Supporting Information:

An Ion Pair Scandium Hydride Supported by A Dianionic (NNNN)-Type Macrocycle Ligand

Peng Cui, Thomas P. Spaniol, Laurent Maron*and Jun Okuda*

List of Contents:

Procedures	
General	S 1
Preparation of $[(1,7-Me_2TACD)Sc(\eta^3-C_3H_5)]$ (1)	S 1
Preparation of $[(1,7-Me_2TACD)_3Sc_3H_2][(1,7-Me_2TACD)_3Sc_3H_4]$ (2)	S1
Preparation of [(1,7-Me ₂ TACD) ₃ Sc ₃ H ₂][B{C ₆ H ₃ -3,5-(CF ₃) ₂ } ₄] (3)	S3
Preparation of [(1,7-Me ₂ TACD) ₃ Sc ₃ H ₂][SPh] (4)	S4
Preparation of $[(1,7-Me_2TACD)_2Sc_2(H)C_2H_5]$ (5)	S4
NMR Spectra	
$[(1,7-Me_2TACD)Sc(\eta^3-C_3H_5)]$ (1)	S6
$[(1,7-Me_2TACD)_3Sc_3H_2][(1,7-Me_2TACD)_3Sc_3H_4]$ (2)	S7
$[(1,7-Me_2TACD)_3Sc_3H_2][(1,7-Me_2TACD)_3Sc_3H_4]$ (2-D ₆)	S 8
$[(1,7-Me_2TACD)_3Sc_3H_2][B\{3,5-C_6H_3(CF_3)_2\}_4]$ (3)	S9
$[(1,7-Me_2TACD)_3Sc_3H_2][SPh] (4)$	S11
$[(1,7-Me_2TACD)_2Sc_2(H)C_2H_5]$ (5)	S11
$[(1,7-Me_2TACD)_2Sc_2(D)C_2H_4D]$ (5-D ₂)	S12
X-ray Crystallography	S13
Computational Studies	S17
References	822

General. All operations were performed under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques. THF, pentane, C_6D_6 and THF- d_8 were dried over LiAlH₄, followed by vacuum transfer and stored in the glovebox. (1,7-Me₂TACD)H₂ was synthesized according to the literature procedure^[1] and further purified by distillation at 80 °C in vacuo. [(C_3H_5)₃Sc(THF)₂] was prepared as we previously reported.^[2] ¹H, ¹³C{¹H}, ¹⁹F{¹H} and ¹¹B NMR spectra were recorded at 25 °C on a Bruker DRX 400 spectrometer at 400 MHz, 100 MHz, 188 MHz and 128 MHz, respectively. All chemical shifts were reported in δ units with references to the residual solvent resonance of the deuterated solvents for proton and carbon chemical shifts, to external BF₃•OEt₂ and CFCl₃ for boron and fluorine chemical shifts. Elemental analyses were performed by the microanalytical laboratory of this department.

[(1,7-Me₂TACD)Sc(η³-C₃H₅)] (1): (1,7-Me₂TACD)H₂ (52 mg, 0.256 mmol) in 1 mL of THF was slowly added to $[(C_{3}H_{5})_{3}Sc(THF)_{2}]$ (80 mg, 0.256 mmol) in 1 mL of THF at room temperature. The brown solution was then stirred for 20 min. The solvent was removed under vacuum and the pale-brown solid residue was extracted with pentane (8 mL × 3). After filtration, evaporation of pentane gave the product as pale-yellow crystals, yield 66 mg (82%). ¹H NMR (C₆D₆, 400 MHz, 25 °C): $\delta = 6.66$ (quintet, ³*J*_{HH} = 12.0 Hz, 1H, CH₂C*H*CH₂), 3.66 (dd, ²*J*_{HH} = 12.6 Hz, ³*J*_{HH} = 4.2 Hz, 2H, C*H*₂), 3.64 (dd, ²*J*_{HH} = 12.4 Hz, ³*J*_{HH} = 4.0 Hz, 2H, C*H*₂), 3.03 (br d, ³*J*_{HH} = 11.6 Hz, 4H, C*H*₂CHC*H*₂), 2.64 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 4.8 Hz, 2H, C*H*₂), 2.55 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 4.8 Hz, 2H, C*H*₂), 2.55 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 4.6 Hz, 2H, C*H*₂), 2.37 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 4.2 Hz, ³*J*_{HH} = 4.2 Hz, 2H, C*H*₂), 2.37 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 4.12 Hz, ³*J*_{HH} = 4.2 Hz, 2H, C*H*₂), 2.15 (CH₂), 71.51 (CH₂CHCH₂), 59.54 (CH₂), 55.19 (CH₂), 46.95 ppm (CH₃). Anal. Calcd for C₁₃H₂₇N₄Sc (284.34 g/mol): C, 54.91; H, 9.57; N, 19.70. Found: C, 54.86; H, 9.27; N, 19.46.

