Enantioselective Synthesis of Diaryl Aziridines Using Tetrahydrothiophene-Based Chiral Sulfides as Organocatalysts

Meng-Ting Huang[†], Hsin-Yi Wu[‡], and Rong-Jie Chein^{*,‡}

†Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677
‡Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, Taiwan 11529.
Fax: 886-2-2783-1237; Tel: 886-2-2789-8526; E-mail: rjchein@chem.sinica.edu.tw

Supporting Information

Table of content

Page

Experimental Procedures and Characterization Data	S2
References	S25
HPLC analysis	S26
¹ H and ¹³ C NMR Spectra	S36

Experimental Procedures and Characterization Data:

General information:

All reactions were carried out under an inert atmosphere unless mentioned otherwise, and standard syringesepta techniques were followed. Solvents were freshly dried and purified by conventional methods prior to use. The progress of all the reactions were monitored by TLC, using TLC glass plates precoated with silica gel 60 F_{254} (Merck). Column chromatography was performed on silica gel Geduran[®] Si 60 (Merck). Optical rotation values were measured with Jasco P-2000 polarimeter, and IR spectra were recorded with Thermo Nicolet iS-5 FT-IR spectrophotometer, v_{max} in cm⁻¹. ¹H and ¹³C NMR spectra were recorded with Bruker AV-III 400 MHz, Bruker AV-400, or AV-500 MHz spectrometers and chemical shifts were measured in δ (ppm) with residual solvent peaks as internal standards (CDCl₃, δ 7.26 ppm in ¹H NMR, δ 77 ppm in ¹³C NMR). Coupling constants *J*, measured in Hz. HR FAB (LR FAB) and HR EI (LR EI)-mass spectra were recorded on a JMS-700 double focusing mass spectrometer (JEOL, Tokyo, Japan) with a resolution of 8000(3000) (5% valley definition) and HR (LR) ESI (Electrospray)-mass spectra were recorded using dual ionization ESCi[®] (ESI/APCi) source options, Waters LCT premier XE (Waters Corp., Manchester, UK). Melting points were recorded on Buchi 520 apparatus. The determination of ee was performed *via* chiral phase HPLC analysis using Agilent 1200 series HPLC workstation.

General procedure for synthesis of Alcohols 4a-4c:

To a solution of aryl magnesium bromide (2 mmol) freshly prepared from magnesium powder and aryl bromide in THF (4 mL) was added a solution of ethyl 5-bromovalerate (500 mg, 2.39 mmol) in THF (2 mL) dropwisely at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was quenched with sat. NH₄Cl (5 mL) at 0 °C and extracted with EtOAc (20 mL \times 3). The combined organic layers were washed with sat. NaHCO₃ (10 mL \times 2) and brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc/hexane) to give the pure product.

5-Bromo-1,1-diphenylpentan-1-ol (4a)¹

Colorless liquid; Yield - 90%; R_f (10% EtOAc/hexane) 0.3; Prepared as shown in general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.26 (m, 10H), 3.36 (t, J = 7.0 Hz, 2H), 2.42 (s, 1H), 2.35–2.31 (m, 2H), 1.91 (dt, J = 14.5, 7.1 Hz, 2H), 1.52–1.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 128.0, 126.7, 125.9, 77.9, 40.8, 33.3, 32.9, 22.4.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

5-Bromo-1,1-bis(3,5-dimethylphenyl)pentan-1-ol (4b)

Colorless liquid; Yield - 95%; R_f (10% EtOAc/hexane) 0.4; Prepared as shown in general procedure. **IR** (neat): 3549, 3005, 2946, 2916, 2863, 1599, 1453, 1376, 1247, 1149, 1038, 851, 742, 719 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 4H), 6.87 (s, 2H), 3.38 (t, J = 7.0 Hz, 2H), 2.29 (s, 12H), 2.25-2.21 (m, 2H), 2.02 (s, 1H), 1.91 – 1.87 (m, 2H), 1.47 – 1.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 137.5, 128.5, 123.7, 77.9, 41.1, 33.4, 33.2, 22.6, 21.5; **ESI-HRMS** (m/z): Calcd for C₂₁H₂₇BrONa [(M+Na)⁺] 397.1143, found [(M+Na)⁺] 397.1144.

1,1-Bis(3,5-bis(trifluoromethyl)phenyl)-5-bromopentan-1-ol (4c)

Colorless liquid; Yield - 85%; R_f (10% EtOAc/hexane) 0.18; Prepared as shown in general experimental procedure. **IR** (neat): 3518, 3097, 2952, 2868, 1624, 1466, 1278, 1132, 900, 844, 710, 682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 4H), 7.82 (s, 2H), 3.40 (t, J = 6.4 Hz, 2H), 2.52 (s, 1H), 2.40 – 2.36 (m, 2H), 1.97 – 1.90 (m, 2H)), 1.50 – 1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 132.2 (q, J = 33.3 Hz), 126.0, 123.1 (q, J = 271.2 Hz), 121.9, 40.7, 32.9, 32.1, 21.8; **ESI-HRMS** (m/z): Calcd for C₂₁H₁₄BrF₁₂O [(M-H)⁻] 589.0036, found [(M-H)⁻] 589.0042.

General procedure for synthesis of Olefins 5a-5c:

A stirred solution of diaryl alcohol (1 mmol) and *p*-TsOH (5% wt) in toluene (4 mL) was heated to 70 °C for 3 h. After cooling down to room temperature, the reaction mixture was diluted with DI water (10 mL), extracted with EtOAc (10 mL \times 3), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (hexane) to give the pure product.

5,5-Diphenyl-4-pentenyl bromide (5a)¹

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Colorless oil; Yield - 88%; R_f (hexane) 0.25; Prepared as shown in general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.16 (m, 10H), 6.04 (t, J = 7.4 Hz, 1H), 3.37 (t, J = 6.9 Hz, 2H), 2.26 (dd, J = 14.7, 7.4 Hz, 2H), 2.03–1.95 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 142.4, 139.8, 129.8, 128.2, 128.1, 127.5, 127.2, 127.0, 33.1, 33.0, 28.4.

5,5'-(5-Bromopent-1-ene-1,1-diyl)bis(1,3-dimethylbenzene) (5b)

Colorless oil; Yield - 92%; R_f (hexane) 0.45; Prepared as shown in general procedure. **IR** (neat): 3007, 2916, 1862, 1654, 1599, 1437, 1195, 850, 731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 1H), 6.89 (s, 1H), 6.86 (s, 2H), 6.79 (s, 2H), 5.96 (t, J = 7.6 Hz, 1H), 3.41 (t, J = 6.8 Hz, 2H), 2.34 (s, 6H), 2.28 (s, 6H), 2.64 – 2.27 (m, 2H), 2.05 – 1.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.7, 139.9, 137.5, 137.5, 137.5, 128.7, 128.6, 128.5, 127.5, 127.4, 127.0, 127.0, 125.1, 125.1, 33.2, 28.4, 21.3, 21.3; **EI-HRMS** (m/z): Calcd for C₂₁H₂₅Br [(M)⁺] 356.1140, found [(M)⁺] 356.1139.

5,5'-(5-Bromopent-1-ene-1,1-diyl)bis(1,3-bis(trifluoromethyl)benzene) (5c)

Colorless oil; Yield - 95%; R_f (10% EtOAc/hexane) 0.55; Prepared as shown in general procedure. **IR** (neat): 3089, 2933, 2868, 1614, 1468, 1373, 1279, 1128, 901, 708, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.81 (s, 1H), 7.65 (s, 2H), 7.58 (s, 2H), 6.30 (t, J = 7.6 Hz, 1H), 3.40 (t, J = 6.4 Hz, 2H), 2.35 – 2.29 (m, 2H), 2.10 – 2.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 138.4, 134.1, 132.9, 132.6, 132.3, 132.0, 131.6, 129.8, 127.0, 124.4, 122.2, 121.7, 121.6, 32.3, 32.1, 28.4; **EI-HRMS** (*m/z*): Calcd for C₂₁H₁₃BrF₁₂ [(M)⁺] 572.0009, found [(M)⁺] 571.9999.

General procedure for synthesis of Epoxides 6a-6c:

A combined solution of 5,5-diaryl-4-pentenyl bromide (1.0 mmol) in CH₃CN/dimethoxymethane (1:2, v/v, 7.5 mL), and Na₂B₄O₇·10H₂O (190.5 mg, 0.5 mmol), tetrabutylammonium hydrogen sulfate (13.6 mg, 0.04 mmol), and Shi catalyst² (129 mg, 0.5 mmol) in a buffer solution (4×10^{-4} M aqueous Na₂(EDTA), 5 mL) was cooled to -5 °C and stirred in an ice bath. A solution of Oxone (1.5 g, 0.5 mmol) in aqueous Na₂(EDTA) (4×10^{-4} M, 6.25 mL) and a solution of K₂CO₃ (1.6 g, 10.35 mmol) in DI water (6.25 mL) were respectively added dropwisely through addition syringes respectively over a period of 3 h at -5 °C. Upon completion of the addition, the reaction was stirred for another 1 h at the same temperature. After dilution with DI water (20 mL), the resulting mixture was extracted with hexane (20 mL × 2), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc/hexane, 1:40 to 1:25) to afford the pure product.

