A Highly Selective, Hg^{2+} Triggered Hydrogelation: Modulation of Morphology by Chemical Stimuli

Biswa Nath Ghosh, ‡a Sandip Bhowmik, ‡a Prasenjit Mal*b and Kari Rissanen*a

^aDepartment of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland. Fax: +358 14 2602501; Tel: 358-50-5623721; E-mail: kari.t.rissanen@jyu.fi

^bSchool of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar; Institute of Physics Campus, P.O. Sainik School; Bhubaneswar, Odisha751 005, India.

[‡]These authors contributed equally to this work.

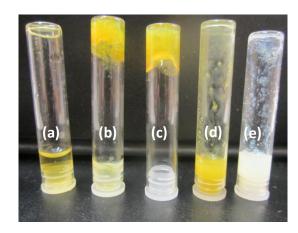
EXPERIMENTAL SECTION

Materials and physical methods

Unless stated otherwise, all reagents and solvents were purchased from Aldrich chemicals and used without further purification. The starting compound 4'-(4-bromophenyl)-2,2':6',2''-terpyridine 1 needed for the synthesis of L and L1 was synthesized following the literature method. The ligand 4'-[4-(4-phenyl)phenyl]- 2,2':6',2''-terpyridine L1 was synthesized according to the literature procedure. The synthesis details of L are given below. The NMR spectra (¹H, ¹³C) for L were recorded at 300 K on a Bruker Avance DRX500 NMR spectrometer, operating at 500 MHz for proton and 125 MHz for carbon using CDCl₃ as solvent. Mass spectrum was recorded on a Micromas (ESI-TOF) spectrometer.

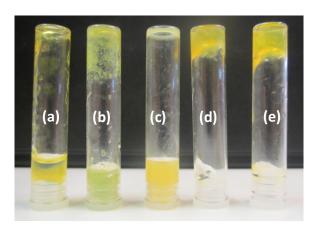
Synthesis of 4'-[4-(4-aminophenyl)phenyl]- 2,2':6',2''-terpyridine L

4'-(4-bromophenyl)-2.2':6'.2''-terpyridine 1 (389 mg. 1.0 mmol), 4-aminophenylboronic acid pinacol ester (241 mg, 1.1 mmol, 1.1 equiv.) and dimethoxymethane (15 mL) were placed in an oven-dried Schlenk tube and the solution was degassed and then placed under argon. Sodium carbonate (320 mg, 3 mmol) was dissolved in 6 mL water in a separate Schlenk and degassed similarly. The catalyst, [Pd(PPh₃)₄], (50 mg, 0.043 mmol, 0.043 equiv.) was added to the first Schlenk, followed immediately by the sodium carbonate solution. After stirring the solution at room temperature for 1 h, the temperature was increased to 85 °C for 24 h. After cooling down, the solution was diluted with dichloromethane and filtered over celite. The filtrate washed with saturated NH₄Cl, brine, dried (MgSO₄) and evaporated to get the crude product L. The crude product was purified by Column chromatography (25% ethyl acetate in n-hexane) and then recrystallized from boiling ethanol solution. Yield 74%. ¹H NMR (500 MHz, CDCl₃) δ/ppm: 8.79 (s, 2H), 8.75 (m, 2H), 8.68 (dt, 2H, J = 1.0 Hz, 7.9 Hz), 7.97 (dt, 2H, J = 2.0 Hz, 8.5 Hz), 7.88 (m, 2H), 7.69 (dt, 2H, J = 2.0 Hz, 8.5 Hz), 7.51 (dt, 2H, J = 2.0 Hz, 8.6 Hz), 7.36 (m, 2H), 6.79 (dt, 2H, J = 2.0 Hz, 8.6 Hz), 3.78 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ/ppm : 156.58, 156.13, 150.08, 149.31, 146.39, 142.00, 136.98, 136.33, 130.83, 128.18, 127.78, 126.88, 123.92, 121.53, 118.76, 115.58. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for (C27H20N4Na⁺) 423,1580; found: 423,1597.


NMR characterization of L1: ¹H NMR (CDCl₃, 300 MHz): δ 8.81 (s, 2H), 8.75 (d, 2H, J = 3.8 Hz), 8.69 (d, 2H, J = 8.0 Hz), 8.01 (d, 2H, J = 8.3 Hz), 7.89 (td, 2H, J = 1.8, 7.8 Hz), 7.75 (d, 2H, J = 8.2 Hz), 7.68 (d, 2H, J = 7.1 Hz), 7.49 (t, 2H, J = 7.2 Hz), 7.37 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 156.48, 156.17, 149.93, 149.31, 142.02, 140.61, 137.48, 137.00, 129.02, 127.88, 127.76, 127.29, 123.96, 121.53, 118.87.

