Supporting information (experimental procedures and spectra data) for

Nickel-Mediated Stereocontrolled Synthesis of Spiroketals via Tandem Cyclization–Coupling of β-Bromo Ketals and Aryl Iodides

Yu Peng*, Xiao-Bo Xu, Jian Xiao and Ya-Wen Wang

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

pengyu@lzu.edu.cn

Table of Contents

•	General procedure	S2
•	Optimization of conditions for the formation of spiroketal 2a (Table S1)	S2-S3
•	Preparation of β-bromo ketals 1	S3-S6
•	Stereoselective cyclization- <i>intermolecular</i> cross-coupling (Scheme 1)	S6-S17
•	Stereospecific cyclization-intermolecular cross-coupling (Scheme 2)	S17-S22
•	Epimerization (Scheme 3)	
•	Stereocontrolled synthesis of [5,5,5]-bisspiroketal (Scheme 4a)	
•	Stereospecific cyclization-intramolecular cross-coupling (Scheme 4b)	S28-S31

Experimental

<u>General</u>

For product purification by flash column chromatography, silica gel (200~300 mesh) and petroleum ether (bp. 60~90 °C) are used. All solvents were purified and dried by standard techniques, and distilled prior to use. All experiments were conducted under an argon or nitrogen atmosphere in oven-dried or flame-dried glassware with magnetic stirring, unless otherwise specified. All organic extracts were dried over Na₂SO₄ or MgSO₄, unless otherwise noted. IR spectra were recorded on a *Nicolet* FT-170SX spectrometer as liquid film. ¹H and ¹³C NMR spectra were taken on a *Bruker* AM-400, AM-600 and Varian mercury 300 MHz spectrometer with TMS as an internal standard and CDCl₃ as solvent unless otherwise noted. EI–MS was obtained on GC/MS QP-2010 SE, and ESI–MS was obtained on *Bruker* APEXII 47e FT-ICR spectrometer with ESI and APCI positive or negative ion mode. Melting points were measured on *Kofler* hot stage and are uncorrected.

The following chemicals were purchased and used as received: Zn (99.9%, dust), NiCl₂ (99.9%, powder), Pyridine (99.5%, SuperDry, with molecular sieves), CH₃CN (99.9%, SuperDry, with molecular sieves). Most of the aryl iodides can be synthesized from commercially available corresponding aryl bromides through Br-Li exchange followed of $I_{2.}^{1}$ 7-bromoindole was by quench synthesized from 1-bromo-2-nitrobenzene and vinylmagnesium bromide according to Bartoli's procedure.² Following a literature procedure,³ 4-iodophenylboronic acid pinacol ester (4-IPBPE) was prepared from 4-iodophenyl boronic acid with pinacol.

Table S1. Optimization of Formation of Spiroketal 2a^{*a*}

^{(1) (}a) Hsung, R. P.; Chidsey, C. E. D.; Sita, L. R. *Organometallics* **1995**, *14*, 4808–4815. (b) Song, Y.-L.; Morin, C. *Synlett* **2001**, 266–268.

^{(2) (}a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R.. *Tetrahedron Lett.* 1989, *30*, 2129–2132.
(b) Harrowven, D. C.; Lai, D.; Lucas, M. C. *Synthesis* 1999, 1300–1302.

⁽³⁾ Koolmeister, T.; Södergren, M.; Scobie, M. Tetrahedron Lett. 2002, 43, 5965-5968.

Entry	ligand	NiCl ₂ (equiv)	Time (h)	Yield (%) $(dr = 2a : 2a')^b$
1	EC	1.0	8	40^c
2	EC	0.5	8	35 ^c
3	2,2'-bipyridine	0.5	8	75 (5 : 1)
4	2,2'-bipyridine	0.3	8	74 (6 : 1)
5	2,2'-bipyridine	0.2	8	72 (6 : 1)
6	2,2'-bipyridine	0.1	8	57 (9 : 1)
7	4,4'-di-tert-butyl-2,2'-bipy	0.3	4	80 (8 : 1)
8	4,4'-di-tert-butyl-2,2'-bipy	0.1	8	40 (7 : 1)
9	2,2'-bipyridine	0.3	4	52 (5 : 1)
10	2,2'-bipyridine	0.3	8	$67(2:1)^d$
11	2,2'-bipyridine	0.3	8	$45(4:1)^{e}$

^{*a*} Reaction conducted on 0.5 mmol scale: A mixture of Zn (1.5 mmol, 3 equiv), NiCl₂ (indicated by table), EC (ethyl crotonate) (3 equiv to Ni) or 2,2'-bipyridine or 4,4'-di-*tert*-butyl-2,2'-bipyridine (1.2 equiv to Ni), and pyridine (0.5 mL) were employed for generation of active Ni⁰ catalyst at 55 °C; then a solution of *p*-iodoanisole (0.6 mmol, 1.2 equiv) and **1a** (0.5 mmol) in CH₃CN (5 mL) was added to the above Ni⁰ complex dropwise over a 10-min period at room temperature. ^{*b*} The isolated yield was shown and dr value was estimated by ¹H NMR spectroscopic analysis. ^{*c*} Only a diastereomer could be detected by ¹H NMR. ^{*d*} Reaction conducted at 50 °C. ^{*e*} DMF as the solvent.

Preparation of β-Bromo Ketals 1

General Procedure A

To an oven-dried round bottom flask was added various allyl alcohol (12 mmol) and dry CH_2Cl_2 (15 mL). The resulting solution was cooled to -40 °C and freshly prepared 2-methylenetetrahydrofuran(or -pyran)⁴] (10 mmol) was was introduced followed by the addition of *N*-bromosuccinimide (1.9 g, 11 mmol, recrystallized from acetone). The reaction mixture was slowly warmed to room temperature over a 2 h period and then was diluted with Et₂O (100 mL) and poured into a separatory funnel that contained H₂O (10 mL). The aqueous layer was extracted with Et₂O (2 × 20 mL),

⁽⁴⁾ Prepared from commercially available 2-(chloromethyl)tetrahydrofuran [CAS: 3003-84-7] or 2-(chloromethyl)tetrahydropyran [CAS: 18420-41-2] through β-elimination of HCl under strong base condition, see: Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Zammit, S. C.; Rizzacasa, M. A. J. Org. Chem. 2001, 66, 2382–2393.

and the combined organic layers were washed with water (3 \times 20 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography on silica gel to furnish the desired β -bromo ketal 1.

1a was prepared as a colorless oil (55% yield, over two steps) according to General Procedure A. $R_f = 0.52$ (petroleum ether/EtOAc = 10 : 1); IR (film): $v_{max} = 2924$, 2854, 1649, 1558, 1458, 1372, 1258, 1154, 1069, 1025, 926 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): $\delta = 5.89-5.78$ (m, 1H), 5.22 (dd, J = 16.0, 1.6 Hz, 1H), 5.00 (dd, J = 10.4, 1.6 Hz, 1H), 3.94 (dd, J = 12.8, 4.0 Hz, 1H), 3.83 (ddt, J = 12.8, 5.2, 1.6 Hz, 1H), 3.60 (q, J = 7.6 Hz, 1H), 3.61 (q, J = 7.6 Hz, 1H), 3.37 (d, J = 10.8 Hz, 1H), 3.17 (d, J = 10.8Hz, 1H), 1.98 (ddd, J = 12.8, 8.4, 4.4 Hz, 1H), 1.98 (dt, J = 12.8, 8.4 Hz, 1H), 1.73–1.62 (m, 1H), 1.47–1.35 (m, 1H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta = 136.2$, 115.7, 108.0, 69.8, 62.7, 36.6, 34.4, 25.2 ppm; HRMS (ESI): *m/z* calcd for C₈H₁₃O₂BrNa⁺ [M+Na]⁺: 242.9991, found: 243.0000.

11 was prepared as a colorless oil (44% yield, over two steps) according to General Procedure A. $R_f = 0.43$ (petroleum ether/EtOAc = 8 : 1); ¹H NMR (400 MHz, C₆D₆): $\delta = 6.15$ (dd, J = 18.0, 11.2 Hz, 1H), 5.06 (d, J = 18.0 Hz, 1H), 4.97 (d, J = 11.2 Hz, 1H), 3.78 (dd, J = 8.4, 4.8 Hz, 1H), 3.66–3.55 (m, 1H), 3.62 (d, J = 10.8 Hz, 1H), 3.51 (d, J = 10.8 Hz, 1H), 2.06–1.92 (m, 2H), 1.90–1.76 (m, 3H), 1.74–1.63 (m, 3H), 1.51 (t, J = 9.2 Hz, 2H), 1.44 (brs, 4H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 144.9, 114.0, 109.4, 76.7, 70.1, 39.1, 38.3, 37.5, 37.2, 26.2, 25.0, 22.8, 22.7 ppm; EI–MS (70 eV): <math>m/z$ 165 [M–C₈H₁₃O]⁺, 163 [M–C₈H₁₃O]⁺, 121, 109, 84, 67, 55.

1m was prepared as a colorless oil (42% yield, over two steps) according to General Procedure A. $R_f = 0.51$ (petroleum ether/EtOAc = 10 : 1); ¹H NMR (300 MHz, C₆D₆): $\delta = 5.05$ (s, 1H), 4.83 (s, 1H), 3.88 (d, J = 12.0 Hz, 1H), 3.73 (d, J = 12.0 Hz, 1H), 3.72–3.58 (m, 2H), 3.39 (d, J = 11.1 Hz, 1H), 3.19 (d, J = 11.1 Hz, 1H), 2.04–1.95 (m, 1H), 1.86–1.79 (m, 1H), 1.76–1.56 (m, 1H), 1.64 (s, 3H), 1.48–1.31 (m, 1H) ppm; ¹³C NMR (75 MHz, C₆D₆): $\delta = 142.9$, 111.2, 107.6, 69.4, 65.2, 36.2, 34.0, 24.9, 19.7 ppm; EI–MS (70 eV): m/z 234 [M]⁺, 163 [M–C₄H₇O]⁺, 141, 121, 55.