3-(3-Bromopropyl)-2,2-diphenyloxirane (6a)¹

Colorless liquid; Yield - 94%; R_f (5% EtOAc/hexane) 0.32; Prepared as shown in general procedure. ¹H **NMR** (400 MHz, CDCl₃) δ 7.40–7.23 (m, 10H), 3.44–3.30 (m, 3H), 2.13–1.94 (m, 2H), 1.69 (ddd, J = 14.0, 9.8, 5.3 Hz, 1H), 1.33 (m, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 140.7, 137.2, 128.2, 128.1, 127.9, 127.8, 127.6, 126.9, 66.1, 65.4, 32.9, 29.6, 28.2; enantioselectivity was determined by HPLC analysis (Chiralcel-OJ, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 4:1); retention time: 19.4 min (enantiomer) and 35.8 min (major).

3-(3-Bromopropyl)-2,2-bis(3,5-dimethylphenyl)oxirane (6b)

Colorless liquid; Yield - 92%; R_f (5% EtOAc/hexane) 0.5; Prepared as shown in general procedure. **IR** (neat): 3005, 2963, 2916, 2863, 1604, 1545, 1248, 1203, 849, 728 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (s, 2H), 6.96 (s, 2H), 6.95 (s, 1H), 6.94 (s, 1H), 3.48 – 3.35 (m, 3H), 2.32 (s, 6H), 2.29 (s, 6H), 2.12 – 2.00 (m, 2H), 1.71 (m, 1H), 1.35 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 140.9, 137.8, 137.6, 137.4, 129.4,

129.3, 125.5, 124.7, 66.4, 65.1, 32.9, 29.8, 28.2, 21.3, 21.3; **HRMS** (**FAB**⁺, **magnetic sector**) (m/z): Calcd for C₂₁H₂₆BrO [(M+H)⁺] 373.1167, found [(M+H)⁺] 373.1162; enantioselectivity was determined by HPLC analysis (Chiralpak-AD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19:1); retention time: 3.6 min (enantiomer) and 4.1 min (major).

2,2-Bis(3,5-bis(trifluoromethyl)phenyl)-3-(3-bromopropyl)oxirane (6c)

Colorless liquid; Yield - 80% (based on recovered starting material); R_f (5% EtOAc/hexane) 0.38; Prepared as shown in general procedure. **IR** (neat): 3094, 2970, 2852, 1623, 1466, 1389, 1279, 1132, 901, 709, 681 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.89 (s, 2H), 7.87 (s, 1H), 7.76 (s, 2H), 3.46 – 3.38 (m, 3H), 2.21 – 1.97 (m, 2H), 1.78 (m, 1H), 1.27 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 141.6, 138.4, 132.5 (q, $J_{C-F} = 33.8$ Hz), 128.0, 126.9, 122.9 (q, $J_{C-F} = 273.4$ Hz), 122.8, 122.7, 66.3, 64.5, 32.2, 29.2, 27.8; **HRMS** (**FAB**⁺, **magnetic sector**) (m/z): Calcd for C₂₁H₁₃BrF₁₂O [(M)⁺] 587.9958 found [(M)⁺] 587.9951; enantioselectivity was determined by HPLC analysis (Chiralpak-IA, 0.3 mL/min, 220 nm, hexane); retention time: 15.0 min (major) and 16.0 min (enantiomer).

General procedure for synthesis of ((S)-Thiolan-2-yl)diarylmethanol 1a-1c:

A mixture of the (*R*)-3-(3-bromopropyl)-2,2-diaryloxirane (3.0 mmol) and Na₂S \cdot 9H₂O (1.4 g, 6.0 mmol) in 95% ethanol (10.5 mL) was sonicated at 10–25 °C for 24 h (conversion is monitored by the crude ¹H NMR). Upon removal of ethanol, the crude residue was diluted with DI water (20 mL) and CH₂Cl₂ (20 mL). The aqueous layer was extracted with CH₂Cl₂ (10 mL × 2). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc/hexane, 1:99 to 1:20) and recrystallized from hexane or light petroleum ether to afford the pure product.

((S)-Thiolan-2-yl)diphenylmethanol (1a)¹

Yield - 95%; R_f (2% EtOAc/hexane) 0.28; Prepared as shown in general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.51 (m, 2H), 7.44–7.41 (m, 2H), 7.30–7.22 (m, 4H), 7.21–7.12 (m, 2H), 4.66 (dd, J = 8.4, 6.8 Hz, 1H), 3.53 (s, 1H), 2.86–2.83 (m, 2H), 2.16 (m, 1H), 1.87–1.73 (m, 2H), 1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 145.0, 128.2, 128.0, 127.1, 126.5, 126.1, 125.4, 77.9, 59.5, 33.4, 31.7; enantioselectivity was determined by HPLC analysis (Chiralpak-AD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1); retention time 6.0 min (enantiomer) and 8.5 min (major).

(S)-Bis(3,5-dimethylphenyl)(tetrahydrothiophen-2-yl)methanol (1b)

Yield - 92%; R_f (2% EtOAc/hexane) 0.32; Prepared as shown in general procedure. **IR** (neat): 3468, 2918, 2860, 1601, 1441, 1146, 851, 755, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.19 (s, 2H), 7.11 (s, 2H), 6.87 (s, 1H), 6.83 (s, 1H), 4.68 (t, J = 2 Hz, 1H), 3.52 (s, 1H), 2.86 – 2.84 (m, 2H), 2.35 (s, 6H), 2.31 (s, 6H), 2.20 (m, 1H), 1.87 – 1.78 (m, 2H), 1.67 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.1, 145.0, 137.4, 137.3, 128.7, 128.1, 123.8, 123.1, 77.7, 59.7, 33.4, 31.8, 21.5; **ESI-HRMS** (*m*/*z*): Calcd for C₂₁H₂₆OSNa [(M+Na)⁺] 349.1602 found [(M+Na)⁺] 349.1608; enantioselectivity was determined by HPLC analysis (Chiralpak-AD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 199:1); retention time: 10.2 min (enantiomer) and 14.7 min (major).

(S)-Bis(3,5-bis(trifluoromethyl)phenyl)(tetrahydrothiophen-2-yl)methanol (1c)

Yield - 90%; R_f (5% EtOAc/hexane) 0.49; Prepared as shown in general procedure. **IR** (neat): 3542, 2942, 2869, 1642, 1372, 1278, 1132, 900, 682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.90 (s, 2H), 7.81 (s, 1H), 7.78 (s, 1H), 4.67 (m, 1H), 3.99 (s, 1H), 2.95 – 2.88 (m, 2H), 2.24 (m, 1H), 1.90 (m, 1H), 1.75 (m, 1H), 1.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.9, 146.1, 132.1 (qd, $J_{C-F} = 33.8$ Hz), 126.4, 125.6, 122.9 (q, $J_{C-F} = 273.4$ Hz), 122.1, 121.7, 58.8, 33.7, 31.7, 31.7; **EI-HRMS** (*m*/*z*): Calcd for C₂₁H₁₃F₁₂OS [(M-H)⁺] 541.0496, found [(M-H)⁺] 541.0499; enantioselectivity was determined by HPLC analysis (Chiralcel-OD-H, 0.4 mL/min, 220 nm, hexane); retention time: 13.4 min (enantiomer) and 14.8 min (major).

General procedure for synthesis of (S)-2-((Benzyloxy)diarylmethyl)tetrahydrothiophene 2a-2c:

To a stirred solution of ((*S*)-thiolan-2-yl)diarylmethanol (1.9 mmol) in DMF (3.7 mL) at 0 °C was added sodium hydride (148 mg, 3.7 mmol). The reaction mixture was warmed to room temperature and stirred for 1 h. Benzyl bromide (0.27 mL, 2.2 mmol) was then slowly added to the reaction mixture. After 16 h, the reaction mixture was quenched with sat. NH₄Cl (5 mL) at 0 °C, extracted with Et₂O (5 mL × 3), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc/hexane, 1:49) to give the pure product.

