Supplementary Information for

Functional disruption of HypB, a GTPase of Helicobacter pylori by bismuth

Wei Xia, Hongyan Li and Hongzhe Sun*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

HypB Mutants Constructs

Constructs of HypB(C106A/C142A), HypB(C106A), HypB(C142A) and HypB(H107A) were generated using Phusion high fidelity DNA polymerase according to the provided protocol. Wild-type HypB construct was used as DNA template. The primers for mutants are listed in Table S1. The expression and purification of HypB mutants were similar to WT-HypB.

Table S1. Primers used for HypB mutants. The mutant residues are highlighted in purple.

HypB (C106A)-for	5' CGGCGAAGCA <u>GCC</u> CATTTGGAA 3'
HypB (C106A)-rev	5' GTGGTGATCTGGTGCGCACTCA 3'
HypB (H107A)-for	5' CGAAGCATGC <u>GCT</u> TTGGAAGCG 3'
HypB (H107A)-rev	5' CCGGTGGTGATCTGGTGCGC 3'
HypB (C142A)-for	5' TGGGGAATTTGGTT <u>GCC</u> CCCTCAAGCTA 3'
HypB (C142A)-rev	5' CGTTTTCAATGATTAAAAAATCGCTTTTTTCTAACG 3'

Bismuth nitrilotriacetate (Bi-NTA) Preparation

Bi-NTA was synthesized as described previsouly.¹ BiNTA was synthesized by gradually adding $(BiO)_2CO_3$ into NTA solution. After boiling for 3 h, the solution was filtered while hot. The crystals of Bi-NTA appeared after overnight incubation of filtrate at 4°C. The 1mM Bi-NTA stock solution was prepared by dissovling BiNTA in H₂O.

Bismuth titration monitored by UV-vis spectra (CD)

Titration of apo-HpHypB with bismuth nitrilotriacetate (Bi-NTA) was carried out in a titration buffer (20 mM HEPES buffer at pH 7.0 supplemented with 100 mM NaCl and 1 mM TCEP) and monitored by UV-vis spectroscopy. Aliquots of Bi-NTA stock solution with 1 mM concnetration were added stepwise into 50 µM apo-HpHypB solution.

Circular Dichroism (CD)

Around 10 μ M of apo-HypB with or without 1 molar equivalent of metal ion (Ni²⁺ or Bi³⁺) was prepared in 10 mM HEPES buffer at pH 7.0 supplemented with 50 mM NaCl. CD experiments were carried out at ambient temperature on a JASCO 815 spectrophotometer using a quartz cuvette with a path length of 0.1 cm. CD spectra were recorded from 190 to 260 nm with data interval of 0.2 nm and scan rate of 50 nm/min. Three scans were averaged. CD spectra were smoothed using Savitsky-Golay method with a polynomial order of 3 and smoohting window of 15 points.² Protein secondary structure was analyzed by CDPro package.³

Sample	a helix	β sheet
Apo-HypB	24.4%	24.2%
Ni ²⁺ -HypB	22.5%	26.6%
Bi ³⁺ -HypB	18.9%	26.9%

Table S2. Protein secondary structure analysis.

Measurement of GTPase activity

Around 10 μ M HypB with and without different amounts of Ni²⁺ or Bi³⁺ was incubated at 37°C in a reaction buffer (20 mM HEPES, 100 mM NaCl, 200 μ M GTP, 1 mM MgSO₄ and 1% glycerol, pH 7.0). Aliquots (50 μ l) of the reaction mixture were taken out at different time intervals. The amounts of released phosphate were determined by Malachite Green phosphate assay kit (Cayman).

Binding constants (K_d ') between HypB and Bi³⁺

The binding constant between apo-HypB and Bi-NTA was determined by fitting UV-vis titration curve to the Ryan-Weber nonlinear equation below as described before.⁴

$$I = \frac{I_{\max}}{2C_p} ((K_d + C_m + C_p) - \sqrt{(C_p + C_m + K_d)^2 - 4C_m C_p})$$

where *I* represents UV absorbance intensity; I_{max} is the maximal UV absorbance when all of the ligands are bound; C_p and C_m are the total concentration of protein and ligands, respectively and K_d is the dissociation constant. Given the log K_a of Bi-NTA is 17.55,⁵ the apprarent constant of Bi³⁺ and HypB (K_d ²) was calculated to be $K_d/K_a = 0.94(\pm 0.25) \times 10^{-17} \mu$ M.

Fig S1. UV titration curve plotted at 360 nm against molar ratios of [Bi-NTA]/[HypB]. The curve was fitted to the Ryan-Weber nonlinear equation and K_d was determined accordingly.

Fig S2. Circular dichroism spectra of apo-HypB (black), Ni^{2+} -HypB (red) and Bi^{3+} -HypB (green). No significant changes were observed upon Ni^{2+} binding while Bi^{3+} -binding perturbed HypB secondary structure.

Fig S3. HypB GTPase activity assay. The GTP hydrolysis rates were linear within 80 min. Ni^{2+} (blue) and 1 equivalent Bi^{3+} (magneta) significantly enhanced apo-HypB (black) GTPase acitvity. Higher doses of Bi^{3+} (2 molar equivalents (yellow) or 3 eq. (red)) totally abolished the activity of HypB.

Fig S4. Calibration curve of Tricorn Superdex 200 10/300 (Amersham) using Gel Filtration calibration kit HMW (GE Healthcare). Ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) were used to obtain a standard curve.

Fig S5. Gel filtration analysis of the WT-HypB oligomerization state upon Bi^{3+} -binding. The protein samples were analyzed by Tricron Superdex 75 10/300 column. WT-HypB was eluted as a dimer after incubation with 1 molar equivalent of Bi^{3+} . The column was calibrated by Gel Filtration calibration kit LMW (GE Healthcare).

References:

- 1. S. P. Summers, K. A. Abboud, S. R. Farrah, G. J. Palenik, Inorg. Chem. 1994, 33. 88-92.
- 2. N. J. Greenfield, Nature Protocol, 2006, 1, 2876-2890.
- 3. N. Sreerama and R. W. Woody, Anal. Biochem., 2000, 287, 252-260.
- 4. Y. C. Bai, F. C. Wu, C. Q. Liu, et al., Anal. Chim. Acta., 2008, 616, 115-121.
- 5. G. Petit, and Petit, L. D., *IUPAC Stability Constant Database*, International Union of Pure and Applied Chemistry Academic Software, Otley, UK, 1997.