1n was prepared as a colorless oil (45% yield, over two steps) according to General Procedure A. $R_f = 0.51$ (petroleum ether/EtOAc = 10 : 1); IR (film): $v_{max} = 2946$, 2876, 1648, 1433, 1379, 1228, 1200, 1155, 1079, 1024, 924 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): $\delta = 5.90-5.80$ (m, 1H), 5.27 (dd, J = 17.2, 2.0 Hz, 1H), 5.03 (dd, J = 10.8, 2.0 Hz, 1H), 3.88–3.75 (m, 2H), 3.50–3.39 (m, 2H), 3.23 (d, J = 11.2 Hz, 1H), 3.09 (d, J = 11.2 Hz, 1H), 2.06–1.98 (m, 1H), 1.80–1.68 (m, 1H), 1.38–1.21 (m, 3H), 1.07 (d, J = 12.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta = 135.7$, 115.8, 97.6, 62.7, 61.2, 36.2, 33.0, 25.5, 19.2 ppm; HRMS (ESI): m/z calcd for C₉H₁₅O₂BrNa⁺ [M+Na]⁺: 257.0148, found: 257.0149.

1**q** was prepared as a colorless oil (44% yield, over two steps) according to General Procedure A. $R_f = 0.50$ (petroleum ether/EtOAc = 10 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta = 5.06$ (s, 1H), 4.87 (s, 1H), 3.92 (d, J = 12.0 Hz, 1H), 3.83 (d, J = 12.0 Hz, 1H), 3.67 (dd, J = 9.0, 2.4 Hz, 2H), 3.43 (d, J = 10.8 Hz, 1H), 3.30 (d, J = 10.8 Hz, 1H), 2.07–2.00 (m, 1H), 1.89–1.75 (m, 1H), 1.78 (s, 3H), 1.65–1.48 (m, 4H) ppm; ¹³C

NMR (75 MHz, CDCl₃): δ = 142.1, 111.2, 97.1, 63.5, 62.5, 35.6, 32.4, 24.8, 19.9, 18.5 ppm; ESI–MS: *m/z* 271.0 [M+Na]⁺.

Stereoselective Cyclization-Intermolecular Cross-Coupling

To a stirred slurry of Zn (100 mg, 1.5 mmol) and NiCl₂ (20 mg, 0.15 mmol) in pyridine (0.5 mL) was added 2,2'-bipyridine (28 mg, 0.18 mmol) at room temperature. Then the temperature rose to 55 °C and vigorous stirring was continued for 15 min. The resulting black Ni(0) complex was cooled to room temperature, to which the solution of aryl iodide (0.6 mmol) and β -bromo ketal **1** (0.5 mmol) in CH₃CN (5 mL) was added dropwise over a 10-min period. After stirring for 6~8 h, the mixture was filtered with a short plug of silica (elution with 25 mL Et₂O) and washed with water and brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel to afford desired spiroketal **2**.

2a and **2a'** was prepared as the colorless oil (57% yield, dr = 9 : 1) according to General Procedure B. (**2a**) R_f = 0.43 (petroleum ether/EtOAc = 4 : 1); IR (film): v_{max} = 2941, 2880, 1612, 1583, 1513, 1461, 1341, 1300, 1246, 1178, 1113, 1022, 953, 920, 826 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.09 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 3.97–3.93 (m, 1H), 3.90 (t, *J* = 8.4 Hz, 2H), 3.78 (s, 3H), 3.62 (t, *J* = 8.4 Hz, 1H), 2.72 (d, *J* = 8.0 Hz, 2H), 2.51 (heptet, *J* = 8.0 Hz, 1H), 2.14 (dd, *J* = 13.2, 9.2 Hz, 1H), 2.07–2.00 (m, 2H), 2.07–2.00 (m, 3H) ppm; ¹³C/DEPT NMR (100 MHz, CDCl₃): δ = 157.9 (s), 132.9 (s), 129.5 (d, 2C), 115.1 (s), 113.8 (d, 2C), 72.1 (t), 67.2 (t), 55.2 (q), 40.9 (t), 40.7 (d), 38.4 (t), 35.8 (t), 24.4 (t) ppm; HRMS (ESI): m/z calcd for $C_{15}H_{20}O_3Na^+$ [M+Na]⁺: 271.1310, found: 271.1312. (**2a'**) $R_f = 0.46$ (petroleum ether/EtOAc = 4 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.07$ (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.99 (t, J = 8.0 Hz, 1H), 3.95–3.88 (m, 1H), 3.82 (t, J = 8.0 Hz, 1H), 3.78 (s, 3H), 3.62 (dd, J = 8.0, 6.8 Hz, 1H), 2.51 (heptet, J = 8.0 Hz, 1H), 2.65–2.60 (m, 2H), 2.12 (dd, J = 12.8, 7.2 Hz, 1H), 2.09–2.00 (m, 2H), 1.94–1.85 (m, 2H), 1.71 (dd, J = 12.8, 7.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.0$, 132.6, 129.5 (2C), 115.0, 113.9 (2C), 72.1, 67.1, 55.3, 41.5, 40.0, 38.9, 35.1, 24.6 ppm.

2b was prepared as a colorless oil (75% yield, dr = 8 : 1) according to General Procedure B. $R_f = 0.34$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{\text{max}} = 3070, 2973, 2940, 2880, 2799, 1615, 1522, 1444, 1344, 1226, 1162, 1020, 949, 804 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.05$ (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 3.95–3.88 (m, 3H), 3.62 (t, J = 8.0 Hz, 1H), 2.91 (s, 6H), 2.68 (d, J = 7.6 Hz, 2H), 2.51 (heptet, J = 7.6 Hz, 1H), 2.15 (dd, J = 13.2, 9.2 Hz, 1H), 2.05–2.01 (m, 2H), 1.91–1.84 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.1, 129.2$ (2C), 129.0, 115.1, 112.9 (2C), 72.2, 67.2, 41.0 (2C), 40.8 (2C), 38.3, 35.9, 24.4 ppm; HRMS (ESI): calcd. for C₁₆H₂₄NO₂⁺ [M+H]⁺: 262.1802, found: 262.1811.

2c was prepared as a colorless oil (72% yield, dr = 5 : 1) according to General Procedure B. R_f = 0.42 (petroleum ether/EtOAc = 4 : 1); IR (film): v_{max} = 2974, 2923, 2877, 1600, 1494, 1440, 1341, 1152, 1095, 1019, 953, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.19 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.97–3.91 (m, 1H), 3.90 (t, *J* = 7.2 Hz, 2H), 3.62 (t, *J* = 8.0 Hz, 1H), 2.75 (d, *J* = 7.6 Hz, 2H), 2.52 (heptet, *J* = 7.6 Hz, 1H), 2.47 (s, 3H), 2.14 (dd, *J* = 13.2, 8.8 Hz, 1H), 2.08–2.01 (m, 2H), 1.92–1.84 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 137.9, 135.6, 129.2 (2C), 127.1 (2C), 115.0, 72.1, 67.3, 40.8, 40.4, 38.8, 35.8, 24.4, 16.2 ppm; HRMS (ESI): calcd. for C₁₅H₂₁O₂S⁺ [M+H]⁺: 265.1257, found: 265.1259.

2d was prepared as a colorless oil (75% yield, dr = 4 : 1) according to General Procedure B. R_f = 0.23 (petroleum ether/EtOAc = 4 : 1); IR (film): v_{max} = 2971, 2940, 2877, 1682, 1606, 1438, 1357, 1267, 1019, 955, 832 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.98–3.93 (m, 1H), 3.91 (t, J = 8.0 Hz, 2H), 3.64 (t, J = 8.0 Hz, 1H), 2.86 (d, J = 8.0 Hz, 2H), 2.59 (s, 3H), 2.58 (heptet, J = 7.6 Hz, 1H), 2.15 (dd, J = 13.2, 9.2 Hz, 1H), 2.08–2.02 (m, 2H), 1.92–1.84 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 197.8, 146.5, 135.3, 128.9 (2C), 128.6 (2C), 115.0, 71.9, 67.3, 40.7, 40.0, 39.4, 35.7, 26.6, 24.4 ppm; HRMS (ESI): calcd. for C₁₆H₂₁O₃⁺ [M+H]⁺: 261.1485, found: 261.1484.

2e was prepared as a colorless oil (76% yield, dr = 6 : 1) according to General Procedure B. R_f = 0.38 (petroleum ether/EtOAc = 4 : 1); IR (film): v_{max} = 3040, 2974, 2942, 2880, 1603, 1510, 1443, 1342, 1222, 1156, 1107, 1021, 953, 824 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (dd, *J* = 8.4, 5.6 Hz, 2H), 6.96 (t, *J* = 8.4 Hz, 2H), 3.97–3.92 (m, 1H), 3.90 (t, *J* = 8.0 Hz, 2H), 3.62 (t, *J* = 8.0 Hz, 1H), 2.75 (d, *J* = 8.0 Hz, 2H), 2.51 (heptet, *J* = 7.6 Hz, 1H), 2.14 (dd, *J* = 13.2, 9.2 Hz, 1H), 2.09–2.01 (m, 2H), 1.94–1.82 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 161.3 (d, *J*_{C-F} = 242.0 Hz), 136.4 (d, *J*_{C-F} = 3.0 Hz), 130.0 (d, *J*_{C-F} = 7.0 Hz, 2C), 115.1 (d, *J*_{C-F} = 22.0 Hz, 2C), 115.0, 72.0, 67.3, 40.7, 40.5, 38.5, 35.8, 24.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.38 ppm; HRMS (ESI): calcd. for C₁₄H₁₈FO₂⁺ [M+H]⁺: 237.1285, found: 237.1281.