(S)-2-((Benzyloxy)diphenylmethyl)tetrahydrothiophene (2a)¹

White solid; Yield - 92%; R_f (10% EtOAc/hexane) 0.5; Prepared as shown in general experimental procedure.). ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.55 (m, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.34–7.16 (m, 11H), 4.66 (t, J = 7.2 Hz, 1H), 4.38 (d, J = 11.6 Hz, 1H), 4.21 (d, J = 11.5 Hz, 1H), 2.63 (m, 1H), 2.32 (ddd, J = 10.1, 8.2, 6.1 Hz, 1H), 1.98 (td, J = 12.7, 6.0 Hz, 1H), 1.84 (m, 1H), 1.64 (m, 1H), 1.34 (tt, J = 11.9, 5.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 129.3, 128.8, 128.0, 127.4, 127.2, 127.1, 127.0, 126.9, 126.9, 85.9, 65.5, 53.8, 32.6, 31.6, 30.2.

(S)-2-((Benzyloxy)bis(3,5-dimethylphenyl)methyl)tetrahydrothiophene (2b)

Colorless liquid; Yield -78% (based on recovered starting material); R_f (10% EtOAc/hexane) 0.53; Prepared as shown in general experimental procedure. **IR** (neat): 3058, 1604, 1512, 1205, 1123, 957, 726, 694, 526 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 3H), 7.25 – 7.17 (m, 4H), 7.05 (s, 2H), 6.92 (s, 1H), 6.88 (s, 1H), 4.59 (t, J = 6.9 Hz, 1H), 4.44 (d, J = 9.6 Hz, 1H), 4.38 (d, J = 9.6 Hz, 1H), 2.70 (m, 1H), 2. 43(m, 1H), 2.30 (s, 6H), 2.28 (s, 6H), 1.96 (m, 1H), 1.84 (m, 1H), 1.70 (m, 1H), 1.50 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 141.7, 136.7, 136.3, 130.8, 128.8, 128.7, 128.4, 128.1, 127.7, 127.2, 126.9, 126.5, 65.9, 54.7, 32.8, 31.1, 30.4, 21.6; **ESI-HRMS** (m/z): Calcd for C₂₈H₃₂OSNa [(M+Na)⁺] 439.2072, found [(M+Na)⁺] 439.2070.

(S)-2-((Benzyloxy)bis(3,5-bis(trifluoromethyl)phenyl)methyl)tetrahydrothiophene (2c)

Colorless liquid; Yield - 82% (based on recovered starting material); R_f (10% EtOAc/hexane) 0.5; Prepared as shown in general experimental procedure. **IR** (neat): 3092, 2936, 2868, 1623, 1466, 1374, 1279, 1133, 900, 710, 682 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 8.02 (s, 2H), 7.89 (s, 1H), 7.88 (s, 1H), 7.85 (s, 2H), 7.35 – 7.29 (m, 3H), 7.20 – 7.19 (m, 2H), 4.66 (t, J = 7.2 Hz, 1H), 4.32 (d, J = 10.8 Hz, 1H), 4.27 (d, J = 11.2 Hz, 1H), 2.78 (m, 1H), 2.38 (m, 1H), 2.15 (m, 1H), 1.80 (m, 1H), 1.63 (m, 1H), 1.44 (m, 1H); ¹³C **NMR** (125 MHz, CDCl₃) δ 144.7, 143.2, 137.1, 131.3 (dq, $J_{C-F} = 84.3$ Hz, $J_{C-F} = 33.3$ Hz), 129.3, 129.0, 128.6, 128.0, 127.3, 123.2 (dq, $J_{C-F} = 271.1$ Hz, $J_{C-F} = 20.6$ Hz), 122.5, 122.1, 85.6, 66.3, 52.4, 33.1, 31.5, 30.2; **HRMS** (**FAB**⁺, **magnetic sector**) (m/z): Calcd for C₂₈H₂₁F₁₂OS [(M+H)⁺] 633.1122, found [(M+H)⁺] 633.1116.

General procedure for synthesis of Imines

(*E*)-*N*-Benzylidene-4-methylbenzenesulfonamide $(7a)^3$

To a solution of *p*-toluenesulfonamide (744 mg, 4.7 mmol), activated 4Å MS (1 g) and catalytic amount of Amberlyst[®] 15 (20 mg) in dry toluene was added benzaldehyde (500 mg, 4.7 mmol) and heated at 130 °C in a sealed tube for 12 h. The reaction mixture was filtered through Celite[®] and concentrated in *vacuo*. The residue was recrystallized by EtOAc to afford the pure product as a colorless solid (1.0 g, 86%). R_f (30% EtOAc/hexane) 0.35; ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 7.94 – 7.88 (m, 4H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 8 Hz, 2H), 7.35 (t, *J* = 5 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 144.6, 134.9, 132.5, 131.3, 129.8, 129.1, 128.1, 21.6

(E)-tert-Butyl benzylidenecarbamate (7b)³

At room temperature, to a mixture of *tert*-butyl carbamate (1.1 g, 10 mmol) \cdot formic acid (0.66 mL, 20 mmol) and the sodium salt of 4-toluenensulfinic acid (3.5 g, 20 mmol) in H₂O/MeOH (2/1, 28 mL) was added neat -S9 -

benzaldehyde (1.5 mL, 15 mmol). The result white slurry was allowed to stir for 1 d. The thus-formed white solid was filtered over a sintered glass funnel, washed with Et_2O (25 mL \times 3), and dried under vacuum, affording the analytically pure intermediate as a white solid (1.9 g, 55 %).

Under inert atmosphere, a flame-dried round-bottom flask was charged with that intermediate (180 mg, 0.5 mmol), anhydrous K₂CO₃ (414 mg, 3.0 mmol), and Na₂SO₄ (531 mg, 3.75 mmol) in THF (0.1 M, 5 mL) and heated at reflux for 15 h. The reaction mixture was then allowed to cool to room temperature, followed by filtration through a pad of Celite[®]. Evaporation of the collected organic solvent under reduced pressure afforded the analytically pure product (40 mg, 95 %). R_f (5% EtOAc/hexane) 0.23; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.93 – 7.90 (m, 2H), 7.56 (m, 1H), 7.49 – 7.45 (m, 2H), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 162.6, 134.1, 133.5, 130.2, 128.9, 82.3, 27.9

(E)-N-Arylmethylene-P,P-diphenylphosphinic amide 7c – 7q:

To a solution of NH₂OHHCl (1.1 g, 16.2 mmol) and NaOAc (1.1 g, 13.76 mmol) in H₂O (12.1 mL) was added benzaldehyde (0.96 mL, 9.4 mmol) and stirred for 3 h. After completion of the reaction, extracted with Et₂O (10 mL × 3), washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (EtOAc/hexane, 1:19) to give the pure oxime.

To a solution of oxime (0.1 mL, 1.0 mmol) in CH_2Cl_2 /hexane (1:1, 5 mL) triethylamine (0.20 mL, 1.1 mmol) was added at -40 °C and stirred for 10 min, diphenylphosphinic chloride (0.15 mL, 1.1 mmol) was slowly added to the reaction at same temperature. The reaction mixture was gradually allowed to warm to room temperature and stirred overnight, evaporated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/hexane, 1:49) to give the pure product.

(E)-N-Benzylidene-P,P-diphenylphosphinic amide (7c)³

White solid; Yield - 50%; R_f (50% EtOAc/hexane) 0.3; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (d, J = 32.1 Hz, 1H), 8.03 – 7.89 (m, 6H), 7.55 – 7.40 (m,

9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6 (d, $J_{C-P} = 7.6$ Hz), 135.7 (d, $J_{C-P} = 24.7$ Hz), 133.50, 132.8 (d, $J_{C-P} = 126.7$ Hz), 131.7 (d, $J_{C-P} = 1.9$ Hz), 131.4 (d, $J_{C-P} = 9.1$ Hz), 130.0, 128.8, 128.3 (d, $J_{C-P} = 12.5$ Hz).

(E)-N-(4-(Trifluoromethyl)benzylidene)-P,P-diphenylphosphinic amide (7d)⁴

White solid; Yield - 72%; R_f (50% EtOAc/hexane) 0.45; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.38 (d, J = 31.5 Hz, 1H), 8.13 (d, J = 8.2 Hz, 2H), 7.99 – 7.90 (m, 4H), 7.77 (d, J = 8.2 Hz, 2H), 7.56 – 7.43 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2 (d, $J_{C-P} = 7.5$ Hz), 138.6 (d, $J_{C-P} = 24.7$ Hz), 134.8 (q, $J_{C-F} = 32.6$ Hz), 133.0, 132.1 (d, $J_{C-P} = 2.1$ Hz), 131.7, 131.6 (d, $J_{C-P} = 9.2$ Hz), 130.3, 128.6 (d, $J_{C-P} = 12.6$ Hz), 126.0 (d, $J_{C-P} = 3.4$ Hz), 123.6 (q, $J_{C-F} = 270$ Hz).

