Spontaneous Transformation from Micelle to Vesicle Associated with Sequential Conversions of Comprising Amphiphiles within Assemblies

Katsuto Takakura^{a,*}, Takahiro Yamamoto^a, Kensuke Kurihara^b, Taro Toyota^{b,c}, Kiyoshi Ohnuma^d, and Tadashi Sugawara^{c,e,**}

^a Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294, Japan, ^b Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, ^c Research Center for Complex Systems Biology, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, ^d Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan, ^e Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan

Supplementary Information

Table of content	
Experimental details	S2
Spectral charts of synthetic amphiphiles N_1 , N_2 , and V	
¹ H NMR spectra	S5
¹³ C NMR spectra	S8
High-resolution ESI-TOF mass spectra	S11
¹ H NMR spectral change of the reaction mixture	S13
Introduction of the equations expressing molar fractions of each	
component consisting of aggregates from ¹ H NMR signal areas	S14
Dynamic light scattering measurement of morphological	
transformation of aggregates consisting of N_1 and N_2	S15

Experimental details

General. All commercially available reagents were purchased from Tokyo Kasei Co. or Wako Pure Chemical Co. and were used without further purification. ¹H NMR spectra were recorded on a JEOL JNM-A400 spectrometer. High-resolution electrospray ionization mass spectra (HRMS-ESI) were recorded on an Applied Biosystems QSTAR-Elite spectrometer with a monosodium adduct of dibutylphthalate ($C_{16}H_{22}NaO_4$, exact mass: 301.1416) for N_1 and N_2 or a monoproton adduct of reserpine ($C_{33}H_{41}N_2O_9$, exact mass: 609.2821) for V as the internal standard. The dynamic behavior of the vesicles was monitored with OLYMPUS IX71 (obj. lens × 100) and OLYMPUS BX51 (obj. lens × 40) equipped with an image-recording and image-processing system.

[2-[4-(2-Dodecylazomethinyl)phenoxy]ethyl}trimethylammonium bromide (N1).

[2-(4-Formylphenoxy)ethyl]trimethylammonium bromide **E** (2.88 g, 10.0 mmol), which was prepared following the procedure described in the literature (K. Takakura, T. Sugawara, *Langmuir*, 2004, **20**, 3832.), and *n*-dodecylamine (1.85 g, 10.0 mmol) were dissolved in absolute ethanol (50 mL), and a catalytic amount of acetic acid was added. The mixture was refluxed for 12 h and then cooled. After the evaporation of ethanol, the residue was washed with acetone to afford the amphiphilic imine derivative N_1 as a colorless crystal (2.51 g, 80.3%).

 $δ_{\rm H}$ (400 MHz,CDCl₃; Me₄Si) 0.85 (3H, t, *J*= 6.95 Hz, CH₃), 1.18-1.75 (20H, m, -(CH₂)₁₀-), 3.57 (9H, 2H, t, s, *J*= 7.07 Hz, NMe₃, -N-<u>CH₂</u>-CH₂-O-), 4.32 (2H, t, *J*=4.51 Hz, -<u>CH₂</u>-O-), 4.52 (2H, s, -<u>CH₂</u>-N=CH-), 6.94 (2H, d, *J*=8.78 Hz, H₀), 7.67 (2H, d, *J*= 8.78 Hz, H_m), 8.18 (1H, s, -N=<u>CH</u>-),

 $δ_{\rm C}$ (100 MHz,CDCl₃; Me₄Si) 14.2 (-CH₃), 22.8-32.0 (10 peaks, -(CH₂)₁₀-), 54.9 (-N(CH₃)₃), 61.8 (-<u>CH₂</u>-N=CH-), 62.5 (-N-<u>CH₂</u>-CH₂-O-), 65.1 (-N-CH₂-<u>CH₂</u>-O-), 114.5 (C_o), 129.9 (C_p), 131.0 (C_m), 158.6 (-N=<u>CH</u>-), 159.6 (C_{ipso}).

HRMS-ESI-TOF (m/z): $[M-Br]^+$ calcd for C₂₄H₄₃N₂O, 375.3369; found 375.336.