2f was prepared as a colorless oil (80% yield, dr = 8 : 1) according to General Procedure B. R_f = 0.31 (petroleum ether/EtOAc = 5 : 1); IR (film): v_{max} = 3069, 2973, 2940, 2882, 2778, 1608, 1490, 1442, 1342, 1246, 1190, 1101, 1038, 926, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 6.72 (d, *J* = 8.0 Hz, 1H), 6.67 (s, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.92 (s, 2H), 3.97–3.92 (m, 1H), 3.90 (t, *J* = 8.0 Hz, 2H), 3.61 (t, *J* = 8.0 Hz, 1H), 2.71 (d, *J* = 8.0 Hz, 2H), 2.49 (heptet, *J* = 8.0 Hz, 1H), 2.14 (dd, *J* = 13.2, 9.2 Hz, 1H), 2.06–2.00 (m, 2H), 1.92–1.82 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 147.6, 145.7, 134.6, 121.5, 115.0, 109.0, 108.1, 100.8, 72.0, 67.2, 40.7, 40.6, 39.0, 35.8, 24.4 ppm; HRMS (ESI): calcd. for C₁₅H₁₉O₄⁺ [M+H]⁺: 263.1278, found: 263.1279.

2g was prepared as a colorless oil (74% yield, dr = 8 : 1) according to General Procedure B. R_f = 0.41 (petroleum ether/EtOAc = 4 : 1); IR (film): v_{max} = 3068, 2941, 2881, 1597, 1493, 1462, 1339, 1243, 1117, 1023, 953, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.18 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.97–3.90 (m, 1H), 3.88 (t, *J* = 8.0 Hz, 2H), 3.81 (s, 3H), 3.64 (t, *J* = 8.0 Hz, 1H), 2.78 (d, *J* = 8.0 Hz, 2H), 2.62 (heptet, *J* = 8.0 Hz, 1H), 2.14 (dd, *J* = 13.2, 8.8 Hz, 1H), 2.08–2.00 (m, 2H), 1.94–1.82 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 157.5, 130.3, 129.2, 127.3, 120.3, 115.1, 110.2, 72.3, 67.2, 55.2, 41.1, 38.8, 36.0, 33.7, 24.4 ppm; HRMS (ESI): calcd. for C₁₅H₂₁O₃⁺ [M+H]⁺: 249.1485, found: 249.1481.

2h was prepared as a colorless oil (70% yield, dr = 8 : 1) according to General Procedure B. $R_f = 0.42$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 2942$, 2881,

1601, 1489, 1455, 1318, 1262, 1153, 1020, 953, 782 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): $\delta = 7.08$ (t, J = 8.0 Hz, 1H), 6.76 (s, 1H), 6.69 (t, J = 8.0 Hz, 2H), 3.91 (dt, J = 8.0, 5.6 Hz, 1H), 3.85 (t, J = 8.0 Hz, 1H), 3.73 (dt, J = 14.8, 7.2 Hz, 2H), 3.33 (s, 3H), 2.72–2.61 (m, 2H), 2.33 (heptet, J = 8.0 Hz, 1H), 1.97–1.82 (m, 4H), 1.58–1.47 (m, 2H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta = 160.4$, 143.0, 129.6, 121.4, 114.98, 114.93, 111.7, 72.3, 67.1, 54.6, 40.8, 40.7, 39.9, 35.8, 24.7 ppm; HRMS (ESI): calcd. for C₁₅H₂₁O₃⁺ [M+H]⁺: 249.1485, found: 249.1482.

2i was prepared as a colorless oil (57% yield, dr = 10 : 1) according to General Procedure B. $R_f = 0.40$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 3055$, 2940, 2883, 1633, 1607, 1506, 1484, 1390, 1266, 1229, 1027, 951, 852 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.66$ (dd, J = 8.0, 2.0 Hz, 2H), 7.54 (s, 1H), 7.28 (dd, J = 8.4, 1.6 Hz, 1H), 7.13 (d, J = 2.4 Hz, 1H), 7.12 (brs, 1H), 3.98–3.91 (m, 3H), 3.90 (s, 3H), 3.68 (t, J = 8.0 Hz, 1H), 2.90 (d, J = 8.0 Hz, 2H), 2.63 (heptet, J = 7.6 Hz, 1H), 2.16 (dd, J = 13.2, 8.8 Hz, 1H), 2.08–2.01 (m, 2H), 1.94 (dd, J = 13.2, 6.0 Hz, 1H), 1.91–1.82 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.3$, 136.0, 133.1, 129.1, 128.9, 127.8, 126.8, 126.7, 118.7, 115.1, 105.7, 72.2, 67.2, 55.3, 40.9, 40.4, 39.3, 35.8, 24.4 ppm; HRMS (ESI): calcd. for C₁₉H₂₃O₃⁺ [M+H]⁺: 299.1642, found: 299.1640.

2j was prepared as a colorless oil (61% yield, dr = 7 : 1) according to General Procedure B. $R_f = 0.38$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 3070, 2973,$ 2940, 2880, 1615, 1522, 1444, 1344, 1226, 1162, 1020, 949, 805 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 3.2 Hz, 1H), 6.40 (d, J = 3.2 Hz, 1H), 3.98–3.92 (m, 1H), 3.90 (t, J = 8.0Hz, 2H), 3.75 (s, 3H), 3.67 (t, J = 8.0 Hz, 1H), 2.87 (d, J = 7.6 Hz, 2H), 2.60 (heptet, J = 7.6 Hz, 1H), 2.15 (dd, J = 13.2, 8.8 Hz, 1H), 2.06–2.00 (m, 2H), 1.94 (dd, J = 13.2, 6.8 Hz, 1H), 1.91–1.84 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 135.4, 131.6, 128.9, 128.6, 122.6, 120.3, 115.1, 109.0, 100.4, 72.3, 67.2, 41.2, 41.0, 39.4, 35.9, 32.8, 24.4 ppm; HRMS (ESI): calcd for C₁₇H₂₂NO₂⁺ [M+H]⁺: 272.1645, found: 272.1640.

2k was prepared as a colorless oil (82% yield, dr = 8 : 1) according to General Procedure B. R_f = 0.36 (petroleum ether/EtOAc = 5 : 1); IR (film): v_{max} = 3098, 3046, 2942, 2879, 1670, 1606, 1581, 1498, 1444, 1341, 1299, 1267, 1241, 1154, 1018, 950, 824, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.21 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 3.2 Hz, 1H), 6.95 (d, *J* = 6.8 Hz, 1H), 6.55 (d, *J* = 3.2 Hz, 1H), 3.99–3.89 (m, 3H), 3.79 (s, 3H), 3.74 (t, *J* = 8.0 Hz, 1H), 3.08 (d, *J* = 7.6 Hz, 2H), 2.77 (heptet, *J* = 8.0 Hz, 1H), 2.17 (dd, *J* = 13.2, 8.8 Hz, 1H), 2.09–1.98 (m, 3H), 1.94–1.84 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 136.7, 133.1, 128.3, 127.9, 121.6, 119.0, 115.1, 107.3, 99.3, 72.5, 67.2, 41.2, 39.7, 36.8, 35.9, 32.9, 24.4 ppm; HRMS (ESI): calcd for C₁₇H₂₂NO₂⁺ [M+H]⁺: 272.1645, found: 272.1639.

21 was prepared as a white solid (65% yield, dr = 1.2 : 1) according to General Procedure B. R_f = 0.56 (petroleum ether/EtOAc = 5 : 1); Mp. 82–83 °C; IR (film): v_{max} = 3070, 3035, 2932, 2856, 1609, 1584, 1510, 1445, 1334, 1285, 1245, 1178, 1112, 1034, 998, 847, 818, 759, 634 cm⁻¹; (*one isomer*) ¹H NMR (400 MHz, C₆D₆): δ = 6.98 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.92 (dt, *J* = 8.0, 2.0 Hz, 1H), 3.63 (q, *J* = 5.6 Hz, 1H), 3.36 (s, 3H), 2.64–2.56 (m, 2H), 2.29–2.21 (m, 1H), 2.07–1.82 (m, 6H), 1.72–1.62 (m, 3H), 1.61–1.49 (m, 4H), 1.48–1.35 (m, 1H), 1.25–1.10 (m, 2H) ppm; ¹³C NMR (100 MHz, C₆D₆): δ = 158.5, 133.4, 129.9 (2C), 114.2 (2C), 112.4, 83.5, 66.6, 54.7, 50.2, 41.5, 38.6, 38.1, 35.7, 33.0, 26.4, 24.9, 23.6, 22.5 ppm; HRMS (ESI): calcd for C₂₀H₂₉O₃⁺ [M+H]⁺: 317.2111, found: 317.2112.