(E)-N-(4-Chlorobenzylidene)-P,P-diphenylphosphinic amide (7e)⁴

White solid; Yield - 58%; R_f (50% EtOAc/hexane) 0.33; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, J = 31.7 Hz, 1H), 7.96 – 7.90 (m, 6H), 7.53 – 7.43 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3 (d, $J_{C-P} = 7.3$ Hz), 140.0, 134.3 (d, $J_{C-P} = 25.2$ Hz), 132.8 (d, $J_{C-P} = 151.6$ Hz), 132.1, 131.9, 131.6 (d, $J_{C-P} = 9.07$ Hz), 131.3, 129.4, 128.5 (d, $J_{C-P} = 12.6$ Hz).

(E)-N-(4-Fluorobenzylidene)-P,P-diphenylphosphinic amide (7f)⁵

White solid; Yield - 78%; R_f (50% EtOAc/hexane) 0.41; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, J = 31.8 Hz, 1H), 8.07 – 7.99 (m, 2H), 7.98 – 7.88 (m, 4H), 7.54 – 7.41 (m, 6H), 7.23 – 7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1 (d, $J_{C-P} = 7.4$ Hz), 166.1 (d, $J_{C-F} = 254.3$ Hz), 133.5, 132.5 (d, $J_{C-P} = 9.4$ Hz), 132.2, 131.8 (d, $J_{C-F} = 2.1$ Hz), 131.6 (d, $J_{C-P} = 9.2$ Hz), 128.5 (d, $J_{C-P} = 12.5$ Hz), 116.3 (d, $J_{C-P} = 22$ Hz).

(*E*)-*N*-(4-Methoxybenzylidene)-*P*,*P*-diphenylphosphinic amide (7g)⁶

White solid; Yield - 55%; R_f (50% EtOAc/hexane) 0.2; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, J = 32.1 Hz, 1H), 8.02 – 7.88 (m, 6H), 7.55 – 7.38 (m, 6H), 6.99 (d, J = 8.7 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6 (d, $J_{C-P} = 7.4$ Hz), 164.1, 133.4 (d, $J_{C-P} = 127.2$ Hz), 132.3, 131.6, 131.5, 129.1 (d, $J_{C-P} = 25.4$ Hz), 128.4 (d, $J_{C-P} = 12.5$ Hz), 114.3 , 55.5.

(E)-N-(3-Methoxybenzylidene)-P,P-diphenylphosphinic amide (7h)⁴

Colourless oil; Yield - 64%; R_f (50% EtOAc/hexane) 0.3; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, J = 31.9 Hz, 1H), 7.96 – 7.91 (m, 4H), 7.58 – 7.40 (m, 9H), 7.13 (dd, J = 8.2, 2.6 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7 (d, $J_{C-P} = 7.7$ Hz), 160.0, 137.1, 132.9 (d, $J_{C-P} = 128.1$ Hz), 131.8 (d, $J_{C-P} = 2.9$ Hz), 131.6 (d, $J_{C-P} = 9.4$ Hz), 130.0, 128.6 (d, $J_{C-P} = 12.5$ Hz), 123. 7, 120.0, 113.6, 55.5.

(*E*)-*N*-(2-Methoxybenzylidene)-*P*,*P*-diphenylphosphinic amide (7i)⁷

White solid; Yield - 61%; R_f (50% EtOAc/hexane) 0.48; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (d, J = 32.6 Hz, 1H), 8.23 (dd, J = 7.8, 1.8 Hz, 1H), 7.94 (m, 1.5 Hz, 4H), 7.55 – 7.40 (m, 7H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173. 7 (d, $J_{C-P} = 7$ Hz), 160.0, 137.2 (d, $J_{C-P} = 25$ Hz), 132.9 (d, $J_{C-P} = 126$ Hz), 131.8 (d, $J_{C-P} = 3$ Hz), 131.6 (d, $J_{C-P} = 10$ Hz), 130.0, 128.5 (d, $J_{C-P} = 13$ Hz), 123.7, 120.0, 113.6, 55.5.

(E)-N-(4-Cyanobenzylidene)-P,P-diphenylphosphinic amide (7j)⁸

Pale yellow solid; Yield - 69%; R_f (50% EtOAc/hexane) 0.31; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (d, J = 31.2 Hz, 1H), 8.09 (d, J = 8.2 Hz, 2H), 7.99 – 7.86 (m, 4H), 7.79 (d, J = 8.2 Hz, 2H), 7.56 – 7.40 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6 (d, $J_{C-P} = 8$ Hz), 140.0 (d, $J_{C-P} = 25$ Hz), 132.6, 132.1, 132.1, 131.5 (d, $J_{C-P} = 9$ Hz), 130.3, 128.6 (d, $J_{C-P} = 13$ Hz), 117.9, 116.5.

(E)-N-(4-Methylbenzylidene)-P,P-diphenylphosphinic amide (7k)⁴

White solid; Yield - 62%; R_f (50% EtOAc/hexane) 0.38; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, J = 32.1 Hz, 1H), 8.00 – 7.85 (m, 6H), 7.57 – 7.38 (m, 6H), 7.29 (d, J = 7.9 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5 (d, $J_{C-P} = 7.6$ Hz), 144.6, 133.4 (d, $J_{C-P} = 24.9$ Hz), 133.2 (d, $J_{C-P} = 126.4$ Hz), 131.6, 131.5 (d, $J_{C-P} = 9.1$ Hz), 130.2, 129.6, 128.4 (d, $J_{C-P} = 12.4$ Hz), 21.8.

(*E*)-*N*-(3-Methylbenzylidene)-*P*,*P*-diphenylphosphinic amide (71)⁷

White solid; Yield - 70%; R_f (50% EtOAc/hexane) 0.3; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, J = 32.4 Hz, 1H), 7.96-7.91 (m, 4H), 7.83 (s, 1H), 7.79 (t, J = 4.4 Hz, 1H), 7.52 – 7.42 (m, 6H), 7.39 (d, J = 5.2 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0 (d, $J_{C-P} = 7.5$ Hz), 138.8, 136.0 (d, $J_{C-P} = 24.7$ Hz), 134.5, 133.1 (d, $J_{C-P} = 106.7$ Hz), 131.7, 131.6 (d, $J_{C-P} = 9.2$ Hz), 130.3, 128.8, 128.4 (d, $J_{C-P} = 12.5$ Hz), 127.8, 21.3.

(*E*)-*N*-(2-Methylbenzylidene)-*P*,*P*-diphenylphosphinic amide (7m)⁷

White solid; Yield - 60%; R_f (50% EtOAc/hexane) 0.35; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, J = 32.6 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.02 – 7.90 (m, 4H), 7.53 – 7.41 (m, 7H), 7.36 – 7.21 (m, 2H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5 (d, $J_{C-P} = 7.6$ Hz), 141.0, 133.7 (d, $J_{C-P} = 27.8$ Hz), 132.9 (d, $J_{C-P} = 59.0$ Hz), 131.6 (d, $J_{C-P} = 9.3$ Hz), 131.5, 129.8, 128.5 (d, $J_{C-P} = 12.5$ Hz), 126.4, 19.7.

(E)-N-([1,1'-Biphenyl]-4-ylmethylene)-P,P-diphenylphosphinic amide (7n)⁹

white solid; Yield - 82%; R_f (50% EtOAc/hexane) 0.4; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (d, J = 32.0 Hz, 1H), 8.09 (d, J = 8.3 Hz, 2H), 7.97 (m, 1.4 Hz, 4H), 7.73 (d, J = 8.3 Hz, 2H), 7.68 – 7.61 (m, 2H), 7.55 – 7.36 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (d, J_{C-P} = 7.6 Hz), 146.4, 139.9, 134.7 (d, J_{C-P} = 25 Hz), 133.0 (d, J_{C-P} = 126.5 Hz), 131.8 (d, J_{C-P} = 2 Hz), 131.6 (d, J_{C-P} = 9 Hz), 130.7, 129.0, 128.5 (d, J_{C-P} = 20 Hz), 128.3, 127.6, 127.3.

(E)-N-(Naphthalen-2-ylmethylene)-P,P-diphenylphosphinic amide (70)⁷

White solid; Yield - 83%; R_f (50% EtOAc/hexane) 0.4; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.47 (d, J = 31.9 Hz, 1H), 8.34 (s, 1H), 8.22 (dd, J = 8.6, 1.5 Hz, 1H), 8.03 - 7.86 (m, 7H), 7.65 - 7.54 (m, 2H), 7.54 - 7.43 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7 (d, $J_{C-P} = 7.6$ Hz), 136.1, 134.4, 133.7, 132.9, 132.4, 131.8, 131.6 (d, $J_{C-P} = 10$ Hz), 129.4, 128.9, 128.7, 128.5 (d, $J_{C-P} = 12.5$ Hz), 128.0, 126.9, 123.8.