Dodecyl[2-(4-formylphenoxy)ethyl]dimethylammonium bromide (N₂). 4-(2-Bromoethoxy)benzaldehyde (2.29 g, 10.0 mmol), which was prepared following the procedure described in the literature,(Y. Okahata, T. Kunitake, *J. Am. Chem. Soc.*, 1979, **101**, 5331.) was dissolved in *N*, *N*-dimethyldodecylamine (10 mL) and the solution was heated at 80 °C for 24 h. The reaction mixture was washed with diethyl ether at room temperature and the resulting powder was recrystallized from chloroform/*n*-hexane to afford the amhiphilic aldehyde N₂ as a colorless crystal (2.74 g, 82.0%).

 $δ_{\rm H}$ (400 MHz,CDCl₃; Me₄Si) 0.85 (3H, t, *J* =6.80 Hz, -CH₃), 1.18-1.80 (20H, m, -(CH₂)₁₀-), 3.51 (6H, s, N(CH₃)₂), 3.63 (2H, m, -O-CH₂-<u>CH₂-N⁺-), 4.31 (2H, t, *J* =4.2 Hz, -N-<u>CH₂-C₁₁H₂₁), 4.63 (2H, t, *J* =4.2 Hz, -O-<u>CH₂-CH₂-N), 7.04 (2H, d, *J* =8.78 Hz, H_o), 7.83 (2H, d, *J* =6.83 Hz, H_m), 9.86 (1H, s, -CHO).</u></u></u>

 $δ_{\rm C}$ (100 MHz,CDCl₃; Me₄Si) 13.0 (-CH₃) , 22.8-32.0 (10 peaks,-(CH₂)₁₀-), 52.7 (-N(CH₃)₂), 62.8, 62.5 (-O-CH₂-<u>CH₂-N⁺-</u>, -N-<u>CH₂-C₁₁H₂₁), 66.3 (-O-<u>CH₂-CH₂-N⁺-</u>), 115.0 (C_o), 131.2 (C_p), 132.3 (C_m), 161.8 (C_{ipso}), 190.8 (-CHO).</u>

HRMS-ESI-TOF (m/z): $[M-Br]^+$ calcd for C₂₃H₄₀NO₂, 362.3053; found 362.3057.

Dodecyl{2-[4-(2-dodecylazomethinyl)phenoxy]ethyl}dimethylammonium bromide (V). Compound N_2 (0.221 g, 0.5 mmol) and dodecylamine (0.186 g, 1.00 mmol) were dissolved in absolute ethanol (5 mL), and a catalytic amount of acetic acid was added. The mixture was refluxed for 12 h and then cooled. After the evaporation of ethanol, the residue was washed with diethyl ether to afford the amphiphilic imine V as a colorless crystal (0.261 g, 85.6%).

 $δ_{\rm H}$ (400 MHz,CDCl₃; Me₄Si) 0.85 (6H, t, J = 6.4 Hz, CH₃), 1.18-1.65 (40H, m, CH₃(<u>CH₂)₁₀CH₂-N=</u>, CH₃(<u>CH₂)₁₀CH₂-N⁺-), 3.45-3.64</u> (8H, m, -N⁺(<u>CH₃)₂CH₂(CH₂)₁₀CH₃), 4.30 (2H, t, J = 4.2Hz, -O-CH₂-<u>CH₂-N⁺-), 4.52</u> (2H, t, J = 4.0 Hz, -O-<u>CH₂-CH₂-N⁺-), 6.90</u> (2H, d, J = 8.40 Hz, H_o), 7.67 (2H, br, H_m), 8.18 (1H, s, -N=<u>CH</u>-).</u>

 $δ_{\rm C}$ (100 MHz,CDCl₃; Me₄Si) 14.2 (-CH₃), 22.8-32.0 (CH₃(<u>CH₂</u>)₁₀CH₂-N, CH₃(<u>CH₂</u>)₁₀ CH₂-N⁺-), 52.1 (-N(CH₃)₃), 61.8 (-<u>CH₂</u>-N=CH-), 62.5, 62.4 (-N⁺-<u>CH₂</u>-CH₂-O-, -N⁺-<u>CH₂</u>-(CH₂)₁₀CH₃), 66.3(-O-<u>CH₂</u>-CH₂-N⁺-), 114.5(C_o), 130.0 (C_p), 130.9 (C_m), 158.7(C_{ipso}), 159.6 (-N=<u>CH</u>-).

HRMS-ESI-TOF (m/z): $[M-Br]^+$ calcd for C₃₅H₆₅N₂O, 529.5091; found 529.5075.