 $[(1,7-Me_2TACD)_3Sc_3H_2][(1,7-Me_2TACD)_3Sc_3H_4]$ (2): A solution of 1 (50 mg, 0.176 mmol) in 3 mL of THF was degassed and treated with 1 bar of H₂. The pale yellow solution was stirred at room temperature for 2 d. The solvent was removed under vacuum, the residue was washed with pentane and then recrystallized in THF/pentane at -35°C to give the product as an off-white

crystalline solid, yield 30 mg (70%). ¹H NMR (THF- d_8 , 400 MHz, 25 °C): $\delta = 4.37$ (br s, 4H, Sc_3H_4 , 3.48 (dd, ${}^2J_{HH} = 11.8$ Hz, ${}^3J_{HH} = 3.8$ Hz, 4H, CH₂), 3.46 (dd, ${}^2J_{HH} = 12.0$ Hz, ${}^3J_{HH} = 3.6$ Hz, 4H, CH₂), 3.37 (dd, ${}^{2}J_{HH} = 10.5$ Hz, ${}^{3}J_{HH} = 2.6$ Hz, 4H, CH₂), 3.34 (dd, ${}^{2}J_{HH} = 10.3$ Hz, ${}^{3}J_{HH} = 2.6$ Hz, 4H, CH₂), 3.27-3.22 (m, 6H, CH₂), 3.05-3.00 (m, 12H, CH₂), 2.85 (s, 22H, CH₃ and CH₂), 2.83-2.81 (m, 4H, CH₂), 2.79-2.75 (m, 10H, CH₂), 2.78 (s, 6H, CH₃), 2.71 (t, ${}^{3}J_{HH} = 3.4$ Hz, 4H, CH_2), 2.67 (t, ${}^{3}J_{HH} = 3.4$ Hz, 4H, CH_2), 2.65 (dd, ${}^{2}J_{HH} = 11.8$ Hz, ${}^{3}J_{HH} = 3.8$ Hz, 6H, CH_2), 2.63 $(dd, {}^{2}J_{HH} = 11.8 Hz, {}^{3}J_{HH} = 3.8 Hz, 6H, CH_{2}), 2.56 (s, 12H, CH_{3}), 2.52 (dd, {}^{2}J_{HH} = 10.6 Hz, {}^{3}J_{HH} = 10.6 Hz, {}^{3}J_{H} = 10.6 Hz, {}^{3}J_{H} = 10.6 Hz, {}^{$ 3.8 Hz, 6H, CH_2), 2.50 (dd, ${}^{2}J_{HH} = 10.2$ Hz, ${}^{3}J_{HH} = 3.8$ Hz, 6H, CH_2), 2.41 (dd, ${}^{2}J_{HH} = 10.4$ Hz, ${}^{3}J_{\rm HH} = 4.0$ Hz, 4H, CH₂), 2.39 (dd, ${}^{2}J_{\rm HH} = 10.4$ Hz, ${}^{3}J_{\rm HH} = 3.6$ Hz, 4H, CH₂), 2.32 ppm (t, ${}^{3}J_{\rm HH} =$ 3.0 Hz, 3H, CH₂), 2.29 (t, ${}^{3}J_{HH} = 3.0$ Hz, 3H, CH₂), 2.16 (br s, 2H, Sc₃H₂); ${}^{13}C{}^{1}H$ NMR (THF-*d*₈, 400 MHz, 25 °C): *δ* = 61.39 (*C*H₂), 60.57 (*C*H₂), 59.36 (*C*H₂), 56.82 (*C*H₂), 54.60 (*C*H₂), 53.45 (CH₂), 51.44 (CH₂), 49.03 (CH₃), 49.13 (CH₃), 48.04 ppm (CH₃). Anal. Calcd for C₆₀H₁₃₈N₂₄Sc₆·C₄H₈O·C₅H₁₂ (1609.04 g/mol): C, 51.48; H, 9.89; N, 20.88. Found: C, 50.39; H, 9.88; N, 20.34. When crystallized from THF/pentane, the crystals always contain THF and pentane molecules in the crystal lattice, the relative low value for carbon may be attributed to the partial loss of these solvent molecules. The same holds for the corresponding deuteride $2-D_6$, which was synthesized by an analogous procedure by using D_2 instead of H_2 . The ¹H NMR spectrum of $2-D_6$ is essentially the same as that of 2 except for the absence of resonances for the ScH at $\delta = 4.37$ and 2.16 ppm.

[(1,7-Me₂TACD)₃Sc₃H₂][B{C₆H₃-3,5-(CF₃)₂}₄] (3): A solution of [Me₃NH][B{C₆H₃-3,5-(CF₃)₂}₄] (50.4 mg, 0.056 mmol) in 1 mL of THF was slowly added to 1 (40 mg, 0.028 mmol) in 1 mL of THF. H₂ gas vigorously evolved. The pale-yellow solution was then stirred for 5 min. The solvent was removed under vacuum, the residue was washed with pentane and recrystallized from THF/pentane at room temperature to give the product as off-white crystals, yield 80 mg (92%). ¹H NMR (THF-*d*₈, 400 MHz, 25 °C): $\delta = 7.79$ (t, ⁴*J*_{HH} = 2.4 Hz, 8H, *ortho*-aryl), 7.57 (s, 4H, *para*-aryl), 3.37 (dd, ²*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 2.8 Hz, 3H, C*H*₂), 3.33 (dd, ²*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 2.8 Hz, 3H, C*H*₂), 3.22 (dd, ²*J*_{HH} = 11.4 Hz, ³*J*_{HH} = 2.2 Hz, 3H, C*H*₂), 3.06-2.99 (m, 12H, C*H*₂), 2.84 (s, 18H, C*H*₃ and C*H*₂), 2.82-2.80 (m, 6H, C*H*₂), 2.30 (t, ²*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 2.66 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ²*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*J*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*T*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ³*T*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ⁴*T*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*J*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ⁴*T*_{HH} = 3.6 Hz, 3H, C*H*₂), 3.26 (t, ³*T*_{HH} = 3.4 Hz, 3H, C*H*₂), 2.30 (t, ⁴*T*_{HH})