(*E*)-*N*-(2-Bromobenzylidene)-*P*,*P*-diphenylphosphinic amide (7p)⁴

Colorless oil; Yield - 78%; R_f (50% EtOAc/hexane) 0.45; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, J = 31.2 Hz, 1H), 8.29 (dd, J = 7.4, 2.2 Hz, 1H), 8.01 – 7.88 (m, 4H), 7.63 (m, 1H), 7.55 – 7.35 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7 (d, $J_{C-P} = 6.3$ Hz), 134.6 (d, $J_{C-P} = 25$ Hz), 134.1 (d, $J_{C-P} = 74$ Hz), 133.3, 132.0, 131.9 (d, $J_{C-P} = 2$ Hz), 131.6 (d, $J_{C-P} = 9$ Hz), 129.8, 128.5 (d, $J_{C-P} = 13$ Hz), 128.0, 127.6.

(E)-N-(3,4-Dimethoxybenzylidene)-P,P-diphenylphosphinic amide $(7q)^6$

White solid; Yield - 58%; R_f (50% EtOAc/hexane) 0.13; Prepared as shown in general experimental procedure. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, J = 32.0 Hz, 1H), 7.93 -7.88 (m, 4H), 7.61 (s, 2H), 7.49-7.43 (m, 6H), 6.92 (d, J = 8.1 Hz, 1H), 3.95 (s, 3H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9 (d, $J_{C-P} = 7.1$ Hz), 154.0, 149.5, 133.1 (d, $J_{C-P} = 127.5$ Hz), 131.6, 131.5, 131.4, 129.1 (d, $J_{C-P} = 25.3$ Hz), 128.4 (d, $J_{C-P} = 12.4$ Hz), 126.8, 110.2 (d, $J_{C-P} = 62.7$ Hz), 56.0, 56.0.

General procedure for Synthesis of Aziridine:

To a flame-dried schlenk tube containing K_2CO_3 (67.9 mg, 0.49 mmol), *O*-benzyl(Thiolan-2yl)diphenylmethyl ether (11.2 mg, 0.03 mmol), NaI (13 mg, 0.08 mmol), imine (50 mg, 0.16 mmol) and 0.5 ml of CH₃CN were added. To that, finally benzyl bromide (38.9 µL, 0.33 mmol) was added and stirred, the reaction was monitored by TLC. After completion, the reaction mixture was diluted with EtOAc and filtered through Celite[®], filtrate was evaporated in *vacuo* to yield the crude product. The crude product was further purified by EtOAc/hexane mixture over neutral alumina to afford the pure corresponding product.

(2R,3R)-2,3-Diphenyl-1-tosylaziridine (8a)¹⁰

White solid; Yield - 78%; R_f (20% EtOAc/hexane) 0.5; Prepared as shown in general experimental procedure. [α]²⁷_D = +23.8 (*c* 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.43 – 7.34 (m, 10H), 7.21 – 7.19 (m, 2H), 4.27 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 137.1, 133.0, 129.4, 128.7, 128.5, 127.5, 128.3, 50.4, 21.6; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 17.4 min (enantiomer) and 20.7 min (major).

tert-butyl (2R,3R)-2,3-Diphenylaziridine-1-carboxylate (8b)¹¹

White solid; Yield - 63%; R_f (5% EtOAc/hexane) 0.3; Prepared as shown in general experimental procedure. [α]²⁷_D = +121 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.30 (m, 10H), 3.78 (s, 2H), 1.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 135.6, 128.5, 128.1, 127.1, 81.4, 47.6, 27.7; enantioselectivity was determined by HPLC analysis (Chiralpak-AD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1); retention time: 8.1 min (major) and 8.8 min (enantiomer).

((2R,3R)-2,3-Diphenylaziridin-1-yl)diphenylphosphine oxide (8c)¹²

White solid; Yield - 85%; R_f (50% EtOAc/hexane) 0.59; Prepared as shown in general experimental procedure. $[\alpha]^{27}{}_{\rm D}$ = -17.3 (*c* 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (m, 2H), 7.64 – 7.55 (m, 2H), 7.40 – 7.19 (m, 16H), 4.09 (d, J = 12 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6 (d, $J_{\rm C-P} = 5$ Hz), 131.7 (d, $J_{\rm C-P} = 9$ Hz) , 131.3 (d, $J_{\rm C-P} = 4$ Hz), 128.3, 128.2, 128.1 128.0, 127.8, 47.2 (d, $J_{\rm C-P} = 6$ Hz); enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 20.0 min (major) and 23.4 min (enantiomer).

((2R,3R)-2-Phenyl-3-(4-(trifluoromethyl)phenyl)aziridin-1-yl)diphenylphosphine oxide (8d)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

White solid; Yield - 82%; R_f (50% EtOAc/hexane) 0.63; Prepared as shown in general experimental procedure. Mp 124-126 °C; $[\alpha]^{27}{}_{\rm D}$ = -11.3 (*c* 1.0, CHCl₃); **IR** (neat): 3057, 1494, 1437, 1203, 1123, 1014, 956, 727, 708, 555 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.67 – 7.57 (m, 2H), 7.50 (q, *J* = 8.6 Hz, 4H), 7.45 – 7.32 (m, 6H), 7.32 – 7.23 (m, 5H), 4.15 (q, *J* = 3.2 Hz, 1H), 4.11 (q, *J* = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7 (d, *J*_{C-P} = 1.9 Hz), 135.0 (d, *J*_{C-P} = 5.0 Hz), 134.0 (d, *J*_{C-P} = 133.3 Hz), 132.5 (d, *J*_{C-P} = 124 Hz), 131.6, 131.5, 131.4, 131.3, 130.1 (q, *J*_{C-F} = 32.3 Hz), 128.3, 128.2, 128.1, 128.0, 127.7, 124.0 (d, *J*_{C-F} = 270.5 Hz), 125.1 (d, *J*_{C-P} = 3.4 Hz), 122.6, 47.4 (d, *J*_{C-P} = 6.7 Hz), 46.4 (d, *J*_{C-P} = 6.6 Hz) ; ³¹P NMR (162 MHz, CDCl₃) δ 28.24; EI-MS (*m*/*z*): Calcd for C₂₇H₂₂F₃NOP [(M + H)⁺] 464.1391, found [(M + H)⁺] 464.1405; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 15.9 min (major) and 20.8 min (enantiomer).

((2R,3R)-2-(4-Chlorophenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8e)

White solid; Yield - 84%; R_f (50% EtOAc/hexane) 0.6; Prepared as shown in general experimental procedure. Mp 137-140 °C; $[\alpha]^{27}_{D} = -36.7$ (*c* 1.0, CHCl₃); **IR** (neat): 3060, 1619, 1438, 1325, 1166, 1124, 729, 697, 558 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.83 (m, 2H), 7.65-7.60 (m, 2H), 7.44 – 7.19 (m, 15H), 4.10 (dd, J = 14.3, 3.2 Hz, 1H), 4.03 (dd, J = 14.0, 3.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.4 (d, $J_{C-P} = 4.7$ Hz), 134.1 (d, $J_{C-P} = 133.1$ Hz), 134.0 (d, $J_{C-P} = 5.5$ Hz), 132.7 (d, $J_{C-P} = 124.2$ Hz), 131.6, 131.4 (d, $J_{C-P} = 13$ Hz), 131.3, 129.6, 129.2, 128.3, 128.2, 128.2, 128.1, 128.0, 128.0, 127.6, 46.8, 46.8; ³¹P NMR (162 MHz, CDCl₃) δ 28.24; EI-MS (m/z): Calcd for C₂₆H₂₂ClNOP [(M + H)⁺] 430.1128, found [(M + H)⁺] 430.1122; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 19.1 min (major) and 24.7 min (enantiomer).

((2R,3R)-2-(4-Fluorophenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8f)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

White solid; Yield - 85%; R_f (50% EtOAc/hexane) 0.58; Prepared as shown in general experimental procedure. Mp 139-141 °C; $[\alpha]^{27}_{D}$ = -24.7 (*c* 1.0, CHCl₃)); **IR** (neat):3058, 1604, 1512, 1205, 1123, 957, 726, 694, 526 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.81 (m, 2H), 7.63 (m, 2H), 7.48 – 7.22 (m, 13H), 6.98 – 6.89 (m, 2H), 4.15 (dd, *J* = 14.5, 3.3 Hz, 1H), 4.01 (dd, *J* = 14.0, 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J*_{C-F} = 245.2 Hz), 135.6 (d, *J*_{C-P} = 4.8 Hz), 134.2 (d, *J*_{C-P} = 133.2 Hz), 132.8 (d, *J*_{C-P} = 124.2 Hz), 131.5 (d, *J*_{C-P} = 31.9 Hz), 131.5 (d, *J*_{C-P} = 13.2 Hz), 131.0, 129.7 (d, *J*_{C-P} = 8.2 Hz), 128.3, 128.3, 128.2, 128.1, 128.0 (d, *J*_{C-P} = 2.8 Hz), 127.5, 115.20, 115.0, 47.2 (d, *J*_{C-P} = 7 Hz), 46.3 (d, *J*_{C-P} = 6.4 Hz) ; ³¹P NMR (162 MHz, CDCl₃) δ 28.20; **EI-HRMS** (*m*/*z*): Calcd for C₂₆H₂₁FNOP [(M)⁺] 413.1345, found [(M)⁺] 413.1353; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1); retention time: 8.1 min (major) and 10.1 min (enantiomer).