Gelation studies of L with MCl₂ salts (M = Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg): To a stock solution of L (400 μ L, 8.25 mM in 0.15 N HCl) taken in a test tube (0.5 cm diameter), 120 μ L of MCl₂ (55 mM in H₂O) was added from top and shaken gently to allow homogeneous mixing. Addition of Hg²⁺ produced a gel almost instantaneously whereas other divalent metal cations produced colored precipitates within 5-10 minutes (except for Zn²⁺ where precipitate was obtained after ~24 hrs). Addition of Cu²⁺ immediately produced brown gelatinous precipitate which then quickly turned to green precipitate (within 2-3 minutes).

Gelation studies with water soluble HgX_2 salts (X = NO_3 , ClO_4): To a stock solution of L (400 μ L, 8.25 mM in 0.15 N HCl) taken in a test tube (0.5 cm diameter), 120 μ L of HgX_2 (55 mM in H_2O) was added and shaken gently. While $Hg(NO_3)_2$ also showed similar gelation behavior, addition of $Hg(ClO_4)_2$ to the solution of L resulted in a precipitate.


We also tried different mineral acids for the initial solubilization of the ligand **L**. **L** could not be solubilized in 0.2 N H₂SO₄ or HClO₄ even at lower concentrations (< 5 mM) and was only soluble in 0.2 N HNO₃ at elevated temperature (> 80 °C). However, addition of HgCl₂ in a hot, 0.2 N HNO₃ solution of **L** initially resulted in a clear solution that eventually turned into precipitate upon standing for long time (Fig. S1).

Gelation studies of L1 with HgCl₂: To a stock solution of L1 (400 μ L, 8.25 mM in 0.15 N HCl), addition of 120 μ L of HgCl₂ (55 mM in H₂O) solution resulted precipitation of the complex (Fig. S1).

Fig. S1 6 mM of **L** in presence of (a) 12 mM HgCl₂ in 0.2 M HNO₃, (b) 12 mM Hg(NO₃)₂ in 0.2 M HCl, (c) 12 mM HgCl₂ in 0.2 M HCl, (d) 12 mM Hg(ClO₄)₂ in 0.2 M HCl and (e) 6 mM of **L1** in presence of 12 mM HgCl₂ in 0.2 M HCl.

Gelation study with Hg^{2+} in presence of other metal ions: To a stock solution of L (400 μ L, 8.25 mM in 0.15 N HCl) taken in a test tube (0.5 cm diameter), a mixture of 60 μ L of M^{2+} (55 mM $Zn^{2+}/Cu^{2+}/Ni^{2+}$) and 60 μ L of Hg^{2+} (55 mM in H_2O) was added and allowed to stand after gentle shaking. It was observed while presence of Cu^{2+} and Ni^{2+} severely disturbed the gelation process, presence of Zn^{2+} resulted in a partial gel (Fig. S2).

Fig. S2 6 mM of **L** in presence of 6 mM/6mM of a) Zn^{2+}/Hg^{2+} , b) Cu^{2+}/Hg^{2+} , c) Ni^{2+}/Hg^{2+} , d) 6 mM Hg^{2+} and e) 12 mM Hg^{2+} .

X-ray crystallographic details

Yellow plate like crystals of $HgCl_2L$ were grown by slow evaporation of its DMF solution at room temperature and single crystal X-ray diffraction analysis was performed on Bruker-Nonius Kappa CCD diffractometer equipped with APEX II detector. Unit cell refinement and data reduction were carried out using the programme DENZO-SMN.³ Absorption correction was done using the $SADABS^4$ programme. The structure was solved by the programme $SIR-2002^5$ and refined by full-matrix least squares on F^2 using the WinGX⁶ software, which utilizes the SHELXL-97 module.⁷ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were introduced in proper positions with isotopic thermal parameters using the 'riding model'. The figures were drawn using Ortep-3 for $Windows^8$ and Mercury v 2.3 programmes.⁹

 $Table \ S1. \ Crystallographic \ data \ and \ structure \ refinement \ parameters \ for \ HgCl_2L$

CCDC No.	960506
Empirical formula	$C_{27}H_{20}N_4Cl_2Hg_1$
Formula weight	671.96
Temperature	123.0(1) K
Wavelength	0.71073 Å
Crystal color and shape	yellow, plate
Crystal size	$0.52 \times 0.18 \times 0.02 \text{ mm}^3$
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	a = 9.2217(10) Å
	b = 10.8168(12) Å
	c = 13.0876(17) Å
	$\alpha = 75.035(5)^{\circ}$
	$\beta = 69.904(6)^{\circ}$
	$\gamma = 83.819(7)^{\circ}$
V	1184.2(2) Å ³
Z	2
Density (calculated)	1.885 Mg/m^3
Absorption coefficient	6.749 mm ⁻¹
F(000)	648
Theta range for data collection	2.41 to 24.99°
Index ranges	$-10 \le h \le 10$; $-12 \le k \le 12$; $-15 \le l \le 14$
Completeness to theta = 25.00°	97.7 %
Reflections collected	6906
Independent reflections	4069 [R(int) = 0.0404]
Absorption correction	multi-scan
Max. and min. transmission	0.7458 and 0.4592
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4069 / 0 / 308
Goodness-of-fit on F ²	1.037
Final R indices $[I>2\sigma(I)]$	R1 = 0.0452, $wR2 = 0.0918$
R indices (all data)	R1 = 0.0690, wR2 = 0.1022
Largest diff. peak and hole	0.823 and -0.668 e.Å-3