 ${}^{3}J_{\text{HH}} = 3.0 \text{ Hz}, 3\text{H}, CH_{2}), 2.27 \text{ (t, } {}^{3}J_{\text{HH}} = 3.0 \text{ Hz}, 3\text{H}, CH_{2}), 2.16 \text{ ppm (br s, 2H, Sc}_{3}H_{2}); {}^{13}\text{C} \{{}^{1}\text{H}\}$ NMR (THF- d_{8} , 400 MHz, 25 °C): $\delta = 162.64$ (q, ${}^{1}J_{\text{BC}} = 49.7 \text{ Hz}$, *ipso*-aryl), 135.42 (*ortho*-aryl), 129.84 (qq, ${}^{2}J_{\text{FC}} = 31.0 \text{ Hz}, {}^{4}J_{\text{FC}} = 2.6 \text{ Hz}$, *meta*-aryl), 125.34 (q, ${}^{1}J_{\text{FC}} = 270.6 \text{ Hz}$, *C*F₃), 118.00 (t, ${}^{3}J_{\text{FC}} = 3.5 \text{ Hz}$, *para*-aryl), 61.36 (*C*H₂), 59.33 (*C*H₂), 54.53 (*C*H₂), 53.41 (*C*H₂), 49.22 (*C*H₃); ${}^{19}\text{F}$ NMR (THF- d_{8} , 188 MHz, 25 °C): $\delta = -63.39 \text{ ppm (s, CF_{3})}, {}^{11}\text{B}$ NMR (THF- d_{8} , 128 MHz, 25 °C): $\delta = -6.51 \text{ ppm (s)}$. Anal. Calcd for C₆₂H₈₀BF₂₄N₁₂Sc₃ (1595.02 g/mol): C, 46.69; H, 5.06; N, 10.54. Found: C, 46.88; H, 5.02; N, 9.98.

[(1,7-Me₂TACD)₃Sc₃H₂][SPh] (4): A solution of **2** (15 mg, 0.01 mmol) in 0.5 mL of THF was carefully layered with PhSSPh (2 mg, 0.01 mmol) in 0.5 mL of THF. The mixture was allowed to stand at room temperature for 24 h, during which time colorless blocks of **4** precipitated from the solution. The crystals were isolated, washed with pentane, and dried under vacuum; yield 14 mg (82%). ¹H NMR (THF-*d*₈, 400 MHz, 25 °C): *δ* = 7.17 (d, ³*J*_{HH} = 8.0 Hz, 2H, *ortho*-Ar), 6.45 (t, ³*J*_{HH} = 7.0 Hz, 2H, *meta*-aryl), 6.17 (t, ³*J*_{HH} = 6.4 Hz, 1H, *para*-aryl), 3.37 (dd, ²*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 2.6 Hz, 3H, C*H*₂), 3.33 (dd, ²*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 2.6 Hz, 3H, C*H*₂), 3.31 (dd, ²*J*_{HH} = 11.2 Hz, ³*J*_{HH} = 2.3 Hz, 3H, C*H*₂), 2.86 (s, 18H, C*H*₃), 2.83-2.79 (m, 6H, C*H*₂), 2.77-2.75 (m, 3H, C*H*₂), 2.75-2.71 (m, 3H, C*H*₂), 2.67 (t, ³*J*_{HH} = 3.2 Hz, 3H, C*H*₂), 2.14 (br s, 2H, Se₃*H*₂). ¹³C NMR spectrum could not be recorded due to the poor solubility of the compound in THF and any other common solvents. Anal. Calcd for C₃₆H₇₃N₁₂SSc₃·C₄H₈O (913.08 g/mol): C, 52.62; H, 8.94; N, 18.41. Found: C, 52.15; H, 9.02; N, 18.69.

[(1,7-Me₂TACD)₂Sc₂(H)C₂H₅] (5): A solution of 2 (35 mg, 0.024 mmol) in 2.0 mL of THF was degassed and treated with 1 bar of C₂H₄. The pale yellow solution was stirred at room temperature for 2 d. The solvent was then removed under vacuum and the pale-yellow residue was extracted with pentane (4 mL × 3). After filtration, evaporation of pentane gave the product as a pale-yellow crystals; yield 28 mg (82%). ¹H NMR (C₆D₆, 400 MHz, 25 °C): δ = 4.94 (br s, 1H, Sc*H*), 3.75 (br s, 2H, C*H*₂), 3.60 (br s, 2H, C*H*₂), 3.43 (dd, ²*J*_{HH} = 11.6 Hz, ³*J*_{HH} = 6.0 Hz, 1H, C*H*₂), 3.40 (dd, ²*J*_{HH} = 11.6 Hz, ³*J*_{HH} = 11.8 Hz, ³*J*_{HH} =