2m was prepared as a colorless oil (51% yield, dr > 20 : 1) according to General Procedure B. $R_f = 0.31$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 3079$, 2976, 2934, 2875, 1612, 1517, 1456, 1400, 1362, 1324, 1273, 1146, 1090, 1022, 858, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 3.97–3.88 (m, 2H), 3.85 (d, J = 8.4 Hz, 1H), 3.44 (d, J = 8.4 Hz, 1H), 2.84 (d, J = 12.8 Hz, 1H), 2.77 (d, J = 12.8 Hz, 1H), 2.20 (d, J = 13.6 Hz, 1H), 2.10–2.02 (m, 2H), 1.96–1.85 (m, 2H), 1.76 (d, J = 13.2 Hz, 1H), 1.34 (s, 12H), 1.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 142.4$, 134.5 (2C), 129.8, 129.6, 115.3, 83.7 (2C), 78.0, 67.1, 48.1, 45.2, 43.4, 36.8, 24.86, 24.85 (4C), 24.5 ppm (The boron-bound carbon was not detected due to quadrupolar relaxation of boron); ESI–MS: m/z [M+H]⁺: 359.3.

2n was prepared as a colorless oil (87% yield, dr = 8 : 1) according to General Procedure B. R_f = 0.42 (petroleum ether/EtOAc = 10 : 1); IR (film): v_{max} = 2940, 2868, 1612, 1512, 1246, 1178, 1077, 1037, 1013, 979, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 3.94 (t, *J* = 8.0 Hz, 1H), 3.87 (td, *J* = 11.6, 3.2 Hz, 1H), 3.78 (s, 3H), 3.64–3.62 (m, 1H), 3.61 (t, *J* = 8.4 Hz, 1H), 2.70 (d, *J* = 8.0 Hz, 2H), 2.51 (heptet, *J* = 8.0 Hz, 1H), 1.89 (dd, *J* = 13.2, 9.6 Hz, 1H), 1.84–1.75 (m, 1H), 1.72 (d, *J* = 6.0 Hz, 1H), 1.69–1.26 (m, 5H) ppm; ¹³C / DEPT NMR (100 MHz, CDCl₃): δ = 157.9 (s), 133.1 (s), 129.5 (d, 2C), 113.8 (d, 2C), 106.3 (s), 72.1 (t), 61.7 (t), 55.2 (q), 44.2 (t), 40.2 (d), 38.8 (t), 34.2 (t), 25.1 (t), 20.0 (t) ppm; HRMS (APCI): *m*/*z* calcd for C₁₆H₂₃O₃⁺ [M+H]⁺: 263.1642, found: 263.1635.

20 was prepared as a colorless oil (72% yield, dr = 6: 1) according to General

Procedure B. $R_f = 0.33$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 3046, 2979, 2940, 2868, 1611, 1518, 1444, 1361, 1270, 1144, 1090, 1024, 964, 859, 737, 661 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): <math>\delta = 8.12$ (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 3.98 (td, J = 12.0, 2.0 Hz, 1H), 3.86 (t, J = 8.0 Hz, 1H), 3.62 (t, J = 8.0 Hz, 1H), 3.60–3.55 (m, 1H), 2.62–2.52 (m, 2H), 2.31–2.25 (m, 1H), 1.94–1.88 (m, 1H), 1.77 (dd, J = 9.2, 5.6 Hz, 1H), 1.63 (dd, J = 12.8, 9.6 Hz, 1H), 1.56 (dd, J = 11.6, 4.0 Hz, 2H), 1.48–1.40 (m, 2H), 1.30–1.21 (m, 1H), 1.12 (s, 12H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta = 145.3, 136.0$ (2C), 128.9 (2C), 106.5, 84.0 (2C), 72.6, 61.9, 44.9, 40.7, 40.5, 34.9, 26.0, 25.3 (4C), 20.9 ppm (The boron-bound carbon was not detected due to quadrupolar relaxation of boron); HRMS (ESI): calcd. for C₂₁H₃₂BO₄⁺ [M+H]⁺: 359.2392, found: 359.2389.

2p was prepared as a colorless solid (58% yield, dr = 6 : 1) according to General Procedure B. $R_f = 0.43$ (petroleum ether/EtOAc = 5 : 1); Mp. 90–91 °C; IR (film): $v_{max} = 3053, 2940, 2870, 1628, 1519, 1445, 1316, 1221, 1168, 1080, 1017, 978, 808, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.47$ (d, J = 7.6 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 2.8 Hz, 1H), 6.45 (d, J = 2.8 Hz, 1H), 4.03 (s, 3H), 4.00 (t, J = 8.0 Hz, 1H), 3.90 (td, J = 11.2, 2.8 Hz, 1H), 3.73 (t, J = 8.0 Hz, 1H), 3.65 (dt, J = 11.6, 2.0 Hz, 1H), 3.32 (dd, J = 14.4, 8.0 Hz, 1H), 3.22 (dd, J = 14.4, 7.6 Hz, 1H), 2.69 (heptet, J = 6.0 Hz, 1H), 1.94 (dd, J = 13.2, 9.6 Hz, 1H), 1.84 (dd, J = 13.2, 5.6 Hz, 1H), 1.82–1.76 (m, 1H), 1.72 (dd, J = 12.8, 4.0 Hz, 1H), 1.68–1.60 (m, 2H), 1.59–1.51 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.7$, 130.9, 130.3, 124.5, 123.4, 119.5, 119.3, 106.3, 101.1, 72.0, 61.7, 44.1, 40.1, 37.0, 36.1, 34.1, 25.1, 20.0 ppm; HRMS (ESI): calcd. for C₁₈H₂₄NO₂⁺ [M+H]⁺: 286.1802, found: 286.1801. This spiroketal product was dissolved in CH₂Cl₂. After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature. Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

X-ray crystal data of 2p (selected H atoms have been omitted for clarity)

Empirical formula	$C_{18}H_{23}NO_2$
Temperature (K)	296(2)
Crystal color	colorless
Formula weight	285.37
Crystal system	Monoclinic
Space group	$P2_{1}/n$
<i>a</i> (Å)	7.335(4)
<i>b</i> (Å)	11.239(6)
<i>c</i> (Å)	18.641(10)
α (°)	90.00
β (°)	98.321(6)
γ (°)	90.00
$V(\text{\AA}^3)$	1520.6(15)
Ζ	4
Density (calculated) (g/cm ³)	1.247
F (000)	616
λ (Å)	0.71073
Reflections collected	10164
Independent reflections	2639
θ Range for data collection (°)	2.12—24.92
Index range	$-8 \le h \le 8$ -13 $\le k \le 13$ -21 $\le l \le 22$
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.1046, wR_2 = 0.2537$
Largest difference peak and hole [e Å $^{-3}$]	0.630, -0.223

2q was prepared as a colorless oil (38% yield, dr > 20 : 1) according to General Procedure B. $R_f = 0.18$ (petroleum ether/EtOAc = 10 : 1); IR (film): $v_{max} = 2933$, 2867, 1611, 1582, 1512, 1460, 1366, 1247, 1176, 1079, 1021, 837, 809 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.07$ (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.90 (td, J = 11.2, 3.2 Hz, 1H), 3.86 (d, J = 8.0 Hz, 1H), 3.79 (s, 3H), 3.63 (dt, J = 11.2, 2.4 Hz, 1H), 3.47 (d, J = 8.0 Hz, 1H), 2.74 (d, J = 13.6 Hz, 1H), 2.69 (dd, J = 13.6 Hz, 1H), 2.00 (d, J = 13.6 Hz, 1H), 1.86–1.75 (m, 1H), 1.74–1.68 (m, 2H), 1.66–1.60 (m, 1H), 1.58–1.52 (m, 1H), 1.50 (d, J = 13.6 Hz, 2H), 1.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.0$, 131.3, 130.9 (2C), 113.4 (2C), 106.7, 77.9, 61.8, 55.2, 51.7, 44.8, 43.4, 35.2, 25.7, 25.1, 20.9 ppm; HRMS (ESI): calcd. for C₁₇H₂₅O₃⁺ [M+H]⁺: 277.1798, found: 277.1796.

6-Exo-trig Cyclization-Coupling

To an oven-dried round bottom flask was added 1,1-dimethyl homoallyl alcohol (600 mg, 6 mmol) and dry CH₂Cl₂ (10 mL). The resulting solution was cooled to -78 °C and freshly prepared 2-methylenetetrahydrofuran⁴ (5 mmol) was was introduced followed by the addition of *N*-bromosuccinimide (980 mg, 5.5 mmol, recrystallized from acetone) portionwise. The reaction mixture was stirred for 20 min at this temperature and then quenched by H₂O (10 mL). The aqueous layer was extracted with Et₂O (2 × 50 mL), and the combined organic layers were washed with water (3 × 10 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (petroleum ether/EtOAc = 50 : 1) on silica gel (basified with 1% Et₃N) to furnish the desired β -bromo ketal **1r** (447 mg, 34%, over two steps) as the

pale yellow oil. $R_f = 0.64$ (petroleum ether/EtOAc = 5 : 1); ¹H NMR (400 MHz, C₆D₆): $\delta = 5.99-5.88$ (m, 1H), 5.05 (dd, J = 10.4, 1.2 Hz, 1H), 5.01 (dd, J = 17.2, 1.2 Hz, 1H), 3.76 (td, J = 11.6, 4.0 Hz, 1H), 3.60 (q, J = 8.0 Hz, 1H), 3.47 (d, J = 10.4 Hz, 1H), 3.39 (d, J = 10.4 Hz, 1H), 2.29 (dd, J = 13.6, 7.2 Hz, 1H), 2.18 (dd, J = 13.6, 7.6 Hz, 1H), 2.01–1.87 (m, 2H), 1.77–1.67 (m, 1H), 1.42–1.33 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta = 135.7$, 117.1, 108.9, 76.6, 70.4, 49.3, 39.6, 38.3, 27.9, 27.4, 24.8 ppm; ESI–MS: m/z 301.1 [M+K]⁺.