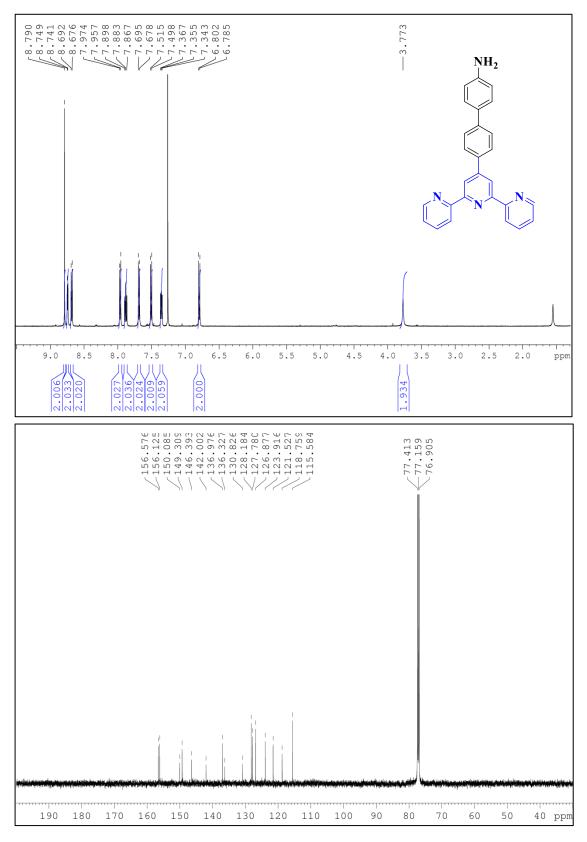


Fig. S3 ¹H NMR (top) and ¹³C NMR (bottom) spectra of L in CDCl₃.

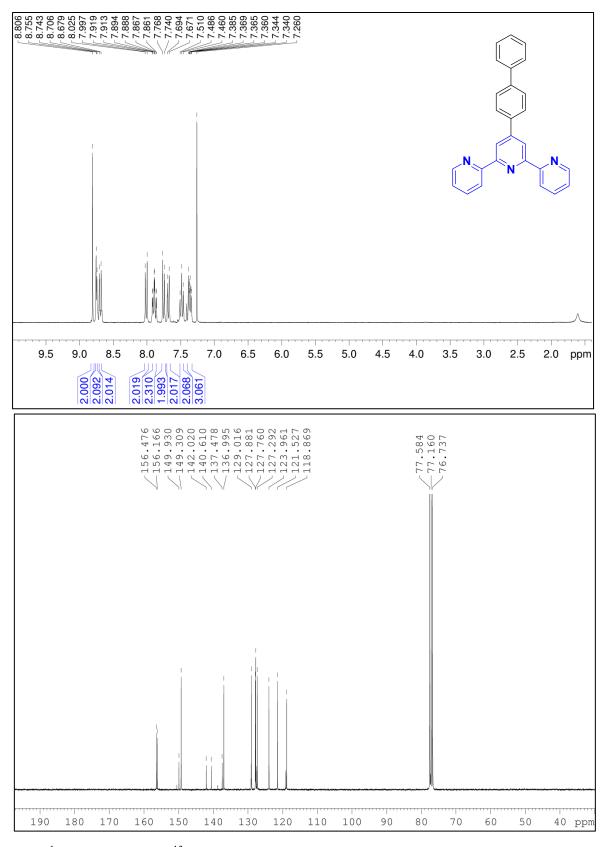


Fig. S4 ¹H NMR (top) and ¹³C NMR (bottom) spectra of L1 in CDCl₃.

References

- 1. F. S. Han, M. Higuchi and D. G. Kurth, *Org. Lett.*, 2007, **9**, 559-562.
- 2. W. Goodall, K. Wild, K. J. Arm and J. A. G. Williams, *J. Chem. Soc.*, *Perkin Trans.* 2, 2002, 1669-1681.
- 3. Z. Otwinowski and W. Minor, *Methods in Enzymology*, *Macromolecular Crystallography*, *Part A*, New York: Academic Press, 1997.
- 4. G. M. Sheldrick, SADABS, Bruker Analytical X-ray system, Inc., Madison, Wisconsin, 2008.
- 5. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Cryst.*, 2005, **38**, 381-388.
- 6. L. Farrugia, J. Appl. Cryst., 1999, 32, 837-838.
- 7. G. Sheldrick, *Acta Cryst. A*, 2008, **64**, 112-122.
- 8. L. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- 9. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466-470.