4.2 Hz, 1H, CH₂), 3.01 (dd, ² J_{HH} = 11.4 Hz, ³ J_{HH} = 4.6 Hz, 1H, CH₂), 2.82-2.62 (m, 12H, CH₂), 2.47 (s, overlapped, 12H, CH₃), 2.28 (dd, ² J_{HH} = 11.2 Hz, ³ J_{HH} = 4.4 Hz, 4H, CH₂), 2.23-2.15 (m, 4H, CH₂), 1.80 (t, ³ J_{HH} = 8.2 Hz, 3H, CH₂CH₃), 0.41 ppm (q, ³ J_{HH} = 8.0 Hz, 2H, CH₂CH₃); ¹³C{¹H} NMR (C₆D₆, 100 MHz, 25 °C): δ = 61.82 (CH₂), 60.41 (CH₂), 58.80 (CH₂), 55.81 (CH₃), 55.74 (CH₃), 53.52 (CH₂), 48.71 (CH₂), 47.49 (CH₂), 46.18 (CH₂), 45.39 (CH₂), 28.44 (CH₂CH₃), 13.05 ppm (CH₂CH₃). Anal. Calcd for C₂₂H₅₀N₈Sc₂ (516.60 g/mol): C, 51.15; H, 9.76; N, 21.69. Found: C, 51.77; H, 10.00; N, 21.27. The deuteride **5-D₂** was synthesized by a similar procedure using **2-D₆** instead of **2**. The ¹H NMR spectrum of **5-D₂** in C₆D₆ is essentially the same as that of **2** except for the absence of resonances for the Sc*H* at δ = 4.37 ppm. The resonances for the ScCH₂CH₂D are observed at δ = 1.80 (tt, ³ J_{HH} = 8.0 Hz, ² J_{HD} = 4Hz, 2H, CH₂CH₂D) and 0.42 ppm (tt, ³ J_{HH} = 8.0 Hz, ³ J_{HD} = 1.6 Hz, 2H, CH₂CH₂D).

VT-NMR spectra of 1 in toluene- d_8 .

 1H NMR spectrum of $\boldsymbol{2}$ in THF-d_8 at 25 °C. * denotes co-crystallized THF and pentane.

 $^{13}C\{^1H\}$ NMR spectrum of ${\bf 2}$ in THF-d_8 at 25 °C. * denotes co-crystallized THF and pentane.

¹H NMR spectrum of **2-D**₆ in THF-d₈ at 25 °C. * denotes co-crystallized THF and pentane.

¹H NMR spectrum of **4** in THF-d₈ at 25 °C.

¹H NMR spectrum of **5** in C_6D_6 at 25 °C.

 $^{13}C\{^{1}H\}$ NMR spectrum of 5 in $C_{6}D_{6}$ at 25 °C.

¹H NMR spectrum of $5-D_2$ in C₆D₆ at 25 °C. * denotes pentane.

X-ray Crystallography. Data were collected on a Bruker CCD area-detector diffractometer with Mo K_{α} radiation (graphite monochromator, $\lambda = 0.71073$ Å) using ω scans. The SMART program package was used for the data collection and unit cell determination;^[3a] processing of the raw frame data was performed using SAINT; absorption corrections were applied with SADABS.^[3b] The structures were solved by direct methods and refined against F² using all reflections with the SHELXL-97 software as implemented in the program WinGX.^[3c-e] Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated positions. Compound 2 contains severely disordered hexane molecule that was included in the refinement with three split positions, C-C distance restraints and restrained isotropic displacement parameters. Compound 4 shows crystallographic C_3 symmetry and three crystallographically independent cationic fragments. The crystallographically imposed symmetry leads to disorder in the C₆H₅S anion fragments. In this compound, the hydride atoms H1A, H1B, H2A, H2B, H3A, H3B were located in a Difference Fourier map and fixed in their positions. This structure includes thf molecule in the crystal lattice which is disordered against a C₆H₅S anion. The atoms of the disordered groups could only be refined with isotropic displacement parameters. One of the three crystallographically independent cationic fragments shows a small disorder (C26, C27, C30). These atoms were included in the refinement with split positions and isotropic displacement parameters. Due to the strong disorder and the associated low quality, details of the molecular structure are not discussed for compound 4. Crystal parameters and refinement results are given in Table 1. CCDC 961424 (2), 961425 (5), 961426 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	2	4	5
formula	$(C_{60}H_{138}N_{24}Sc_6) \cdot (C_6H_{14})$	$3[(C_{30}H_{68}N_{12}Sc_3)(C_6H_5S)]$	$C_{22}H_{50}N_8Sc_2$
		·3(C ₄ H ₈ O)	
fw	1551.88	2739.32	516.62
cryst size/mm	$0.29 \times 0.23 \times 0.14$	$0.35 \times 0.25 \times 0.22$	$0.35 \times 0.20 \times 0.18$
cryst syst.	monoclinic	trigonal	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> 6 ₃	<i>P</i> 2 ₁ / <i>c</i>
<i>Т</i> , К	100(2)	100(2)	100(2)
<i>a</i> , Å	18.0667(9)	19.2442(17)	14.1746(9)
<i>b</i> , Å	19.2883(10)	19.2442(17)	11.2268(7)
<i>c</i> , Å	28.4424(11)	21.4089(19)	17.1826(10)
α, deg			
β , deg	125.387(2)		90.8428(10)
γ , deg		120.00	
U, Å ³	8080.4(7)	6866.3(11)	2734.1(3)
Ζ	4	2	4
$D_{\text{calcd}}, (\text{mg/m}^3)$	1.276	1.325	1.255
<i>F</i> (000)	3368	2952	1120
θ range deg	1.48 - 25.10	1.90 - 26.46	1.44 - 28.43
refns collected	86450	82918	37144
indep reflns (R_{int})	14355 (0.0935)	9437 (0.0599)	6838 (0.0834)
reflns obsd $[I > 2\sigma(I)]$	10391	8291	5477
data/restraints/params	14355 /27/892	9437 / 1 / 492	37144 / 0/ 298
$\mathbf{R}_1, \mathbf{w}\mathbf{R}_2 \ (I > 2\sigma(\mathbf{I}))$	0.0526, 0.1250	0.0665, 0.1758	0.0433, 0.1118
R ₁ , wR ₂ (all data)	0.0793, 0.1414	0.0743, 0.1845	0.0542, 0.1187
goodness-of-fit on F^2	1.039	1.041	1.002
$\Delta\rho_{max,min},e{\rm \AA}^{-3}$	1.275, -0.762	0.418, -0.354	1.901, -0.633

