Supplementary Materials

Bis-cyclooctatetraene Tripalladium Sandwich Complexes

Tetsuro Murahashi,* Seita Kimura, Kohei Takase, Tomohito Uemura, Sensuke Ogoshi, and Koji Yamamoto

Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences Department of Structural Molecular Science, The Graudate University for Advanced Studies PRESTO, Japan Science and Technology Agency Myodaiji, Okazaki, Aichi, 444-8787, Japan Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita, Osaka, 565-0871, Japan

Experimental Section

General Consideration. All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or drybox techniques. ¹H, ¹³C{¹H} NMR spectra were recorded on 400 MHz (JEOL GSX-400, Bruker DPX-400), 500 MHz (JEOL JNM-A500), and 600 MHz (Varian Unity-Inova 600) instruments. The chemical shifts were referenced to the residual resonances of deuterated solvents. Elemental analyses were performed at the Instrument Center, Institute for Molecular Science, or the Analytical Center, Faculty of Engineering, Osaka University. ESI-MS analyses were performed by Bruker micrOTOF ESI-TOF. X-ray crystal data were collected by Rigaku RAXIS-RAPID Imaging Plate diffractometer. Unless specified, all reagents were purchased from commercial suppliers and used without purification. Nitromethane, diethyl ether, dichloromethane, benzene, acetonitrile, CD₃NO₂, and CD₂Cl₂ were purified according to the standard procedures. [Pd₂(CH₃CN)₆][BF₄]₂¹ and Pd₂(dba)₃² were prepared according to the literature.

Synthesis of $[Pd_3(\mu_3-C_8H_8)_2(CH_3CN)][BF_4]_2$ (1-CH₃CN): To a solution of Pd₂(dba)₃ (200 mg, 0.193 mmol) in CH₂Cl₂ was added cyclooctatetraene (131 µL, 1.16 mmol) and $[Pd_2(CH_3CN)_6][BF_4]_2$ (244 mg, 0.386 mmol). After stirring at room temperature for 1h, the resultant brown precipitate was collected and washed with CH₂Cl₂. The crude product was then dissolved in CH₃NO₂, and CH₃CN (61 µL, 1.16 mmol) was added. After stirring for 5 min at room temperature, the mixture was filtered, and to the filtrate was added Et₂O to afford a dark brown powder of 1-CH₃CN (221 mg, 77% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 5.43 (16H, s, H₁), 2.43 (3H, s, H₂). ¹³C{¹H} NMR (100.6 MHz, CD₃NO₂, 25 °C): δ 83.7 (s, C₁), 3.1 (s, C₂). An ESI-MS spectrum is shown in Figure S1.

Figure S1. Experimental (top) and calculated (bottom) ESI(+)-mass spectra of $[Pd_3(\mu_3$ -cyclooctatetraene)_2(CH_3CN)][BF_4]_2 (**1-CH_3CN**).

Synthesis of $[Pd_3(\mu_3-C_8H_8)_2(PPh_3)][BF_4]_2$ (1-PPh₃): To a CH₃NO₂ solution of 1-CH₃CN (100 mg, 0.135 mmol) was added PPh₃ (35.4 mg, 0.135 mmol), and the mixture was stirred for 5 min. The reaction mixture was filtered, and the filtrate was concentrated in vacuo. Addition of Et₂O gave the dark purple precipitate. Recrystallization from CH₃NO₂/benzene gave 1-PPh₃ (85 mg, 66% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 7.80-7.75 (15H, m, PPh₃), 5.27 (16H, s, H₁). ¹³C{¹H} NMR (100.6 MHz, CD₃NO₂, 25 °C): δ 135.8-131.1 (PPh₃), 81.8 (s, C₁). ³¹P{¹H} NMR (162 MHz, CD₃NO₂, 25 °C): δ 29.9. An ESI-MS spectrum is shown in Figure S2. Anal. Calcd. for C₃₄H₃₁B₂F₈P₁Pd₃·CH₃NO₂: C, 41.03; H, 3.35; N, 1.37. Found: C, 40.54; H, 3.41; N, 0.74.

Figure S2. Experimental (top) and calculated (bottom) ESI(+)-mass spectra of $[Pd_3(\mu_3$ -cyclooctatetraene)₂(PPh₃)][BF₄]₂ (**1-PPh₃**).

Synthesis of $[Pd_3(\mu_3-C_8H_8)_2(PCy_3)][BF_4]_2$ (1-PCy₃): To a CH₃NO₂ solution of 1-CH₃CN (107.5 mg, 0.145 mmol) was added PCy₃ (40.6 mg, 0.145 mmol), and the mixture was stirred for 1 h. The reaction mixture was filtered, and the filtrate was concentrated in vacuo. Addition of Et₂O gave the dark purple precipitate. Recrystallization from CH₂Cl₂/hexane gave 1-PCy₃ (88.1 mg, 62% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 5.43 (16H, s, H₁), 2.49 (3H, m, H₂), 2.08 (6H, m, H₃ or H₄), 1.91 (6H, m, H₃ or H₄), 1.79 (3H, m, H₅), 1.48-1.68 (12H, m, H₃, H₄), 1.35 (3H, m, H₅). ¹³C{¹H} NMR (100.5 MHz, CD₃NO₂, 25 °C): δ 80.4 (s, C₁), 36.0 (d, *J* = 14 Hz, C₂), 32.1 (s, C₃ or C₄) 28.6 (d, *J* = 10 Hz, C₃ or C₄) 27.3 (s, C₅). ³¹P{¹H} NMR (160.3 MHz, CD₃NO₂, 25 °C): δ 43.6 (s, P₁). An ESI-MS spectrum is shown in Figure S3. Anal. Calcd. For. C₃₄H₄₉B₂F₈PPd₃·0.5CH₂Cl₂: C, 40.46; H, 4.92. Found: C, 40.32; H, 5.26.