To a stirred slurry of Zn (78 mg, 1.2 mmol) and NiCl₂ (16 mg, 0.12 mmol) in pyridine (0.5 mL) was added 2,2'-bipyridine (22 mg, 0.15 mmol) at room temperature. Then the temperature rose to 55 °C and vigorous stirring was continued for 15 min. The resulting black Ni(0) complex was cooled to room temperature, to which the solution of 4-iodoanisole (112 mg, 0.48 mmol) and β -bromo ketal **1r** (105 mg, 0.4 mmol) in CH₃CN (4 mL) was added dropwise over a 10-min period. After stirring for 6 h, the mixture was filtered with a short plug of silica (elution with 30 mL Et₂O) and washed with water and brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 20 : 1) on silica gel to afford desired spiroketal **2r** (*less polar*) and **2r'** (*more polar*) as the colorless oils (66 mg, 57%, dr = 2:1).

(2r): a colorless oil; $R_f = 0.56$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 3050, 2968, 2934, 2839, 1610, 1584, 1509, 1462, 1376, 1270, 1246, 1179, 1038, 1001, 972, 824, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.07$ (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.87 (dd, J = 8.0, 6.8 Hz, 1H), 3.85 (t, J = 6.8 Hz, 1H), 3.79 (s, 3H), 2.51 (dd, J = 13.6, 6.8 Hz, 1H), 2.40 (dd, J = 13.2, 7.6 Hz, 1H), 2.35–2.24 (m, 1H), 2.08–1.98 (m, 1H), 1.89 (td, J = 8.4, 2.0 Hz, 1H), 1.84 (dd, J = 16.0, 2.8 Hz, 1H), 1.32

(t, J = 12.8 Hz, 1H), 1.26 (s, 3H), 1.13 (s, 3H), 1.04 (t, J = 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.8$, 132.1, 130.0 (2C), 113.6 (2C), 106.6, 73.0, 66.6, 55.2, 42.9, 42.7, 40.1, 39.3, 32.8, 30.3, 26.5, 23.7 ppm; HRMS (ESI): calcd. for C₁₈H₂₆NaO₃⁺ [M+Na]⁺: 313.1774, found: 313.1775.

(2r'): a colorless oil; $R_f = 0.41$ (petroleum ether/EtOAc = 4 : 1); IR (film): $v_{max} = 2970, 2930, 1612, 1584, 1512, 1461, 1364, 1299, 1246, 1177, 1035, 1021, 999, 825 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.08$ (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.96 (t, J = 7.2 Hz, 1H), 3.88–3.83 (m, 1H), 3.80 (s, 3H), 2.53 (d, J = 8.0 Hz, 2H), 2.07–1.96 (m, 3H), 1.89–1.81 (m, 2H), 1.69–1.63 (m, 1H), 1.49 (ddd, J = 13.2, 4.0, 1.6 Hz, 1H), 1.40 (dd, J = 13.6, 10.8 Hz, 2H), 1.26 (s, 3H), 1.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.8, 132.3, 139.9$ (2C), 113.6 (2C), 107.5, 73.3, 66.9, 55.2, 42.5, 41.2, 40.1, 38.5, 32.1, 31.6, 28.0, 24.7 ppm; HRMS (ESI): calcd. for C₁₈H₂₆NaO₃⁺ [M+Na]⁺: 313.1774, found: 313.1774.

Stereospecific Cyclization–Intermolecular Cross-Coupling

To an oven-dried round bottom flask was added 1-veratryl allyl alcohol (1.2 g, 6 mmol, prepared from veratraldehyde and vinylmagnesium bromide in 95% yield) and dry CH₂Cl₂ (15 mL). The resulting solution was cooled to -40 °C and freshly prepared 2-methylenetetrahydrofuran⁴ (5 mmol) was was introduced followed by the addition of *N*-bromosuccinimide (980 mg, 5.5 mmol, recrystallized from acetone). The reaction mixture was stirred for 1 h then slowly warmed to room temperature over a 2 h period. The reaction mixture was diluted with Et₂O (30 mL) and poured into a separatory funnel that contained H₂O (10 mL). The aqueous layer was extracted with Et₂O (2 × 30 mL), and the combined organic layers were washed with water (3 × 10 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was purified by flash column

chromatography (petroleum ether/EtOAc = 20 : 1) on silica gel to furnish the desired β -bromo ketal **1s** (*less polar*) and **1s'** (*more polar*) (930 mg, 52%, dr = 1:1.2, over two steps).

(1s): a colorless oil; $R_f = 0.43$ (petroleum ether/EtOAc = 5 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.91$ (d, J = 1.6 Hz, 1H), 6.87 (dd, J = 8.0, 1.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.94 (ddd, J = 17.2, 10.4, 5.6 Hz, 1H), 5.23 (d, J = 5.6 Hz, 1H), 5.16 (dd, J = 17.2, 1.6 Hz, 1H), 5.08 (dd, J = 10.4, 1.2 Hz, 1H), 4.07–4.03 (m, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 3.36 (d, J = 10.8 Hz, 1H), 3.26 (d, J = 10.8 Hz, 1H), 2.22–2.10 (m, 3H), 2.02–1.94 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.0$, 148.4, 140.3, 134.9, 118.9, 114.1, 110.9, 110.0, 108.3, 73.9, 69.8, 55.86, 55.85, 36.2, 35.0, 24.5 ppm; HRMS (ESI): calcd. for C₁₆H₂₁BrNaO₄⁺ [M+Na]⁺: 379.0515, found: 379.0508.

(1s'): a colorless solid; $R_f = 0.39$ (petroleum ether/EtOAc = 5 : 1); Mp. 46–48 °C; ¹H NMR (400 MHz, C₆D₆): $\delta = 6.94$ (s, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 8.0Hz, 1H), 6.06 (ddd, J = 16.0, 10.4, 6.8 Hz, 1H), 5.23 (d, J = 6.8 Hz, 1H), 5.20 (d, J =16.0 Hz, 1H), 5.01 (d, J = 10.4 Hz, 1H), 3.57–3.52 (m, 2H), 3.45 (s, 3H), 3.40 (s, 3H), 3.47–3.39 (m, 2H), 2.06 (ddd, J = 12.0, 8.4, 3.6 Hz, 1H), 1.93 (dt, J = 12.8, 9.2 Hz, 1H), 1.71–1.61 (m, 1H), 1.42–1.33 (m, 1H) ppm; ¹³C NMR (100 MHz, C₆D₆): $\delta =$ 150.5, 149.8, 141.5, 136.1, 119.7, 114.6, 112.4, 111.6, 109.1, 75.0, 70.2, 56.0, 55.9, 36.9, 35.4, 25.0 ppm; HRMS (ESI): calcd. for C₁₆H₂₁BrNaO₄⁺ [M+Na]⁺: 379.0515, found: 379.0508. This product was dissolved in EtOAc and hexane (8 : 1). After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

X-ray crystal data of 1s' (selected H atoms have been omitted for clarity)

Empirical formula	$C_{16}H_{21}BrO_4$
Temperature (K)	296(2)
Crystal color	colorless
Formula weight	357.24
Crystal system	Monoclinic
Space group	$P2_{1}/n$
<i>a</i> (Å)	8.3184(19)
<i>b</i> (Å)	10.279(2)
<i>c</i> (Å)	19.396(4)
α (°)	90.00
β (°)	99.917(2)
γ (°)	90.00
$V(\text{\AA}^3)$	1633.7(6)
Ζ	4
Density (calculated) (g/cm ³)	1.452
F (000)	736
λ (Å)	0.71073
Reflections collected	11523
Independent reflections	3031
θ Range for data collection (°)	2.25—25.50
	$-10 \le h \le 10$
Index range	$-12 \le k \le 11$ $-22 \le l \le 23$
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0461, wR_2 = 0.0932$
Largest difference peak and hole [e Å ⁻³]	0.547, -0.366

To a stirred slurry of Zn (40 mg, 0.6 mmol) and NiCl₂ (8 mg, 0.06 mmol) in pyridine (0.5 mL) was added 2,2'-bipyridine (11 mg, 0.07 mmol) at room temperature. Then the temperature rose to 55 °C and vigorous stirring was continued for 10 min. The resulting black Ni(0) complex was cooled to room temperature, to which the

solution of 4-iodoanisole (57 mg, 0.24 mmol) and β -bromo ketal 1s (71 mg, 0.2 mmol) in CH₃CN (4 mL) was added dropwise over a 10-min period. After stirring for 6 h, the mixture was filtered with a short plug of silica (elution with 30 mL Et₂O) and washed with water and brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 10 : 1) on silica gel to afford the desired spiroketal **2s** (49 mg, 64%) as a colorless oil. $R_f = 0.30$ (petroleum ether/EtOAc = 3 : 1); IR (film): $v_{max} = 3061, 2934, 2836, 1610, 1513,$ 1592, 1513, 1462, 1344, 1246, 1159, 1136, 1030, 935, 815 cm⁻¹; ¹H NMR (400 MHz, C_6D_6): $\delta = 7.35$ (d, J = 1.6 Hz, 1H), 7.05 (dd, J = 8.4, 1.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 1H), 4.62 (d, J = 8.8 Hz, 1H), 4.02 (dt, J = 8.0, 5.6 Hz, 1H), 3.71 (q, J = 7.6 Hz, 1H), 3.59 (s, 3H), 3.44 (s, 3H), 3.31 (s, 3H), 3.59 (s, 3H), 3.44 (s, 3H), 3.51 (s, 3H), 3.53H), 2.96–2.83 (m, 2H), 2.30 (dd, J = 12.8, 9.6 Hz, 1H), 2.14 (dd, J = 11.6, 5.6 Hz, 1H), 2.06 (ddd, J = 12.0, 8.4, 3.6 Hz, 1H), 1.98–1.89 (m, 1H), 1.72 (t, J = 12.0 Hz, 1H), 1.67 (dd, J = 12.0, 8.0 Hz, 1H), 1.60–1.52 (m, 1H) ppm; ¹³C NMR (100 MHz. C_6D_6): $\delta = 159.0, 150.9, 150.1, 136.8, 133.0, 130.3$ (2C), 120.0, 114.6, 114.5 (2C), 112.3, 111.8, 88.0, 67.3, 56.1, 55.9, 55.1, 51.0, 42.9, 37.8, 35.7, 25.2 ppm; HRMS (ESI): calcd. for $C_{23}H_{29}O_5^+$ [M+H]⁺: 385.2010, found: 385.2017.