Table 1. Crystallographic and Refinement Data for 2, 4 and 5.

Figure S1. ORTEP representation of the molecular structure of 4 in the crystal. The C_6H_5S anion that is disordered against a thf molecule is only shown with one split position.

Computational Studies. All calculations were performed using GAUSSIAN09 code.^[4] The equilibrium and transition structures were fully optimized at the Becke's 3-parameter hybrid functional ^[5] combined with the non-local correlation functional provided by Perdew/Wang.^[6] Scandium and phosphorous atoms were represented with the relativistic effective core potential SDD, augmented by *f* and *d* polarization functions respectively.^[7,8] For the other atoms 6-31G(d,p) basis set were used.^[9] The natural population analysis (NPA) was performed using Weinhold's methodology.^[10]

Cartesian coordinates of optimizes structures:

Cation in 2 [(1,7-Me₂TACD)₃Sc₃H₂]⁺:

scf done: -1981.037237

Sc	-0.569403	8.658562	16.104976
Sc	-3.575613	9.555528	17.096001
Sc	-1.385130	11.853064	16.303103
Ν	-2.414091	7.655302	16.829888
Ν	0.243956	7.635848	18.209233
Ν	0.889147	7.241443	15.609799
Ν	-1.342275	7.362018	14.048423
Ν	-3.456905	11.788701	17.179798
Ν	-5.159412	10.384788	15.262930
Ν	-5.459701	8.866407	17.594742
Ν	-3.906857	10.000535	19.546295
Ν	0.418077	10.635167	15.796049
Ν	-1.140469	12.266945	13.872764
Ν	-1.005296	13.890551	16.023511
Ν	0.176463	12.570947	18.068162
С	0.947968	6.483720	14.382627
Н	0.779976	5.405423	14.583871
Н	1.940819	6.523994	13.898710
С	-0.080630	6.969856	13.386243
Н	0.287443	7.863198	12.867302
Н	-0.264003	6.203180	12.615576
С	-1.983585	6.248703	14.789317
Н	-1.208071	5.696321	15.322924
Н	-2.469016	5.550889	14.086179
С	-2.999741	6.788514	15.801288
Н	-3.780134	7.338167	15.250807
Н	-3.524591	5.935534	16.255697

С	-2.141730	6.960097	18.093604
Н	-2.804601	6.090839	18.215986
Н	-2.376011	7.625838	18.936296
С	-0.692800	6.486329	18.243079
Н	-0.562592	5.918557	19.179664
Н	-0.443824	5.822136	17.413110
С	1.637600	7.226986	17.928361
Н	2.243208	8.139267	17.971670
Н	2.012857	6.549830	18.712570
С	1.759261	6.591407	16.561577
Η	2.822813	6.620437	16.262458
Η	1.518965	5.510288	16.633471
С	0.242234	8.295675	19.519132
Η	-0.707458	8.790516	19.699267
Η	1.038009	9.041906	19.552530
Η	0.435887	7.571757	20.325915
С	-2.257852	7.793860	12.986816
Η	-1.805897	8.594895	12.400416
Η	-3.193172	8.150647	13.406287
Η	-2.476958	6.961660	12.299551
С	-4.549058	12.472318	16.484481
Н	-5.462993	12.481553	17.101077
Н	-4.307997	13.533652	16.299599
С	-4.857625	11.824622	15.149358
Н	-3.976963	11.910440	14.505480
Н	-5.680652	12.358591	14.646233
С	-6.507420	10.132027	15.829412
Н	-7.270448	10.185623	15.035389
Η	-6.737653	10.909732	16.563129
С	-6.471230	8.793973	16.552160
Н	-7.468854	8.567846	16.956475
Η	-6.260225	7.985047	15.834342
С	-6.059721	8.944785	18.904367
Η	-6.662126	8.052823	19.153403
Η	-6.765760	9.796621	18.989149
С	-4.979898	9.066423	19.958765
Η	-4.503866	8.089016	20.095297
Η	-5.404862	9.366723	20.930289
С	-4.387215	11.398358	19.448540
Н	-4.501009	11.834732	20.454883
Η	-5.376553	11.387454	18.982809
С	-3.439938	12.227731	18.579596
Н	-3.706810	13.292516	18.668771
Н	-2.424662	12.136201	18.982834