((2R,3R)-2-(4-Methoxyphenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8g)

Colorless oil; Yield - 86%; R_f (50% EtOAc/hexane) 0.55; Prepared as shown in general experimental procedure. $[\alpha]^{28}{}_{\rm D}$ = -210.0 (*c* 0.4, CHCl₃); **IR** (neat): 3057, 2995, 2926, 1612, 1514, 1438, 1248, 1170, 1125, 742, 558 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.67 – 7.58 (m, 2H), 7.43 – 7.22 (m, 13H), 6.81 – 6.75 (m, 2H), 4.17 (dd, *J* = 14.6, 3.3 Hz, 1H), 3.99 (dd, *J* = 14.1, 3.3 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 136.1 (d, *J*_{C-P} = 4.5 Hz), 134.5 (d, *J*_{C-P} = 133.1 Hz), 133.1 (d, *J*_{C-P} = 124.4 Hz), 131.7 (d, *J*_{C-P} = 9.1 Hz), 131.5, 131.4, 131.3, 129.3, 128.3, 128.2, 128.0, 127.9 (d, *J*_{C-P} = 9.3 Hz), 127.5, 127.1 (d, *J*_{C-P} = 5.1 Hz), 113.6, 55.2, 47.9 (d, *J*_{C-P} = 6.9 Hz), 46.0 (d, *J*_{C-P} = 6.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 28.24; HRMS (FAB⁺, magnetic sector) (*m*/*z*): Calcd for C₂₇H₂₅NO₂P [(M + H)⁺] 426.1623, found [(M + H)⁺] 426.1628; enantioselectivity was determined by HPLC analysis (Chiralcel-OD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 9/1); retention time: 7.9 min (major) and 9.7 min (enantiomer).

((2R,3R)-2-(3-Methoxyphenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8h)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

White solid; Yield - 93%; R_f (50% EtOAc/hexane) 0.55; Prepared as shown in general experimental procedure. Mp 156-158 °C; $[\alpha]^{28}{}_{\rm D}$ = -2.3 (*c* 0.7, CHCl₃); **IR** (neat): 3057, 3005, 2833, 1602, 1438, 1206, 1123, 958, 727, 548 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.73 (m, 2H), 7.61 (m, 2H), 7.37 – 7.21 (m, 11H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.94 – 6.76 (m, 2H), 6.75 (dd, *J* = 8.2, 1.6 Hz, 1H), 4.08 (dd, *J* = 14.2, 3.1 Hz, 1H), 4.02 (dd, *J* = 14.1, 3.1 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 137.4 (d, *J*_{C-P} = 4.7 Hz), 135.4 (d, *J*_{C-P} = 4.7 Hz), 134.5 (d, *J*_{C-P} = 133.5 Hz), 133.0 (d, *J*_{C-P} = 124.4 Hz), 131.7 (d, *J*_{C-P} = 9.1 Hz), 131.5, 131.4, 131.3, 129.3, 128.3, 128.2, 128.0, 127.9, 120.1, 114.1, 112.8, 55.2, 47.6 (d, *J*_{C-P} = 6.9 Hz), 47.0 (d, *J*_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 28.12; HREI-MS (*m*/*z*): Calcd for C₂₇H₂₄NO₂P [(M)⁺] 425.1545, found [(M)⁺] 425.1554; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 254 nm, hexane/*i*-PrOH, 49:1); retention time: 24.0 min (major) and 26.6 min (enantiomer).

((2*R*,3*R*)-2-(2-Methoxyphenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8i)

Colorless oil; Yield - 88%; R_f (50% EtOAc/hexane) 0.43; Prepared as shown in general experimental procedure. $[\alpha]^{28}{}_{\rm D}$ = +9.9 (*c* 0.1, CHCl₃); **IR** (neat): 3057, 2953, 2837, 1603, 1588, 1463, 1438, 1248, 1200, 1124, 1027, 9924, 753, 727, 697, 565 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.91 (m, 2H), 7.71 – 7.66 (m, 2H), 7.46 – 7.21 (m, 13H), 6.94 (m, 1H), 6.66 (m, 1H), 4.32 (dd, *J* = 14.4, 3.2 Hz, 1H), 4.20 (dd, *J* = 14.8, 3.2 Hz, 1H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 136.4 (d, *J*_{C-P} = 4.8 Hz), 134.7 (d, *J*_{C-P} = 131.9 Hz), 133.2 (d, *J*_{C-P} = 125.1 Hz), 131.6 (d, *J*_{C-P} = 8.9 Hz),131.3, 131.0, 129.2, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 123.6, 123.5, 120.1, 109.7, 54.7, 44.6 (d, *J*_{C-P} = 5.8 Hz), 44.7 (d, *J*_{C-P} = 6.9 Hz),; ³¹P NMR (162 MHz, CDCl₃) δ 28.26; **HREI-MS** (*m*/*z*): Calcd for C₂₇H₂₄NO₂P [(M)⁺] 425.1545, found [(M)⁺] 425.1543; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 280 nm, hexane/*i*-PrOH, 9:1); retention time: 6.0 min (major) and 7.3 min (enantiomer).

(4-((2*R*,3*R*)-1-(Diphenylphosphoryl)-3-phenylaziridin-2-yl)benzonitrile (8j)¹³

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

White solid; Yield - 73%; R_f (50% EtOAc/hexane) 0.35; Prepared as shown in general experimental procedure. Mp 184-186 °C; $[\alpha]^{28}{}_{\rm D}$ = -10.7 (*c* 1.0, CHCl₃)); **IR** (neat): 3058, 2227, 1609, 1438, 1205, 1123, 953, 727, 694, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 2H), 7.66 – 7.63 (m, 2H), 7.58 – 7.23 (m, 15H), 4.12 (q, *J* = 3.2 Hz, 1H), 4.08 (q, *J* = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0 (d, *J* C-P = 5.3 Hz), 134.8 (d, *J* C-P = 4.8 Hz), 133.8 (d, *J* C-P = 133 Hz), 132.3 (d, *J* C-P = 123 Hz), 132.0, 131.7, 131.6 (d, *J* C-P = 2.8 Hz), 131.5 (d, *J* C-P = 9.4 Hz), 131.3 (d, *J* C-P = 9.4 Hz), 128.5, 128.3 (d, *J* C-P = 21.8 Hz), 128.4, 128.3, 128.1, 127.6, 118.6, 111.7, 47.5 (d, *J* C-P = 6.5 Hz), 46.5 (d, *J* C-P = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 28.35; HRMS (FAB⁺, magnetic sector) (*m*/*z*): Calcd for C₂₇H₂₂N₂OP [(M + H)⁺] 421.1470, found [(M + H)⁺] 421.1463; enantioselectivity was determined by HPLC analysis (Chiralpak-AS, 0.7 mL/min, 254 nm, hexane/*i*-PrOH, 19:1); retention time: 32.6 min (major) and 38.7 min (enantiomer).

((2*R*,3*R*)-2-Phenyl-3-(p-tolyl)aziridin-1-yl)diphenylphosphine oxide(8k)

White solid; Yield - 85%; R_f (50% EtOAc/hexane) 0.63; Prepared as shown in general experimental procedure. Mp 152-154 °C; $[\alpha]^{27}{}_{\rm D}$ = -24.3 (*c* 1.0, CHCl₃); **IR** (neat): 3056, 2917, 1517, 1437, 1261, 1069, 725, 695, 572 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 2H), 7.66 – 7.61 (m, 2H), 7.41 – 7.24 (m, 13H), 7.07 (d, *J* = 7.9 Hz, 2H), 4.09 (dt, *J* = 12.9, 3.3 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 135.8 (d, *J*_{C-P} = 4.3 Hz), 135.1, 133.8 (d, *J*_{C-P} = 10.9 Hz), 132.4, 131.7 (d, *J*_{C-P} = 9.2 Hz), 131.5, 131.4, 131.3 (d, *J*_{C-P} = 1.5 Hz), 128.9, 128.3, 128.2, 128.2, 128.1, 127.9 (d, *J*_{C-P} = 1.9 Hz), 127.7 (d, *J*_{C-P} = 3.5 Hz), 47.3 (d, *J*_{C-P} = 6.9 Hz), 46.8 (d, *J*_{C-P} = 6.7 Hz), 21.2; ³¹P NMR (162 MHz, CDCl₃) δ 28.20; EI-MS (*m*/*z*): Calcd for C₂₇H₂₅NOP [(M + H)⁺] 410.1674, found 410.1686;enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 18.1 min (major) and 22.9min (enantiomer).