2s' was prepared as a colorless solid (73% yield) starting from **1s'** (*more polar isomer*) according to the above procedure for **2s**. $R_f = 0.23$ (petroleum ether/EtOAc = 3 : 1); Mp. 71–73 °C; IR (film): $v_{max} = 3068$, 2953, 2873, 2835, 1612, 1592, 1515, 1462, 1329, 1253, 1158, 1132, 1027, 810, 762 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): $\delta = 6.96$ (dd, J = 8.4, 2.0 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 2.0 Hz, 1H), 6.73 (dd, J = 6.8, 2.0 Hz, 2H), 6.65 (d, J = 8.4 Hz, 1H), 4.95 (d, J = 7.2 Hz, 1H), 4.00 (dt, J = 8.0, 6.0 Hz, 1H), 3.82 (dt, J = 8.0, 6.0 Hz, 1H), 3.46 (s, 3H), 3.41 (s, 3H), 3.30 (s, 3H), 3.00 (dd, J = 13.6, 6.0 Hz, 1H), 2.69 (dd, J = 13.6, 9.6 Hz, 1H), 2.47–2.37 (m, 1H), 2.21–2.10 (m, 1H), 2.16 (t, J = 8.0 Hz, 2H), 1.98–1.87 (m, 1H), 1.73–1.65 (m,

1H), 1.62–1.53 (m, 1H) ppm; ¹³C NMR (100 MHz, C₆D₆): δ = 159.0, 150.6, 150.1, 135.6, 133.5, 130.6 (2C), 119.4, 115.0, 114.6 (2C), 112.6, 111.4, 85.7, 67.6, 56.04, 56.00, 55.1, 50.9, 41.8, 39.1, 36.5, 25.2 ppm; HRMS (ESI): calcd. for C₂₃H₂₉O₅⁺ [M+H]⁺: 385.2010, found: 385.2009. This spiroketal product was dissolved in EtOAc and hexane (4 : 1). After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

X-ray crystal data of 2s' (selected H atoms have been omitted for clarity)

Empirical formula	$C_{23}H_{28}O_5$
Temperature (K)	296(2)
Crystal color	colorless
Formula weight	384.45
Crystal system	Triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	6.143(14)
<i>b</i> (Å)	8.81(2)
<i>c</i> (Å)	19.64(4)
α (°)	83.80(2)
β (°)	83.37(2)
γ (°)	76.77(2)
$V(\text{\AA}^3)$	1024(4)
Ζ	2
Density (calculated) (g/cm ³)	1.247
F (000)	412
λ (Å)	0.71073

Reflections collected	5691
Independent reflections	3531
θ Range for data collection (°)	2.38—25.10
	$-5 \le h \le 7$
Index range	$-10 \le k \le 10$
	$-23 \le l \le 23$
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0963, wR_2 = 0.2607$
Largest difference peak and hole [e Å $^{-3}$]	0.272, -0.271

Epimerization

To the solution of spiroketal **2a** (140 mg, 0.56 mmol) in CH₂Cl₂ (2 mL) was added BBr₃ (0.1 M in CH₂Cl₂, 17 mL, 3 equiv) dropwise at -78 °C. The reaction mixture was kept for 2 h at this temperature and then quenched carefully by saturated aqueous NaHCO₃ (5 mL) and diluted with CH₂Cl₂ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 5 mL), and the combined organic layers were washed with water and brine (5 mL) respectively, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (petroleum/EtOAc = 3 : 1) on silica gel to afford free phenol **3a** (70 mg, *less polar*) and C(3) isomerized **3a'** (58 mg, *more polar*) as the colorless oils.

To the solution of the above free phenol **3a** (40 mg, 0.17 mmol) in acetone (2 mL) was added K_2CO_3 (164 mg, 1.19 mmol, 7 equiv) followed by the addition of TsCl (37 mg, 0.19 mmol, 1.1 equiv) after 10 min. The resulting mixture was heated at reflux for 4 h and quenched by saturated aqueous NaHCO₃ (5 mL) and diluted with EtOAc (15 mL) and poured into a separatory funnel. The aqueous layer was extracted with EtOAc (3 × 10 mL), and the combined organic layers were washed with water and

brine (5 mL) respectively, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (petroleum ether/EtOAc = 8 : 1) on silica gel to furnish the desired **4a** (61 mg, 92%), which was dissolved in EtOAc and hexane. After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature. $R_f = 0.22$ (petroleum ether/EtOAc = 4 : 1); Mp. 84–86 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 3.95–3.86 (m, 1H), 3.87 (t, J = 8.0 Hz, 2H), 3.58 (t, J = 8.0 Hz, 1H), 2.75 (dd, J = 8.0, 3.2 Hz, 2H), 2.49 (heptet, J = 7.2 Hz, 1H), 2.45 (s, 3H), 2.12 (dd, J = 13.6, 9.2 Hz, 1H), 2.06–1.99 (m, 2H), 1.94–1.84 (m, 2H), 1.83 (dd, J = 8.0, 3.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 147.9, 145.2, 139.8, 132.5, 129.71 (2C), 129.67 (2C), 128.5 (2C), 122.3 (2C), 115.0, 71.9, 67.3, 40.6, 40.1, 38.7, 35.7, 24.4, 21.7 ppm.

X-ray crystal data of 4a (selected H atoms have been omitted for clarity)

Empirical formula	$C_{21}H_{24}O_5S$
Temperature (K)	293(2)
Crystal color	colorless
Formula weight	388.46
Crystal system	Monoclinic
Space group	$P2_{1}/c$
a (Å)	11.215(18)
<i>b</i> (Å)	9.284(15)
<i>c</i> (Å)	19.41(3)

α (°)	90.00
β (°)	90.341(19)
γ (°)	90.00
$V(\text{\AA}^3)$	2021(6)
Ζ	4
Density (calculated) (g/cm ³)	1.277
F (000)	824
λ (Å)	0.71073
Reflections collected	7900
Independent reflections	3511
θ Range for data collection (°)	2.10-25.00
Index range	$-7 \le h \le 13$ $-11 \le k \le 10$ $-23 \le l \le 19$
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.1031, wR_2 = 0.2647$
Largest difference peak and hole [e Å -3]	1.022, -0.389

4a' was prepared as a white solid starting from **3a'** (*more polar isomer*) according to the above procedure for **4a**. $R_f = 0.20$ (petroleum ether/EtOAc = 4 : 1); Mp. 108–110 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.69$ (d, J = 8.4 Hz, 2H), 7.30 (d, J =8.0 Hz, 2H), 7.06 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 3.97 (t, J = 8.0 Hz, 1H), 3.94–3.88 (m, 1H), 3.82 (t, J = 8.0 Hz, 1H), 3.48 (t, J = 8.0 Hz, 1H), 2.72 (heptet, J = 7.6 Hz, 1H), 2.66–2.61 (m, 2H), 2.45 (s, 3H), 2.09 (dd, J = 12.8, 7.2 Hz, 1H), 2.05 (d, J = 7.2 Hz, 1H), 2.09–1.99 (m, 1H), 1.95–1.86 (m, 2H), 1.68 (dd, J = 12.8, 9.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.0$, 145.3, 139.5, 132.5, 129.7 (2C), 129.6 (2C), 128.5 (2C), 122.3 (2C), 114.9, 71.9, 67.2, 41.4, 39.7, 39.0, 35.0, 24.5, 21.7 ppm; HRMS (ESI): m/z calcd for C₂₁H₂₅O₅S⁺ [M+H]⁺: 389.1417, found: 389.1435. This spiroketal product was dissolved in EtOAc and hexane (4 : 1). After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

X-ray crystal data of 4a' (selected H atoms have been omitted for clarity)

Empirical formula	$C_{21}H_{24}O_5S$
Temperature (K)	296(2)
Crystal color	colorless
Formula weight	388.46
Crystal system	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> (Å)	11.137(11)
<i>b</i> (Å)	9.246(9)
<i>c</i> (Å)	18.976(18)
α (°)	90.00
β (°)	90.813(11)
γ (°)	90.00
$V(\text{\AA}^3)$	1954(3)
Ζ	4
Density (calculated) (g/cm ³)	1.321
F (000)	824
λ (Å)	0.71073
Reflections collected	13647
Independent reflections	3616
θ Range for data collection (°)	2.15-25.50
Index range	$-13 \le h \le 13$ $-11 \le k \le 11$ $-22 \le l \le 21$
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.1190, wR_2 = 0.3704$
Largest difference peak and hole [e Å $^{-3}$]	0.559, -0.644

