Electronic Supplementary Information (ESI)

Assembly of a unique octa-nuclear copper cluster-based metal-organic framework with highly selective CO_2 adsorption over N_2 and CH_4

Jiahuan Luo, Jing Wang, Guanghua Li, Qisheng Huo and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: <u>yunling@jlu.edu.cn</u>; Fax: +86-431-85168624; Tel: +86-431-85168614

Materials and Methods

The ligand was prepared according to the literature.¹ All the other reagents were obtained from commercial sources and used without further purification.

Powder X-ray diffraction (PXRD) data were collected on a Rigaku D/max-2550 diffractometer with CuK α radiation ($\lambda = 1.5418$ Å). The elemental analyses were performed on a Perkin-Elmer 2400 element analyzer. The infrared (IR) spectra were recorded within the 4000-400 cm⁻¹ region on a Nicolet Impact 410 FTIR spectrometer with KBr pellets. Thermogravimetric (TG) analyses were performed on TGA Q500 V20.10 Build 36 thermogravimetric analyzer in the temperature range 35-800 °C under air flow with the heating rate of 10 °C min⁻¹. N₂, CH₄ and CO₂ sorption isotherm measurements of **JLU-Liu1** were carried out on a Micromeritics ASAP 2020 instrument.

Single Crystal X-ray Structure Determination

Data were collected on a Bruker Apex II CCD diffractometer at 293(2) K for **JLU-Liu1**, with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and refined by full-matrix least-squares methods with SHELXTL.² All non-hydrogen atoms were easily found from the difference Fourier map. All non-hydrogen atoms were refined anisotropically. PLATON/SQUEEZE³ was employed to calculate the diffraction contribution of the solvent molecules and, thereby, to produce a set of solvent-free diffraction intensities; structures were then refined again using the generated data. Basic information pertaining to crystal parameters and structure refinement is summarized in Table S1.

Name	JLU-Liu1
Empirical formula	$C_{15.5}H_{24.5}Cu_4N_{3.5}O_{19.5}S_3$
Formula weight	922.23
Temperature (K)	293(2)
Wave length (Å)	0.71073
Crystal system	Tetragonal
Space group	P4 ₃ 2 ₁ 2
a (Å)	13.6542(9)
b (Å)	13.6542(9)
c (Å)	42.160(4)
Volume (Å ³)	7860.1(10)
Z, D_{calc} (Mg/m ³)	8, 1.559
Absorption coefficient (mm ⁻¹)	2.362
F (000)	3696
θ range (deg)	1.57 to 28.4
Limiting indices	-13≤h≤18
	-17≤k≤18
	-56≤l≤52
reflections collected/	49638/9858
unique (Rint)	[R(int)=0.0494]
Crystal size (mm ³)	0.27×0.24×0.21
Data/restraints/parameters	9802/108/389
Goodness-of-fit on F^2	99.8 %
$\mathbf{R}_1, \mathbf{w}\mathbf{R}_2 \ (I \geq 2\sigma(I))$	0.0349, 0.0931
R_1 , w R_2 (all data))	0.0384, 0.0943
largest difference in peak and hole (e Å ⁻³)	0.907, -0.692

Table S1. Crystal data and structure refinement for compound JLU-Liu1.

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. wR_{2} = \left[\sum [w (F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2})^{2}]\right]^{1/2}$

Figure S1. Coordination states in the crystal structure of **JLU-Liu1**: (a) coordinated mode of the octa-nuclear copper SBU; (b) coordination modes of the three sulfate ions; (c) the 4-PmBC⁻ ligand linked to three octa-nuclear copper SBU, which can be viewed as a 3-connected node. Color scheme: copper: green; carbon: grey; oxygen: red, nitrogen, blue, sulfur yellow. H atoms are omitted for clarity.

Figure S2. The exhibition of the helical chains in the framework of **JLU-Liu1**: (a) a left-handed (L) and a right-handed (R) helix intersect at the copper clusters to form a double helical chain along [001] direction; (b) a left-handed (L) and a right-handed (R) helix along [110] direction.

Figure S3. The dihedral angle between two aromatic rings.

Figure S4. Infrared spectra for **JLU-Liu1** (KBr, cm⁻¹): 3027br, 2930br, 1661s, 1584s, 1433s, 1311w, 1259w, 1104m, 1059w, 923w, 785m, 729m, 673w, 537w, 451w.

Figure S5. The TGA curve of as-synthesized and activated JLU-Liu1.

Figure S6. Variable-temperature powder XRD patterns of JLU-Liu1.

Figure S7. The XRD patterns of JLU-Liu1 after immersed in different solvents.

Figure S8. The N₂ sorption isotherm of activated JLU-Liu1 at 77K.

Figure S9. The H₂ sorption isotherm of activated JLU-Liu1 at 77K.

Figure S10. Calculation of CO_2 :CH₄ selectivity by initial slope of the gas uptake on JLU-Liu1. (Blue dot and solid line: uptake of CO_2 , red square and line: uptake of CH₄.)

References

- 1. Y. Gong and H. W. Pauls, Synlett. 2000, 6, 829-831.
- G. M. Sheldrick, SHELXTL-97, Program for Crystal Structure Refinement, University of Gottingen, 1997
- 3. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.