С	-5.112542	9.797147	13.919372
Н	-5.370934	8.735938	13.959794
Н	-4.108704	9.902862	13.510572
Н	-5.825829	10.290466	13.240432
С	-2.852048	9.932709	20.564619
Н	-1.988239	10.524646	20.266466
Н	-2.535734	8.896625	20.701855
Н	-3.216856	10.301187	21.536153
С	-0.306093	14.731348	16.965796
Н	-0.833213	15.680341	17.173136
Н	0.678272	15.041812	16.557851
С	-0.107330	14.007881	18.280927
Н	-1.026644	14.057981	18.874389
Н	0.691438	14.479656	18.875393
С	1.443462	12.346022	17.330107
Н	2.306489	12.525663	17.993113
Н	1.494198	13.070702	16.514850
С	1.496234	10.930627	16.746597
Н	2.483377	10.786648	16.282835
Н	1.456962	10.213376	17.578836
С	0.799489	10.807447	14.389587
Н	0.384209	9.982312	13.788253
Н	1.888697	10.729070	14.259814
С	0.333482	12.132430	13.781131
Н	0.784155	12.957375	14.336200
Н	0.658746	12.214972	12.730266
С	-1.594453	13.660122	13.674872
Н	-2.689280	13.641819	13.725183
Н	-1.321379	14.023516	12.671091
С	-1.041004	14.570914	14.750906
Н	-0.026380	14.912659	14.459635
Н	-1.649853	15.492925	14.770486
С	0.266690	11.939824	19.389459
Н	0.320655	10.860146	19.291909
Н	-0.618010	12.188433	19.979778
Н	1.147876	12.301995	19.941400
С	-1.758220	11.441613	12.831400
Н	-2.840833	11.577279	12.838801
Н	-1.546403	10.391554	13.011532
Н	-1.389130	11.722207	11.832612
Н	-1.495622	10.045850	17.548287
Н	-2.192435	9.993823	15.479921

Anion in 2 [(1,7-Me₂TACD)₃Sc₃H₄]⁻:

scf done: -1982.346039

Sc	-11.434917	10.416609	21.368691
Н	-11.831512	8.682772	22.404019
Н	-12.747108	9.169420	20.455510
Sc	-11.907559	7.406348	20.859465
Sc	-13.433247	4.730043	21.038791
Н	-13.703879	6.668726	20.367348
Н	-12.628789	6.146950	22.226874
Ν	-10.874045	11.475479	23.136294
Ν	-13.571546	11.145052	22.372724
Ν	-12.139493	11.884899	19.980553
Ν	-9.367940	12.279129	20.768237
Ν	-10.122614	8.853662	20.458813
Ν	-9.943403	6.456032	22.096512
Ν	-11.539513	5.264098	19.979275
Ν	-11.795630	7.695121	18.391482
Ν	-13.308510	3.254156	22.574028
Ν	-13.190919	2.130071	19.864504
Ν	-15.168533	4.248054	19.878466
Ν	-15.285284	5.275791	22.570710
С	-11.883806	12.187013	23.868787
Н	-12.014473	13.242450	23.531129
Η	-11.651630	12.274313	24.953010
С	-13.218036	11.462980	23.764438
Н	-13.122405	10.503608	24.284318
Н	-14.021837	12.042015	24.257881
С	-13.954424	12.321534	21.569447
Н	-13.391951	13.188928	21.931645
Н	-15.030636	12.545761	21.703162
С	-13.569228	12.071907	20.102609
Н	-14.095562	11.172818	19.750991
Η	-13.943540	12.913227	19.486258
С	-11.472654	13.132768	19.738788
Η	-11.671781	13.909291	20.514930
Η	-11.806342	13.610642	18.791344
С	-9.966588	12.952901	19.611931
Η	-9.772257	12.318573	18.738179
Η	-9.481406	13.932497	19.425152
С	-9.403743	13.077137	22.004593
Η	-10.258749	13.758573	21.965514
Η	-8.491724	13.701534	22.088327
С	-9.596797	12.138327	23.201940
Η	-8.772521	11.404117	23.201356
Н	-9.468556	12.717727	24.137156