¹H NMR Spectroscopic Monitoring of the Formation of Amphiphilic Imine V. An equimolar mixture of amphiphilic precursors N_1 and N_2 was dissolved in dried CHCl₃. After the evaporation of CHCl₃, the residual mixture was dissolved in D₂O to prepare a solution (10.0 mM for each). Immediately after the preparation of the D₂O solution, its ¹H NMR spectra were measured every 10 min on a JEOL JNM-A400 spectrometer at room temperature (25 °C). The conversion from N_1 and N_2 to vesicular membrane lipid V and the molar fraction of each component were monitored on the basis of the ratio of the signal area of components to the starting material.

Optical Microscopy Observation. Amphiphilic precursors N_1 and N_2 were dissolved in dried CHCl₃. After the evaporation of CHCl₃, the residual mixture was dissolved in deionized water to prepare an aqueous solution. The N_1 solution was mixed with that of N_2 in equivalent volumes and the mixed solution (20 µL, 10 mM for each) was immediately placed on a glass plate and the plate was covered with a cover glass at room temperature. The phase contrast or differential interference contrast microscopy images of the aggregates in the solution were recorded using OLYMPUS IX71 (obj. lens × 100) and OLYMPUS BX51 (obj. lens × 40) equipped with an image-recording and image-processing system.

Optical Microscopy Observation of Giant Vesicles Prepared by the Film Swelling Method. The mixture composed of sets of N_1 (2.3 mg), N_2 (2.1 mg), V (27.4 mg) and E (15.8 mg) was dissolved in dried CH₂Cl₂. After evaporating the solvent, the residual mixture was dissolved in 10.0 mL of deionized water. The dispersion was immediately placed on a glass plate and the plate was covered with a cover glass. The phase contrast microscopy images of GVs were recorded using an OLYMPUS IX71 (obj. lens × 100) equipped with an image-recording and image-processing system at room temperature.

Dynamic Light Scattering (DLS) Measurement. A dispersion was prepared by evaporating a chloroform solution of N_1 (22.8 mg) or N_1 (21.4 mg) under reduced pressure and dispersing the residue with 10 mL of milliQ water (10 mM, respectively). The light counting time was 600 s and each size distribution was obtained as an average of three determinations using NIKKISO MicroTrac UPA150. For mixed micelles, after evaporating a mixed solution of N_1 (45.5 mg) and N_2 (42.8 mg) and dispersing with milliQ water (10 mM for each), the dispersion was measured by the same procedure above.

Spectral charts of synthetic amphiphiles $N_1,\,N_2,\,and\,V$

¹H NMR spectra of N_1 , N_2 , and V are shown in figures S1, S2, and S3, respectively.

Figure S1. ¹H NMR spectra of compound N₁ (CDCl₃ solution).

Figure S2. ¹H NMR spectra of compound N₂ (CDCl₃ solution).

Figure S3. ¹H NMR spectra of compound V (CDCl₃ solution).

 ^{13}C NMR spectra of $N_1, N_2,$ and V are shown in figures S4, S5, and S6, respectively.

Figure S4. ¹³C NMR spectra of compound N_1 (CDCl₃ solution).

Figure S5. ¹³C NMR spectra of compound N_2 (CDCl₃ solution).

Figure S6. ¹³C NMR spectra of compound V (CDCl₃ solution).

High-resolution ESI-TOF mass spectra of N_1 , N_2 , and V are shown in figures S7, S8, and S9, respectively.

Figure S7. ESI-TOF Mass spectra of compound N₁.

Figure S8. ESI-TOF Mass spectra of compound N₂.

Figure S9. ESI-TOF Mass spectra of compound V.

The ¹H NMR spectral change of the equimolar mixture of N_1 and N_2 every 120 min at 25 °C is shown in Fig. S10. In compensation for the decrease in the intensities of signals assigned to N_1 and N_2 , signals assigned to the product V and E increased in intensity. Whereas signals of N_1 , N_2 and V gradually broadened, signals of electrolyte E remained sharp. The result suggests that the assembly composed of amphiphiles (N_1 , N_2 , V) grew in size (C. R. Sanders. *Prog. NMR Spectrosc.*, 1994, 26, 421.), whereas electrolyte E was monodispersed in water. The reason for the broadening of the signals of N_1 and N_2 may be explained by the slowing down of tumbling motions of these amphiphiles in the assembly, the size of which increased due to the generation of V.