((2R,3R)-2-Phenyl-3-(m-tolyl)aziridin-1-yl)diphenylphosphine oxide (8l)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

White solid; Yield - 92%; R_f (50% EtOAc/hexane) 0.55; Prepared as shown in general experimental procedure. Mp 152-154 °C; $[\alpha]^{30}{}_{\rm D}$ = -9.0 (*c* 0.3, CHCl₃); **IR** (neat): 3057, 3009, 2978, 2917, 1605, 1590, 1438, 1206, 955, 779, 712, 552 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.84 (m, 2H), 7.67 – 7.59 (m, 2H), 7.42 – 7.25 (m, 11H), 7.18-7.14 (m, 2H), 7.12 (s, 1H), 7.06 (d, *J* = 6.5 Hz, 1H), 4.10 (dq, *J* = 6.5 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 135.7 (d, *J* _{C-P} = 5.0 Hz), 135.5 (d, *J* _{C-P} = 4.8 Hz), 134.5 (d, *J* _{C-P} = 134.1 Hz), 133.0 (d, *J* _{C-P} = 125.1 Hz), 131.7 (d, *J* _{C-P} = 9.2 Hz), 131.5, 131.4, 131.2, 128.7 (d, *J* _{C-P} = 5.9 Hz), 128.3, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 124.7, 47.2 (d, *J* _{C-P} = 6.6 Hz), 47.0 (d, *J* _{C-P} = 6.7 Hz), 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 28.02; **EI-MS** (*m*/*z*): Calcd for C₂₇H₂₄NOP [(M)⁺] 409.1596, found [(M)⁺] 409.1595; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH 49/1); retention time: 16.5 min (major) and 19.6 min (enantiomer).

((2R,3R)-2-Phenyl-3-(o-tolyl)aziridin-1-yl)diphenylphosphine oxide (8m)

Colorless oil; Yield - 86%; R_f (50% EtOAc/hexane) 0.6; Prepared as shown in general experimental procedure. $[\alpha]^{28}{}_{\rm D}$ = -7.4 (*c* 1.0, CHCl₃); **IR** (neat): 3057, 1604, 1490, 1456, 1206, 1123, 957, 751, 727, 555 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 2H), 7.65 – 7.57 (m, 2H), 7.45 – 7.33 (m, 7H), 7.31 – 7.22 (m, 5H), 7.21 – 7.15 (m, 2H), 7.04 (m, 1H), 4.29 (dd, *J* = 15.0, 3.5 Hz, 1H), 4.00 (dd, *J* = 14.3, 3.5 Hz, 1H), 2.13 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 137.7, 135.2 (d, *J*_{C-P} = 5.5 Hz), 134.3 (d, *J*_{C-P} = 132.3 Hz), 134.0 (d, *J*_{C-P} = 4.7 Hz), 132.7 (d, *J*_{C-P} = 124.4 Hz), 131.7, 131.6 (d, *J*_{C-P} = 4.2 Hz), 131.5, 131.3 (d, *J*_{C-P} = 1.7 Hz), 129.8, 128.3, 128.2, 128.0, 127.9, 127.9, 127.8, 126.4, 125.8, 46.8 (d, *J*_{C-P} = 6.7 Hz), 44.5 (d, *J*_{C-P} = 6.4 Hz), 19.1; ³¹P **NMR** (162 MHz, CDCl₃) δ 28.40; **EI-MS** (*m*/*z*): Calcd for C₂₇H₂₅NOP [(M + H)⁺] 410.1665; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49:1); retention time: 14.6 min (major) and 18.4 min (enantiomer).

((2*R*,3*R*)-2-([1,1'-Biphenyl]-4-yl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8n)

White solid; Yield - 82%; R_f (50% EtOAc/hexane) 0.48; Prepared as shown in general experimental procedure. Mp 110-113 °C; $[\alpha]^{27}{}_{\rm D}$ = -17.6 (*c* 1.0, CHCl₃); **IR** (neat): 3056, 3030, 1600, 1438, 1205, 1124, 998, 727, 694, 555 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.67 – 7.57 (m, 4H), 7.51 – 7.25 (m, 18H), 4.18 (dd, *J* = 14.3, 3.3 Hz, 1H), 4.12 (dd, *J* = 14.1, 3.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.8, 140.7, 135.7 (d, *J*_{C-P} = 4.9 Hz), 134.5 (d, *J*_{C-P} = 5.0 Hz), 134.4 (d, *J*_{C-P} = 133.2 Hz), 132.9 (d, *J*_{C-P} = 124.25 Hz), 131.7, 131.6, 131.5, 131.4, 131.3, 128.8, 128.3, 128.3, 128.0, 128.0, 127.7, 127.3, 127.0, 126.9, 47.3 (d, *J*_{C-P} = 6.6 Hz), 47.0 (d, *J*_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 28.32; HRMS (FAB⁺, magnetic sector) (*m*/*z*): Calcd for C₃₂H₂₇NOP [(M + H)⁺] 472.1830, found [(M + H)⁺] 472.1826; enantioselectivity was determined by HPLC analysis (Chiralpak-AD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 3/1); retention time: 33.0 min (major) and 60.0 min (enantiomer).

((2R,3R)-2-(Naphthalen-2-yl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (80)

White solid; Yield - 86%; R_f (50% EtOAc/hexane) 0.63; Prepared as shown in general experimental procedure. Mp 169-171 °C; $[\alpha]^{27}_{D}$ = -22.7 (*c* 1.0, CHCl₃); **IR** (neat): 3049, 1438, 1205, 1162, 1124, 964, 728, 695, 559 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.84 – 7.71 (m, 4H), 7.68 – 7.58 (m, 2H), 7.52 (m, 1H), 7.50 – 7.20 (m, 13H), 4.31 (dd, *J* = 14.2, 3.2 Hz, 1H), 4.21 (dd, *J* = 14.1, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4 (d, J_{C-P} = 5.5 Hz), 134.3 (d, J_{C-P} = 133.2 Hz), 133.1 (d, J_{C-P} = 5.1 Hz), 133.0, 132.8 (d, J_{C-P} = 124.4 Hz), 131.7, 131.6, 131.5, 131.4, 128.3, 128.2, 128.2, 128.0, 128.0, 127.9, 127.9, 127.6, 127.5, 126.1, 126.0, 124.9, 47.4 (d, J_{C-P} = 6.8 Hz), 47.2 (d, J_{C-P} = 6.7 Hz) ; ³¹P NMR (162 MHz, CDCl₃) δ 28.18; HRMS (FAB⁺, magnetic sector) (*m*/*z*): Calcd for C₃₀H₂₅NOP [(M + H)⁺] 446.1674, found [(M + H)⁺] 446.1673; enantioselectivity was determined by HPLC analysis (Chiralcel- OD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1); retention time: 14.7 min (major) and 17.2 min (enantiomer).

((2*R*,3*R*)-2-(2-Bromophenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8p)

White solid; Yield - 82%; R_f (50% EtOAc/hexane) 0.5; Prepared as shown in general experimental procedure. Mp 94-96 °C; $[\alpha]^{30}_{D} = +28.2$ (*c* 0.3, CHCl₃); **IR** (neat): 3057, 1590, 1497, 1252, 1123, 959, 752, 727, 694, 551, 528 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.86 (m, 2H), 7.64 – 7.60 (m, 2H), 7.44 (m, 1H), 7.40 – 7.19 (m, 13H), 7.09 (m, 1H), 4.51 (dd, *J* = 15.0, 3.5 Hz, 1H), 3.90 (dd, *J* = 14, 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.5 (d, *J*_{C-P} = 4.9 Hz), 134.6 (d, *J*_{C-P} = 5.4 Hz), 134.3 (d, *J*_{C-P} = 133 Hz), 132.5 (d, *J*_{C-P} = 125 Hz), 131.7, 131.6, 131.6, 131.5, 129.3, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.3, 124.9, 47.8 (d, *J*_{C-P} = 6.6 Hz), 45.8 (d, *J*_{C-P} = 6.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 28.61; HRMS (FAB⁺, magnetic sector) (*m*/*z*): Calcd for C₂₆H₂₂NOBrP [(M + H)⁺] 474.0622, found [(M + H)⁺] 474.0620; enantioselectivity was determined by HPLC analysis (Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1); retention time: 18.0 min (major) and 20.2 min (enantiomer).