С	-14.639347	10.147441	22.352140
Н	-15.539766	10.514773	22.879082
Н	-14.277324	9.235265	22.826148
Η	-14.897085	9.897217	21.322544
С	-7.990744	11.908328	20.473838
Η	-7.366147	12.791784	20.236847
Н	-7.954152	11.223553	19.623077
Н	-7.544369	11.402798	21.334539
С	-8.995770	8.610485	21.349731
Н	-9.190643	9.078592	22.327542
Η	-8.060546	9.064622	20.977568
С	-8.744496	7.118744	21.566844
Н	-8.499535	6.666074	20.600066
Н	-7.875730	6.947680	22.232119
С	-9.943842	5.012240	21.812495
Η	-10.732914	4.565359	22.428598
Η	-8.980289	4.554138	22.106707
С	-10.248267	4.715493	20.351846
Η	-9.433161	5.112652	19.715507
Η	-10.193096	3.616938	20.220911
С	-11.752416	5.229944	18.536466
Η	-12.829350	5.152711	18.329162
Н	-11.286503	4.344721	18.066069
С	-11.195059	6.471928	17.843062
Η	-10.114624	6.513092	18.018062
Н	-11.341197	6.422356	16.746370
С	-10.944411	8.873772	18.158431
Η	-11.543037	9.762856	18.390059
Η	-10.636434	8.929314	17.096750
С	-9.722877	8.885968	19.063687
Η	-9.056070	8.039818	18.807205
Н	-9.139870	9.790781	18.801291
С	-10.057768	6.671384	23.542241
Н	-10.996549	6.230557	23.883267
Н	-10.099009	7.739531	23.760099
Н	-9.207284	6.212429	24.080246
С	-13.120931	7.925819	17.808481
Н	-13.047556	8.106602	16.719926
Н	-13.567356	8.792195	18.300125
Н	-13.768065	7.068251	17.997723
С	-12.758834	1.956482	22.272529
Н	-12.826627	1.259941	23.131311
Н	-11.681400	2.031711	22.045779
С	-13.461111	1.323574	21.064587

Н	-13.162422	0.269123	20.898243
Н	-14.537840	1.327290	21.258755
С	-14.309039	2.170120	18.917755
Н	-13.949719	2.694989	18.024020
Н	-14.605214	1.147857	18.605633
С	-15.517659	2.923979	19.453378
Н	-16.266090	2.929320	18.630349
Н	-15.999066	2.303368	20.247156
С	-16.324928	4.962500	20.374199
Н	-17.263457	4.658706	19.869468
Н	-16.207197	6.039277	20.183993
С	-16.480251	4.743778	21.887384
Н	-17.398762	5.202262	22.302953
Н	-16.536925	3.666441	22.076597
С	-14.936577	4.564092	23.809510
Н	-14.154547	5.158059	24.294374
Н	-15.803127	4.510907	24.495644
С	-14.371356	3.177386	23.537925
Η	-14.038419	2.769146	24.517532
Н	-15.202134	2.500721	23.227617
С	-11.995307	1.632225	19.200231
Н	-11.156247	1.606339	19.900841
Н	-11.722369	2.285838	18.368037
Η	-12.137801	0.607373	18.804311
С	-15.452172	6.700104	22.850885
Н	-15.686414	7.234607	21.929365
Н	-14.507983	7.095043	23.229971
Н	-16.259287	6.872300	23.587078

Neutral Tetramer [(1,7-Me₂TACD)₄Sc₄H₄]:

SCF Done:-2642.2770736

Sc	19.702248	2.768172	4.024575	0.670368
Sc	22.998585	3.535758	4.443875	0.676786
Н	19.921306	4.205890	5.512805	-0.171364
Н	21.555790	2.093676	4.534841	-0.169666
Ν	18.177309	2.421411	5.710782	-0.643174
Ν	19.356660	0.308394	4.106975	-0.481953
Ν	18.807367	2.099540	2.205280	-0.543481
Ν	17.812502	4.330084	3.381133	-0.470485
Ν	21.358188	4.114244	2.994931	-0.645049
Ν	23.218976	6.335387	4.012517	-0.427330
Ν	24.810707	4.089002	3.499968	-0.558630
Ν	23.339063	1.964497	2.340710	-0.449247

С	17.845059	1.012072	5.898386	-0.071980
Н	16.821075	0.880526	6.287717	0.111402
Н	18.510558	0.581876	6.652866	0.123301
С	17.984259	0.185045	4.626168	-0.088105
Н	17.743383	-0.878451	4.813292	0.112820
Η	17.294028	0.553020	3.863523	0.162909
С	19.454270	-0.190314	2.731213	-0.106530
Η	19.087642	-1.229385	2.654812	0.126660
Η	20.516421	-0.209186	2.469896	0.134514
С	18.694652	0.726884	1.786293	-0.088840
Н	19.074050	0.550146	0.758529	0.107353
Н	17.628238	0.411830	1.741237	0.093813
С	17.942739	2.893535	1.374295	-0.095288
Н	16.930723	2.435456	1.311099	0.094251
Н	18.278621	2.957025	0.318917	0.104650
С	17.812218	4.308384	1.909874	-0.096467
Н	18.664932	4.915246	1.588337	0.141829
Н	16.901744	4.788459	1.507769	0.119849
С	16.705792	3.546526	3.967754	-0.099335
Н	16.608569	2.618498	3.401917	0.166870
Н	15.753541	4.101176	3.871903	0.112761
С	16.984738	3.236778	5.439232	-0.038667
Н	17.060871	4.182136	5.990207	0.141217
Η	16.085585	2.755749	5.857059	0.113753
С	20.283118	-0.408594	4.974696	-0.219775
Η	20.384866	0.117062	5.924102	0.178359
Н	21.267532	-0.416298	4.507405	0.130820
Η	19.959116	-1.450088	5.147458	0.122188
С	17.701309	5.722227	3.814307	-0.213066
Η	18.537650	6.304977	3.425822	0.141736
Η	17.716451	5.777987	4.901004	0.136173
Н	16.761595	6.174326	3.452368	0.122124
С	21.121023	5.555897	2.976529	-0.062725
Н	20.643360	5.834375	3.923128	0.134872
Н	20.422162	5.840187	2.167337	0.101912
С	22.389085	6.394445	2.801015	-0.101850
Н	22.969414	6.007528	1.960668	0.132456
Н	22.137804	7.441659	2.552015	0.113589
С	24.645553	6.506075	3.722445	-0.101388
Н	25.165730	6.562496	4.685610	0.132434
Η	24.831706	7.461661	3.196243	0.111081
С	25.209435	5.345976	2.928300	-0.078193
Н	24.918895	5.456244	1.859216	0.089620
Н	26.311181	5.465468	2.923651	0.103300