Figure S10. ¹H NMR spectral change in D₂O solution of N₁ and N₂ (10 mM) at 25°C. The signals were assigned as follows: $\delta = 9.64$ (N₁, -CHO, 1H), 9.46 (E, -CHO, 1H), 7.87(V, -CH=N, 1H), 7.80 (V, H_{2,6}, 2H), 7.66 (N₁, -CH=N, 1H), 7.46 (N₂, H_{2,6}, 2H), 7.40 (V, H_{2,6}, 2H), 7.27 (N₁, H_{2,6}, 2H), 7.02 (V, H_{3,5}, 2H), 6.82 (N₁, H_{3,5}, 2H), 6.69 (V, H_{3,5}, 2H).

Introduction of the equations expressing molar fractions of each component consisting of aggregates from ¹H NMR signal areas

When the area of the molar amounts of N₁, N₂, V, E and dodecylamine (A) are defined as n_1 , n_2 , v, e and a, respectively, the ratio among areas of ¹H NMR signals at 9.77 ppm, at 9.59 ppm and in the range from 6.60 ppm to 8.20 ppm (A_1 , A_2 , A_3 , respectively) is expressed as equation (1).

$$A_1: A_2: A_3 = e: n_2: 5n_1 + 4n_2 + 5v + 4e$$
(1)

Since transamination from N_1 to N_2 is regarded as a sequence of hydrolysis of N_1 ($N_1 + H_2O \rightarrow A + E$) and dehydrocondensation between N_2 and A ($N_2 + A \rightarrow V + H_2O$), equation (2) can be obtained.

$$e = a + v \tag{2}$$

Furthermore, equations (3) and (4) are obtained because the molar amounts of N_1 and N_2 are equal initially. The symbol n_0 indicates the molar amounts of both N_1 and N_2 at the initial stage of reaction.

$$n_0 = n_1 + e$$
 (3)
 $n_0 = n_2 + v$ (4)

From these four equations, the ratio of molar amounts among molecules contained in aggregates can be derived as follows.

$$n_1: n_2: v: a = -9A_1 + A_2 + A_3: 10A_2: A_1 - 9A_2 + A_3: 9A_1 + 9A_2 - A_3$$
(5)

Therefore, molar fractions of N_1 , N_2 , V and dodecylamine in aggregates, which are defined as x_1 , x_2 , x_v and x_a , respectively, are expresses as equation (6)-(9).

$$x_{1} = (-9A_{1} + A_{2} + A_{3}) / (A_{1} + 11A_{2} + A_{3})$$

$$x_{2} = 10A_{2} / (A_{1} + 11A_{2} + A_{3})$$

$$x_{v} = (A_{1} - 9A_{2} + A_{3}) / (A_{1} + 11A_{2} + A_{3})$$
(6)
(7)
(8)
(8)

$$x_a = (9A_1 + 9A_2 - A_3) / (A_1 + 11A_2 + A_3)$$
(9)

The conversion rate (%) of the migration is described as equation (10).

conversion rate (%) =
$$100x_v / (x_1 + x_a + x_v)$$
 (10)

Dynamic light scattering measurement of morphological transformation of aggregates consisting of N_1 and N_2

Figure S11. DLS distribution of micelles prepared from N_1 and N_2 , separately (•for N_1 , \square for N_2), and from a mixture of both (\diamondsuit for N_1 and N_2) obtained 30 min after addition.

mixing.

The diameter of micelles formed from an equimolar mixture of amphiphiles N_1 and N_2 is larger than those of individual amphiphiles. The result indicates formation of hybrid micelles. Time course of the size distribution of the hybrid amphiphilic aggregates of N_1 and N_2 (10 mM for each) was measured by the DLS method at room temperature (Figure S12). This time period corresponds to a conversion of ca. 20% from N_1 and N_2 to V. The diameter of aggregates gradually grew larger than 10 nm in 1 h (conversion of ca. 35%) and eventually became 70 nm after 6 h (conversion of ca. 80%), reaching the maximum size. This indicates that the micelles spontaneously transformed into large aggregates, the size of which, however, remained almost constant even after a long time period. The transformation of transient structures from N_1 and N_2 to micron-sized granular aggregates could not be detected by DLS measurements probably because of the rapid formation of micron-sized granular aggregates associated with the accumulation of V during the measurement time (30 min).

Figure S13. Schematic of morphological transformation from micelles to GV through granular aggregates and tubular GV and to submicron-size aggregates. Stable submicron-size aggregates detected by DLS were also formed through a minor route.