Stereocontrolled Synthesis of [5,5,5]-Bisspiroketal

To an oven-dried round bottom flask was added allyl alcohol (1.2 g, 20 mmol) and dry CH₂Cl₂ (15 mL). The resulting solution was cooled to -40 °C and freshly prepared bismethylenetetrahydrofuran $S1^5$ (ca.1.0 g, 10 mmol) was introduced followed by the addition of N-bromosuccinimide (3.6 g, 20 mmol, recrystallized from acetone) portionwise. The reaction mixture was stirred at -40 °C for 0.5 h then diluted with Et₂O (60 mL) and poured into a separatory funnel that contained H₂O (10 mL). The aqueous layer was extracted with Et₂O (2 \times 60 mL), and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (petroleum ether/EtOAc = 50 : 1) on silica gel to furnish the desired β -bromo ketal 5 (ca. 1.8:1, 930 mg, 25% yield, over two steps) as a colorless oil. R_f = 0.57 (petroleum ether/EtOAc = 10 : 1); IR (film): $v_{max} = 3080, 2981, 2959, 2923,$ 2868, 1648, 1455 1437, 1328, 1268, 1120, 1073, 1003, 925, 882 cm⁻¹; (major isomer) ¹H NMR (400 MHz, CDCl₃): δ = 5.96–5.86 (m, 2H), 5.31 (dd, J = 17.2, 1.6 Hz, 2H), 5.17 (dd, J = 10.4, 1.6 Hz, 2H), 4.16–4.00 (m, 4H), 3.64 (d, J = 10.8 Hz, 2H), 3.41 (d, J = 11.2 Hz, 2H), 2.33–2.18 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.3$ (2C), 116.6 (2C), 109.1 (2C), 62.7 (2C), 34.8 (2C), 34.2 (2C) ppm; ESI-MS: m/z 391.3 [M+Na]⁺.

⁽⁵⁾ Prepared through DBU (5 g, 33 mmol)-promoted β-elimination of HI in 2,5-bisiodomethyl tetrahydrofuran (4.6 g, 13 mmol) which was synthesized from 1,5-hexadiene according to known procedure: Iqbal, J.; Srivastava, R. R. *Tetrahedron* **1991**, *47*, 3155–3170. Characterization data for labile **S1**: ¹H NMR (400 MHz, C₆D₆): δ = 4.56 (s, 2H), 3.88 (s, 2H), 2.05 (s, 4H) ppm; ¹³C NMR (100 MHz, C₆D₆): δ = 161.6 (2C), 82.5 (2C), 27.5 (2C).

To a stirred slurry of Zn (117 mg, 1.8 mmol) and NiCl₂ (39 mg, 0.3 mmol) in pyridine (1.0 mL) was added 2,2'-bipyridine (56 mg, 0.36 mmol) at room temperature. Then the temperature rose to 55 °C and vigorous stirring was continued for 15 min. The resulting Ni(0) complex was cooled to room temperature, to which the solution of **5** (111 mg, 0.3 mmol) and 4-iodoanisole (281 mg, 1.2 mmol, 4 equiv) in CH₃CN (5 mL) was added dropwise over a 10 min period. Then the reaction mixture was further stirred for 24 h and filtered with a short plug of silica (elution with 100 mL Et₂O). The filtrate was washed with water (2 × 10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (petroleum/EtOAc = 5 : 1) on silica gel to afford separable bisspiroketal **6** (*less polar*, 53 mg, 42%) and **6'** (*more polar*, 26 mg, 21%) as the colorless oils.

(6): $R_f = 0.49$ (petroleum ether/EtOAc = 2 : 1); IR (film): $v_{max} = 3030, 2942, 2836, 1612, 1583, 1512, 1443, 1349, 1245, 1179, 1116, 1036, 993, 829, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.12$ (d, J = 8.4 Hz, 4H), 6.83 (d, J = 8.8 Hz, 4H), 3.91 (t, J = 8.0 Hz, 2H), 3.79 (s, 6H), 3.70 (dd, J = 8.4, 6.8 Hz, 2H), 2.80 (dd, J = 8.0, 6.0 Hz, 4H), 2.53 (heptet, J = 7.2 Hz, 2H), 2.20–2.10 (m, 4H), 2.07–1.97 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.9$ (2C), 132.9 (2C), 129.7 (4C), 115.3 (2C), 113.8 (4C), 72.4 (2C), 55.2 (2C), 42.1 (2C), 40.3 (2C), 38.6 (2C), 35.3 (2C) ppm; HRMS (ESI): calcd. for C₂₆H₃₃O₅⁺ [M+H]⁺: 425.2323, found: 425.2331.

(6'): $R_f = 0.35$ (petroleum ether/EtOAc = 2 : 1); IR (film): $v_{max} = 3030, 2939, 2859, 1612, 1583, 1512, 1443, 1300, 1246, 1178, 1036, 989, 882 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.11$ (d, J = 8.8 Hz, 4H), 6.84 (d, J = 8.8 Hz, 4H), 3.99 (t, J = 8.0 Hz, 2H), 3.80 (s, 6H), 3.72 (t, J = 8.0 Hz, 2H), 2.76 (d, J = 8.0 Hz, 4H), 2.51 (heptet, J = 8.0 Hz, 2H), 2.22 (q, J = 6.4 Hz, 2H), 2.06 (dd, J = 12.8, 8.4 Hz, 2H), 1.96 (q, J = 6.4 Hz, 2H), 1.88 (dd, J = 12.8, 6.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.9$ (2C), 132.9 (2C), 129.6 (4C), 115.3 (2C), 113.8 (4C), 72.7 (2C), 55.2 (2C), 42.4 (2C), 40.4 (2C), 38.4 (2C), 36.1 (2C) ppm; HRMS (ESI): calcd. for C₂₆H₃₃O₅⁺ [M+H]⁺: 425.2323, found: 425.2327.

Stereospecific Cyclization-Intramolecular Coupling

To an oven-dried round bottom flask was added *N*-iodosuccinimide (1.5 g, 6.7 mmol, 1.3 equiv) and dry CH₂Cl₂ (20 mL). The resulting suspension was cooled to -40 °C and the solution of allyl alcohol **S2**⁶ (1.42 g, 5.2 mmol) in CH₂Cl₂ (4 mL) was added dropwise over a 5 min period. After 2 min, the solution of 2-methylenetetrahydrofuran⁴ (750 mg, 8.8 mmol, 1.7 equiv) in CH₂Cl₂ (4 mL) was added dropwise over a 5 min period. The reaction mixture was stirred for 30 min then was diluted with Et₂O (60 mL) and poured into a separatory funnel that contained H₂O (10 mL). The aqueous layer was extracted with Et₂O (2 × 30 mL), and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude residue was carefully purified by flash column chromatography (petroleum ether/EtOAc = 50 : 1) on silica gel to furnish the desired β -iodo ketal 7 (*less polar*) and 7' (*more polar*) (1.68 g, 65%, dr = 1 : 1.1).

(7): a white solid; $R_f = 0.28$ (petroleum ether/EtOAc = 10 : 1); Mp. 55–57 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.81$ (d, J = 8.0 Hz, 1H), 7.29–7.23 (m, 2H), 6.89 (td, J = 8.0, 2.4 Hz, 1H), 6.06 (ddd, J = 17.2, 10.4, 8.0 Hz, 1H), 5.15 (d, J = 17.2 Hz, 1H) 5.06 (d, J = 10.4 Hz, 1H), 4.53 (dt, J = 8.0, 5.6 Hz, 1H), 3.43–3.38 (m, 1H), 3.36 (d, J = 10.8 Hz, 1H), 3.23 (d, J = 10.4 Hz, 1H), 3.11 (dd, J = 13.2, 8.4 Hz, 1H), 2.92–2.84 (m, 2H), 1.88 (dd, J = 10.0, 2.8 Hz, 1H), 1.67–1.60 (m, 1H), 1.59–1.50 (m, 1H), 1.49–1.42 (m, 1H), 1.41–1.33 (m, 1H), 1.11 (d, J = 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 141.4$, 141.0, 139.4, 132.5, 128.2, 127.8, 115.7, 101.3, 97.7, 71.7, 62.2, 47.7, 34.3, 24.5, 18.7, 14.3 ppm; HRMS (ESI): calcd for C₁₆H₂₀I₂NaO₂⁺ [M+Na]⁺: 520.9445, found: 520.9455. This spiroketal product was dissolved in

⁽⁶⁾ For its preparation, see: Yan, C.-S.; Peng, Y.; Xu, X.-B.; Wang, Y.-W. Chem.-Eur. J. 2012, 18, 6039.

