Cl_2)$. ¹H NMR (CDCl₃, 400 MHz): δ 2.07 (s, 3H, CH₃), 6.86-6.88 (m, 2H, Ar-*H*), 7.16-7.29 (m, 3H, Ar-*H*), 7.43-7.53 (m, 2H, Ar-*H*), 7.59-7.64 (m, 1H, Ar-*H*), 7.88-7.97 (m, 3H, Ar-*H*). ¹³C NMR (CDCl₃, 100 MHz): δ 20.5, 55.2, 111.9, 120.9, 121.3, 121.9, 125.5, 126.7, 128.7, 128.9, 129.7, 130.0, 131.5, 131.7, 150.4, 151.7, 167.5, 174.9. IR (thin film): v 3065, 2939, 1811, 1759, 1492, 1189, 1068, 813, 745 cm⁻¹. HRMS (ESI): calcd. for C₂₀H₁₄NaO₄ (M+Na)⁺ 341.0790, found 341.0799.

5. Reference

- a) S. A. Shaw, P. Aleman and E. Vedejs, J. Am. Chem. Soc., 2003, 125, 13368; c) S. A. Shaw, P. Aleman, J. Christy, J. W. Kampf, P. Va and E. Vedejs, J. Am. Chem. Soc., 2006, 128, 925.
- 2 J. E. Thomson, A. F. Kyle, K. A. Gallagher, P. Lenden, C. Concellón, L. C. Morrill, A. J. Miller, C. Joannesse, A. M. Z. Slawin and A. D. Smith, *Synthesis* 2008, 2805.
- 3 3-substituted benzofuran-2(3*H*)-ones (the starting materials for 3a-3g) were synthesized according to the method described in references 1 and 2. Others (the starting materials for 3h-3r) were synthesized according to the method described in following literature: A. Citterio, M. Gandolfi, O. Piccolo, L. Filippini, L. Tinucci, E. Valoti, *Synthesis*, 1984, 760.

6. NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Me O OPh OPh 4a

Read by NUTS software.

Read by MestReNova software.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

7. HPLC Charts

0

1 Det.A Ch1/254nm

😝 📄 😌 🙈 🛃 PeakTable								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	19.881	1661032	52672	50.015	52.641			
2	21.620	1660013	47388	49.985	47.359			
Total		3321044	100060	100.000	100.000			

1 Det.A Ch1/254nm

检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	17.019	6642185	193320	90.479	88.267			
2	18.957	698968	25697	9.521	11.733			
Total		7341154	219017	100.000	100.000			

PeakTable

检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	23.253	119876	3069	6.396	9.033			
2	27.053	1754359	30908	93.604	90.967			
Total		1874235	33977	100.000	100.000			

ght %
11.154
88.846
100.000

PeakTable

1 call 1 dole							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	44.451	17527100	137031	50.223	56.497		
2	56.920	17371647	105513	49.777	43.503		
Total		34898748	242544	100.000	100.000		

1 Det.A Ch1/254nm

	PeakTable						
检测器AC	Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	44.063	25475627	175700	90.535	89.623		
2	59.511	2663490	20343	9.465	10.377		
Total		28139117	196043	100.000	100.000		

检测器 A Ch1 230nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	33.727	74336650	572327	89.966	90.352		
2	46.181	8290947	61112	10.034	9.648		
Total		82627597	633440	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	45. 189	6957306	124264	49.742	55.214
2	61.215	7029458	100795	50.258	44.786
Total		13986764	225059	100.000	100.000

1 Det.A Ch1/230nm

PeakTable								
检测器 A Ch1 230nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	44.791	6946289	69104	76.900	82.375			
2	61.734	2086553	14786	23.100	17.625			
Total		9032841	83890	100.000	100.000			

	г	eakiaole	
ne	Area	Height	Ar

检测器 A Ch1 254nm								
Ret. Time	Area	Height	Area %	Height %				
45.740	4628398	48422	10.316	15.724				
50.237	40239858	259523	89.684	84.276				
	44868256	307945	100.000	100.000				
	Ch1 254nm Ret. Time 45.740 50.237	Ch1 254nm Ret. Time Area 45.740 4628398 50.237 40239858 44868256	Ret. Time Area Height 45.740 4628398 48422 50.237 40239858 259523 44868256 307945	Ch1 254nm Area Height Area % 45.740 4628398 48422 10.316 50.237 40239858 259523 89.684 44868256 307945 100.000				

检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	13.525	34240616	1560350	90.373	92.207			
2	16.471	3647366	131883	9.627	7.793			
Total		37887981	1692233	100.000	100.000			

Peak Lable							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	18.159	501055	19358	7.048	9.507		
2	18.984	6608045	184255	92.952	90.493		
Total		7109100	203612	100.000	100.000		

PeakTable

r cak i able							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	21.381	17078735	262448	93.923	94.561		
2	27.467	1105084	15097	6.077	5.439		
Total		18183820	277545	100.000	100.000		

PeakTable

I Cak I abic							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	30.097	5951614	81616	13.451	19.474		
2	38.950	38296278	337497	86.549	80.526		
Total		44247892	419113	100.000	100.000		

PeakTable

r cak i able							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	12.497	9851528	567890	89.737	90.526		
2	14.076	1126672	59435	10.263	9.474		
Total		10978199	627326	100.000	100.000		

1 Det.A Ch1/254nm

PeakTable

检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.018	2180445	156500	50.131	55.747		
2	8.981	2169050	124235	49.869	44.253		
Total		4349495	280735	100.000	100.000		

1 Det.A Ch1/254nm

PeakTable

I cultitudie							
检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	6.983	10147361	650047	83.731	90.140		
2	9.000	1971690	71104	16.269	9.860		
Total		12119051	721151	100.000	100.000		

			I Cak I abic					
检测器 A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	21.133	13826937	362652	88.977	91.868			
2	32.482	1712953	32103	11.023	8.132			
Total		15539890	394755	100.000	100.000			

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	9.407	21722202	1527507	87.397	88.336		
2	10.223	3132448	201702	12.603	11.664		
Total		24854650	1729209	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.546	2529560	130243	49.695	59.270
2	14.502	2560565	89502	50.305	40.730
Total	6.	5090126	219745	100.000	100.000

1 Det.A Ch1/254nm

检测器 A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	11.094	11231241	561026	87.008	89.995		
2	14.061	1677053	62372	12.992	10.005		
Total		12908294	623398	100.000	100.000		

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