Figure S3. Experimental (top) and calculated (bottom) ESI(+)-mass spectra of $[Pd_3(\mu_3$ -cyclooctatetraene)_2(PCy_3)][BF_4]_2 (**1-PCy_3**).

Synthesis of $[Pd_2(\mu-C_8H_8)(PPh_3)_4][BF_4]_2$ (4-PPh₃): The complex 4-PPh₃ was isolated the following method. То by а CH₃CN₃ solution of $[Pd_2(\mu-\eta^3:\eta^3-C_8H_8)(CH_3CN)_4][BF_4]_2$ (88.5 mg, 0.131 mmol) was added PPh₃ (137.0 mg, 0.522 mmol), and the mixture was stirred for 1 h. The reaction mixture was filtered, Addition of Et₂O gave the orange and the filtrate was concentrated in vacuo. precipitate. Recrystallization from CH₃CN/ether gave $[Pd_2(\mu-\eta^3:\eta^3-C_8H_8)(PPh_3)_4][BF_4]_2$ (126.3 mg, 63% yield). ¹H NMR (400 MHz, CD₃NO₂, 25 °C): δ 7.47 (12H, t, J = 7 Hz, H₄), δ 7.34 (24H, dd, J = 7 Hz, J = 7 Hz, H₃), δ 7.20 (24H, m, H₂), δ 4.54 (8H, s, H₁). ¹³C{¹H} NMR (100.5 MHz, CD₃NO₂, 25 °C): δ 134.9 (s, C₅), 132.8 (s, C₃), 131.2 (t, J = 24 Hz, C₂) 130.5 (s, C₄) 100.4 (s, C₁). ³¹P{¹H} NMR (160.3 MHz, CD₃NO₂, 25 °C): δ 25.2 (s, P₁). An ESI-MS spectrum is shown in Figure S4. Anal. Calcd. For. C₈₀H₆₈B₂F₈P₄Pd₂: C, 62.40; H, 4.83. Found: C, 62.05; H, 4.45.

Figure S4. Experimental (top) and calculated (bottom) ESI(+)-mass spectra of $[Pd_2(\mu-\eta^3:\eta^3-cyclooctatetraene)(PPh_3)_4][BF_4]_2$ (**4-PPh_3**).

X-ray Crystallographic Data

Crystal data for **1-H₂O·H₂O·C₆H₆**: C₂₂H₂₆B₂F₈O₂Pd₂, M_r = 815.25, monoclinic, space group $P2_1/n$ (no. 14), a = 10.0392(6), b = 16.352(1), c = 14.6824(8) Å, $\beta = 93.420(2)^\circ$, V = 2405.9(3) Å³, Z = 4, F(000) = 1576, Dc = 2.251 g cm⁻³, μ (MoK α) = 23.025 cm⁻¹, T= 123 K, 22510 reflections collected, 5472 unique ($R_{int} = 0.0545$), 334 variables refined with 4221 reflections with $I > 3\sigma(I)$ to R = 0.054. CCDC 904367.

For the crystal structure of $1-H_2O$, a relatively large residual electron density was observed at (0.93344, 0.56154, 0.24500), which is located closely to the heavy metal atom (Pd1).

Crystal data for **4-PPh₃**: C₈₀H₆₈P₄B₂F₈O₂Pd₂, $M_r = 1539.64$, monoclinic, space group C2/c (no. 15), a = 25.3856(12), b = 24.7751(10), c = 11.8833(6) Å, $\beta = 93.6780(10)^\circ$, V = 7458.4(6) Å³, Z = 4, F(000) = 3296, Dc = 1.447 g cm⁻³, μ (MoK α) = 7.03 cm⁻¹, T = 123 K, 36530 reflections collected, 8540 unique ($R_{int} = 0.0764$), 408 variables refined with 5150 reflections with $I > 2\sigma(I)$ to R = 0.073. CCDC 962478.

For the crystal structure of **4-PPh₃**, four methylene chloride molecules in the unit cell are disordered. The contribution to the scattering arising from the presence of disordered molecules in the crystals was removed by use of the utility SQUEEZE in the

PLATON software package.³ Additional details on PLATON/SQUEEZE can be found in the CIF of complex **4-PPh₃**.

Figure S5. A ball and stick drawing of **4-PPh₃** (BF₄ anions were omitted). For the duplicate atom labels, one set of the atom labels are at (1-x, y, 1/2-z).

References

1	T. Murahashi, T. Nagai, T. Okuno, T. Matsutani, H. Kurosawa	a, <i>Chem</i> .	Commun.
	2000 , 1689.		

- 2 H. Ukai, H. Kawazura, Y. Ishii, J. Organomet. Chem. 1974, 65, 253.
- 3 A. L. Spec, *Acta Cryst.* 2009, **D65**, 148.