EtOAc and Hexane (3 : 1). After a few days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

X-ray crystal data of 7 (selected H atoms have been omitted for clarity)

Temperature (K)296(2)Crystal colorcolorlessFormula weight498.12Crystal systemMonoclinicSpace groupP21/c	
Crystal colorcolorlessFormula weight498.12Crystal systemMonoclinicSpace groupP21/c	
Formula weight498.12Crystal systemMonoclinicSpace group $P2_1/c$	
Crystal system Monoclinic	
Space group P_{21}/c	
<i>a</i> (Å) 8.616(4)	
<i>b</i> (Å) 22.680(12)	
<i>c</i> (Å) 18.209(9)	
α (°) 90.00	
β(°) 96.020(6)	
γ (°) 90.00	
<i>V</i> (Å ³) 3539(3)	
<i>Z</i> 8	
Density (calculated) (g/cm^3) 1.870	
F (000) 1904	
λ (Å) 0.71073	
Reflections collected 13784	
Independent reflections 6458	
θ Range for data collection (°) 2.12—25.50	
$-10 \le h \le 10$	
Index range $-26 \le k \le 27$ -12 < l < 22	

Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0423, wR_2 = 0.0718$
Largest difference peak and hole [e Å ⁻³]	0.716, -0.871

(7'): a colorless oil; $R_f = 0.23$ (petroleum ether/EtOAc = 10 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.81$ (d, J = 8.0 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 6.89 (t, J = 8.0 Hz, 1H), 5.92–5.84 (m, 1H), 5.06 (d, J = 17.2 Hz, 1H), 5.04 (d, J = 10.0 Hz, 1H), 4.50 (q, J = 7.8 Hz, 1H), 3.77 (td, J = 12.0, 2.8 Hz, 1H), 3.56–3.53 (m, 1H), 3.29 (d, J = 10.4 Hz, 1H), 3.15 (dd, J = 13.6, 7.6 Hz, 1H), 3.01 (d, J = 10.8 Hz, 1H), 2.91 (dd, J = 13.6, 7.2 Hz, 1H), 1.86 (d, J = 7.2 Hz, 1H), 1.76–1.70 (m, 2H), 1.54–1.44 (m, 2H), 1.42–1.37 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 140.9$, 139.3 (2C), 132.2, 128.2, 127.8, 115.8, 101.2, 97.6, 72.3, 63.2, 47.8, 33.2, 24.7, 19.0, 12.4 ppm; HRMS (ESI): calcd for C₁₆H₂₀I₂NaO₂⁺ [M+Na]⁺: 520.9445, found: 520.9434.

To a stirred slurry of Zn (47 mg, 0.72 mmol) and NiCl₂ (16 mg, 0.12 mmol) in pyridine (0.4 mL) was added ethyl crotonate (0.05 mL, 0.36 mmol) at room temperature. Then the temperature rose to 55 °C and vigorous stirring was continued for 15 min. The resulting Ni(0) complex was cooled to room temperature, to which the solution of **7** (60 mg, 0.12 mmol) in DMF (4 mL) was added dropwise over a 20 min period. Then the reaction mixture was further stirred for 12 h and filtered with a short plug of silica (elution with 50 mL Et₂O). The filtrate was washed with water and brine, dried over MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (petroleum/EtOAc = 20 : 1) on silica gel to afford desired spiroketal **8** as a white solid (21 mg, 72%). R_f = 0.45 (petroleum ether/EtOAc = 5 : 1); Mp. 96–100 °C; IR (film): v_{max} = 3062, 3014, 2938, 2873, 2849, 1489, 1446, 1359, 1266, 1069, 1041, 971, 901, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.16–7.07 (m, 4H), 4.01 (td, J = 11.2, 3.2 Hz, 1H), 3.89 (sext, J = 5.6 Hz, 1H), 3.66 (dt, J = 10.8, 2.0 Hz, 1H), 3.23 (dd, J = 14.8, 5.2 Hz, 1H), 3.03 (dd, J = 16.0, 4.8 Hz, 1H), 2.86 (t, J = 13.2 Hz, 1H), 2.70 (t, J = 13.2 Hz, 1H), 2.21 (dd, J = 12.8, 8.0 Hz, 1H), 1.96–1.84 (m, 1H), 1.90 (dd, J = 12.4, 4.8 Hz, 1H), 1.82–1.70 (m, 3H), 1.69–1.51 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.1$, 134.8, 130.2, 129.2, 126.01, 125.95, 106.7, 78.7, 62.6, 44.8, 42.0, 35.9, 35.7, 34.2, 25.1, 19.8 ppm; HRMS (ESI): calcd. for C₁₆H₂₁O₂⁺ [M+H]⁺: 245.1536, found: 245.1539.

8' was prepared as a white solid (70% yield) starting from 7' (*more polar isomer*) according to the above procedure for 8. $R_f = 0.45$ (petroleum ether/EtOAc = 5 : 1); Mp. 40–42 °C; IR (film): $v_{max} = 3017$, 2939, 2922, 2849, 1490, 1438, 1363, 1262, 1223, 1077, 1034, 974, 899, 805, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14-7.10$ (m, 4H), 3.99 (td, J = 11.2, 3.2 Hz, 1H), 3.73 (sext, J = 5.6 Hz, 1H), 3.65 (dt, J = 9.2, 2.0 Hz, 1H), 3.24 (dd, J = 14.8, 5.2 Hz, 1H), 3.07 (dd, J = 16.0, 4.8 Hz, 1H), 2.92 (t, J = 13.6 Hz, 1H), 2.62 (t, J = 13.8 Hz, 1H), 2.32–2.19 (m, 2H), 1.97–1.83 (m, 1H), 1.81–1.65 (m, 3H), 1.64–1.49 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.1$, 135.0, 130.3, 129.3, 126.0, 125.9, 106.3, 81.2, 62.1, 44.2, 40.2, 36.8, 35.1, 34.0, 25.1, 20.2 ppm; HRMS (ESI): calcd. for C₁₆H₂₁O₂⁺ [M+H]⁺: 245.1536, found: 245.1534.

Supporting Information for

Nickel-Mediated Stereocontrolled Synthesis of Spiroketals via Tandem Cyclization–Coupling of β-Bromo Ketals and Aryl Iodides

Yu Peng*, Xiao-Bo Xu, Jian Xiao and Ya-Wen Wang

State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

pengyu@lzu.edu.cn

Table of Contents

•	¹ H NMR and ¹³ C NMR spectrum of 1a	S3-S4
•	¹ H NMR and ¹³ C/DEPT NMR spectrum of 2a	S5-S6
•	¹ H NMR and ¹³ C NMR spectrum of 2a'	S7-S8
•	¹ H NMR and ¹³ C NMR spectrum of 2b	S9-S10
•	¹ H NMR and ¹³ C NMR spectrum of 2c	S11-S12
•	¹ H NMR and ¹³ C NMR spectrum of 2d	S13-S14
•	¹ H NMR and ¹³ C NMR spectrum of 2e	S15-S16
•	¹ H NMR and ¹³ C NMR spectrum of 2f	S17-S18
•	¹ H NMR and ¹³ C NMR spectrum of 2g	S19-S20
•	¹ H NMR and ¹³ C NMR spectrum of 2h	S21-S22
•	¹ H NMR and ¹³ C NMR spectrum of 2i	S23-S24
•	¹ H NMR and ¹³ C NMR spectrum of 2j	S25-S26
•	¹ H NMR and ¹³ C NMR spectrum of 2k	S27-S28
•	¹ H NMR and ¹³ C NMR spectrum of 1 I	S29-S30
•	¹ H NMR and ¹³ C NMR spectrum of 21	S31-S32
•	¹ H NMR and ¹³ C NMR spectrum of 1m	S33-S34
•	¹ H NMR and ¹³ C NMR spectrum of 2m	S35-S36
•	¹ H NMR and ¹³ C NMR spectrum of 1n	S37-S38
•	¹ H NMR and ¹³ C/DEPT NMR spectrum of 2n	S39-S40

•	¹ H NMR and ¹³ C NMR spectrum of 20	. S41-S42
•	¹ H NMR and ¹³ C NMR spectrum of 2p	. S43-S44
•	¹ H NMR and ¹³ C NMR spectrum of 1q	. S45-S46
•	¹ H NMR, ¹³ C NMR, ¹ H– ¹ H COSY and NOE spectrum of 2q	. S47-S55
•	¹ H NMR and ¹³ C NMR spectrum of 1r	. S56-S57
•	¹ H NMR and ¹³ C NMR spectrum of 2r	. S58-S59
•	¹ H NMR and ¹³ C NMR spectrum of 2r'	. S60-S61
•	¹ H NMR and ¹³ C NMR spectrum of 1s (<i>less polar</i>)	. S62-S63
•	¹ H NMR and ¹³ C NMR spectrum of 2s	. S64-S65
•	¹ H NMR and ¹³ C NMR spectrum of 1s' (<i>more polar</i>)	. S66-S67
•	¹ H NMR and ¹³ C NMR spectrum of 2s'	. S68-S69
•	¹ H NMR and ¹³ C NMR spectrum of 4a	. S70-S7 1
•	¹ H NMR and ¹³ C NMR spectrum of 4a'	. S72-S73
•	¹ H NMR and ¹³ C NMR spectrum of 5	. S74-S75
•	¹ H NMR and ¹³ C NMR spectrum of 6	. S76-S77
•	¹ H NMR and ¹³ C NMR spectrum of 6'	. S78-S79
•	¹ H NMR and ¹³ C NMR spectrum of 7 (<i>less polar</i>)	. S80-S8 1
•	¹ H NMR and ¹³ C NMR spectrum of 7' (more polar)	. S82-S83
•	¹ H NMR, ¹³ C NMR, ¹ H– ¹ H COSY and NOE spectrum of 8	. S84-S92
•	¹ H NMR and ¹³ C NMR spectrum of 8'	. S93-S94

S3

Peng Lab

92 22 47 .971 .352 Δ -76.740 -71.176 -70.068 .87 200 . . . 144. 128. 127. 127. 113. 109. 2222 2224 2224 2224 1 1 J 1 1 1 -L ¹³C NMR (150 MHz, C₆D₆) Br 11 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 40 30 20 10 0 ppm 60 50

¹H NMR (400 MHz, C₆D₆)

1n

8.0

7.5

7.0

1.02

6.5

5.5

6.0

5.0

1.00

4.5

3.5

3.07

3.0

1.07

4.0

1.03

2.5

1.00

2.0

3.15

1.5

1:1

0.5

1.0

0.0 ppm

Peng Lab

¹H NMR (400 MHz, CDCl₃)

Br Br

S86