((2*R*,3*R*)-2-(3,4-Dimethoxyphenyl)-3-phenylaziridin-1-yl)diphenylphosphine oxide (8q)

Colorless oil; Yield - 73%; R_f (50% EtOAc/hexane) 0.59; Prepared as shown in general experimental procedure. $[\alpha]^{30}{}_{D}$ = +26.9 (*c* 0.5, CHCl₃); **IR** (neat): 3058, 2934, 2835, 1591, 1517, 1462, 1201, 1108, 1027, 727, 696, 551 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.86 (m, 2H), 7.67 – 7.63 (m, 2H), 7.42 – 7.24 (m, 11H), 6.92 – 6.90 (m, 2H), 6.75 (m, 1H), 4.20 (d, *J* = 4 Hz, 1H), 4.17 (d, *J* = 4 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.8 (d, *J*_{C-P} = 21.9Hz), 136.2, 134.5 (d, *J*_{C-P} = 133.5 Hz), 133.1 (d, *J*_{C-P} = 124 Hz), 131.7 (d, *J*_{C-P} = 9.1 Hz), 131.4 (d, *J*_{C-P} = 8.6 Hz), 131.4, 131.3, 128.3, 128.2, 128.1, 128.0, 127.9, 127.6, 127.4, 120.6, 111.3, 110.8, 55.9, 55.8, 48.7 (d, *J*_{C-P} = 7.3 Hz), 45.9 (d, *J*_{C-P} = 6.1 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 28.14; **EI-MS** (*m*/*z*): Calcd for C₂₈H₂₆NO₃P [(M)⁺] 455.1650, found [(M)⁺] 455.1649; enantioselectivity was determined by HPLC analysis (Chiralcel-OD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1); retention time: 27.5 min (major) and 34.1 min (enantiomer).

(2R,3R)-2,3-Diphenylaziridine $(9)^{14}$

To a suspension of LiAlH₄ (7.7 mg, 0.20 mmol) in THF (0.2 mL) under nitrogen at 0 °C, a solution of aziridine **8c** (26.5 mg, 0.07 mmol) in THF (0.75 mL) was added dropwisely. The mixture was gradually warmed to room temperature and followed by TLC. The reaction mixture was quenched with sat. NH₄Cl, extracted with EtOAc (5 mL x 3), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc-hexane, 1:9) to give **9** as a colorless liquid (9.2 mg, 69 % yield); R_f (30% EtOAc/hexane) 0.57; $[\alpha]^{27}_{D}$ = +333 (*c* 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 10H), 3.10 (br s, 2H).

(1S,2R)-2-Amino-1,2-diphenylethanol (10)¹⁵

To a stirred solution of aziridine **9** (9.2 mg, 0.05 mmol) in acetone/water (2:1, 0.47 mL) was added trifluoroacetic acid (4 μ L, 0.05 mmol) at 10 °C. The mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was quenched with sat. NaHCO₃, extracted with dichloromethane (5 mL x 3), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography (EtOAc-hexane, 3:2) to give **10** as a white solid (8 mg, 81 % yield). R_f (EtOAc) 0.2; $[\alpha]^{27}_{D}$ = +6.5 (*c* 0.74, EtOH); ¹**H** NMR (400 MHz, CDCl₃) 7.33 – 7.21 (m, 10H), 4.75 (d, *J* = 6.3 Hz, 1H), 4.17 (d, *J* = 6.3 Hz, 1H). ee was determined by ¹H NMR of the Mosher amide derivative δ 5.36 (enantiomer), δ 5.29 (major).

References:

- 1. Wu, H. Y.; Chang, C. W.; Chein, R. J. J. Org. Chem. 2013, 78, 5788-93.
- 2. Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.
- 3. Vyas, V. J., Fröhlich, R.; Oestreich, M. Org Lett **2011**, *13*, 2094-2097.
- 4. Lauzon, C.; Desrosiers, J. N.; Charette, A. B. J. Org. Chem. 2005, 70, 10579-80.
- 5. Banerjee, S.; Groeper, J. A.; Standard, J. M.; Hitchcock, S. R. *Tetrahedron: Asymmetry* **2009**, *20*, 2154-2161.
- 6. Kinoshita, H.; Ingham, O. J.; Ong, W. W.; Beeler, A. B.; John A. Porco , J. J. Am. Chem. Soc. 2012, 132, 6412-6418.
- 7. Boezio, A. A.; Pytkowicz, J.; Cote, A.; Charette, A. B. J. Am. Chem. Soc. 2003, 125, 14260-1.
- 8. Yukawa, T.; Seelig, B.; Xu, Y.; Morimoto, H.; Matsunaga, S.; Berkessel, A.; Shibasaki, M. J. Am. Chem. Soc. **2010**, *132*, 11988-11992.
- 9. Pinho, P.; Andersson, P. G. *Tetrahedron* **2001**, *57*, 1615-1618.
- 10. Illa, O.; Arshad, M.; Ros, A.; McGarrigle, E. M.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 1828-1830.
- 11. Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. *Angew. Chem. Int. Ed.* **2001**, *40*, 1433-1436.
- 12. Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Perkin Trans. 1 2001, 1635-1643.
- 13. Appel, R.; Mayr, H. J. Am. Chem. Soc. 2011, 133, 8241-8250.
- 14. Ritzen, B.; van Oers, M. C. M.; van Delft, F. L.; Rutjes, F. P. J. T. J. Org. Chem. 2009, 74, 7548-7551.
- 15. Gunderson, K. G.; Shapiro, M. J.; Doti, R. A.; Skiles, J. W. *Tetrahedron: Asymmetry* **1999**, *10*, 3263-3266.

HPLC analysis

HPLC condition: Chiralcel-OJ column, 1.0 mL/min, 20% *i*-PrOH/hexane, 220 nm, 18.9 min (enantiomer), 35.6 min (major)

racemic 6a

(*R*)-6a with 95% ee

#	Time	Area	Height	Width	Area%	#	Time	Area	Height	Width	Area%
1	18.88	13078.9	257	0.7918	49.801	1	19.032	713.7	15	0.7334	2.318
2	35.599	13183.5	108.7	1.8452	50.199	2	34.67	30077.1	232.7	2.0139	97.682

HPLC condition: Chiralpak-AD column, 5% *i*-PrOH/hexane, 220 nm, 6.0 min (enantiomer), 8.5 min (major)

racemic 1a

(S)-1a with >99% ee

HPLC condition: Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1, 17.4 min (enantiomer) and 20.7 min (major).

racemic 8a

(*R*, *R*)-8a with 97% ee

racemic **8b**

(*R*, *R*)-8b with 88% ee

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	8.301	5023.3	388.1	0.201	50.238	0.846	1	8.142	39477.1	2899	0.2129	94.227	0.836
2	8.984	4975.7	355.5	0.2153	49.762	0.864	2	8.841	2418.8	166.3	0.2237	5.773	0.874

HPLC condition: Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1, 20.0 min (major) and 23.4 min (enantiomer).

racemic 8c

(*R*, *R*)-8c with 98% ee

HPLC condition: Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1, 15.9 min (major) and 20.8 min (enantiomer).

racemic 8d

(*R*, *R*)-8d with 96% ee

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

racemic 8e

(*R*, *R*)-8e with 96% ee

HPLC condition: Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1, 8.1 min (major) and 10.1 min (enantiomer).

racemic 8f

(*R*, *R*)-8f with 97% ee

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

racemic 8g

(*R*, *R*)-8g with 97% ee

racemic 8h

(*R*, *R*)-8h with 96% ee

Area

Time

Height

Width

Area% Symmetry

HPLC condition: Chiralcel-OD, 1.0 mL/min, 280 nm, hexane/*i*-PrOH, 9:1, 6.0 min (major) and 7.3 min (enantiomer).

racemic 8i

(*R*, *R*)-8i with 95% ee

racemic 8j

(*R*, *R*)-8j with 95% ee

racemic 8k

(*R*, *R*)-8k with 96% ee

racemic 81

(*R*, *R*)-81 with 97% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	16.468	26921.2	671.6	0.6056	51.187	0.458
2	19.581	25673.1	570.5	0.689	48.813	0.518

#	Time	Area	Height	Width	Area%	Symmetry
1	16.253	31305.7	808.1	0.5879	98.707	0.465
2	19.733	410.1	10.8	0.573	1.293	0.798

racemic 8m

(*R*, *R*)-8m with 96% ee

racemic **8n**

(*R*, *R*)-8n with 96% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	33.013	3721.4	55.2	1.0389	50.069	0.866
2	59.96	3711.2	31.6	1.5903	49.931	0.921

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

HPLC condition: Chiralcel- OD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1, 14.7 min (major) and 17.2 min (enantiomer).

racemic 80

(*R*, *R*)-80 with 97% ee

HPLC condition: Chiralcel-OD, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 49/1, 18.0 min (major) and 20.2 min (enantiomer).

racemic 8p

(*R*, *R*)-8p with 96% ee

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

HPLC condition: Chiralcel-OD-H, 1.0 mL/min, 220 nm, hexane/*i*-PrOH, 19/1, 27.5 min (major) and 34.1 min (enantiomer).

racemic 8q

(*R*, *R*)-8q with 96% ee

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```



```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```



```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```



```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


-S53 -


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```



```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```



```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


-S90 -


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


-S95 -


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