С	25.475174	2.992784	2.824034	-0.083435
Н	25.675215	2.167687	3.526424	0.121236
Н	26.458480	3.285640	2.415776	0.101070
С	24.570810	2.480272	1.710022	-0.087644
Н	24.315948	3.319513	1.055340	0.139701
Н	25.039109	1.704257	1.079595	0.110718
С	22.130997	2.234237	1.548603	-0.085857
Н	21.331526	1.597594	1.931535	0.154363
Н	22.288271	1.954797	0.491035	0.121929
С	21.658997	3.674199	1.628656	-0.048638
Н	22.420327	4.316494	1.152544	0.100798
Н	20.764653	3.746779	0.984028	0.138537
С	22.803938	7.394288	4.927181	-0.227585
Н	23.110576	8.388637	4.555208	0.118514
Н	23.240226	7.243516	5.916736	0.132604
Н	21.719819	7.398616	5.022655	0.133681
С	23.477721	0.522716	2.534532	-0.225906
Н	23.478093	-0.018217	1.572200	0.121097
Н	22.654094	0.155349	3.148103	0.136755
Н	24.414063	0.300046	3.050419	0.145344
Sc	22.708339	2.676101	7.751240	0.632500
Sc	19.382508	3.516979	7.364726	0.609045
Н	22.468872	4.144171	6.303064	-0.181241
Н	20.841718	2.020713	7.151942	-0.203646
Ν	24.159387	2.229614	6.042277	-0.645062
Ν	23.148052	-0.039146	7.874331	-0.439826
Ν	23.693576	2.110734	9.561595	-0.544896
Ν	24.620272	4.224172	8.178681	-0.474297
Ν	21.109279	3.960370	8.825822	-0.647190
Ν	19.239511	6.025465	7.763250	-0.474954
Ν	17.613106	3.964394	8.407800	-0.545696
Ν	19.093252	1.798224	9.433311	-0.441159
С	24.317187	0.787324	5.873340	-0.062094
Н	25.198307	0.551946	5.249038	0.105044
Н	23.446317	0.405423	5.329182	0.117247
С	24.449181	-0.002670	7.181609	-0.099752
Н	24.810698	-1.030097	6.988405	0.111596
Н	25.185741	0.480357	7.828194	0.159353
С	23.248714	-0.298394	9.313904	-0.108281
Н	23.732316	-1.274503	9.506518	0.116020
Н	22.222150	-0.381430	9.688460	0.136094
С	23.989833	0.792679	10.055683	-0.088491
Н	23.753540	0.673143	11.133374	0.104637
Н	25.084416	0.590270	9.997736	0.090600

С	24.506283	3.029748	10.324506	-0.099007
Н	25.526727	2.613438	10.464926	0.098365
Н	24.134741	3.191320	11.356381	0.108609
С	24.631121	4.381736	9.639542	-0.092729
Н	23.788480	5.028968	9.896533	0.136500
Н	25.548637	4.897244	9.976252	0.122216
С	25.720102	3.360397	7.706585	-0.090441
Н	25.790046	2.510935	8.386443	0.165787
Н	26.679980	3.908403	7.750682	0.113982
С	25.469094	2.877020	6.281246	-0.084207
Н	25.579015	3.719072	5.585313	0.188838
Н	26.290890	2.187158	6.029530	0.113343
С	22.350304	-1.123789	7.305506	-0.222739
Н	22.332049	-1.058018	6.220708	0.134288
Н	21.324252	-1.077907	7.675358	0.133763
Н	22.773637	-2.106927	7.577957	0.120365
С	24.723464	5.542118	7.556621	-0.213950
Н	23.917430	6.184065	7.917168	0.135177
Н	24.632539	5.453159	6.475050	0.168989
Н	25.686875	6.022085	7.801731	0.119902
С	21.322578	5.400473	8.915204	-0.075335
Н	21.883352	5.725614	8.032406	0.133669
Н	21.930592	5.675361	9.796343	0.113759
С	20.020317	6.190029	9.001147	-0.093760
Н	19.422551	5.817910	9.836784	0.147921
Н	20.213459	7.261381	9.191778	0.116527
С	17.817672	6.326821	7.982708	-0.103902
Н	17.333986	6.335055	6.999473	0.136685
Н	17.689463	7.332822	8.420754	0.121787
С	17.168638	5.257967	8.844772	-0.081349
Н	17.385168	5.461464	9.917755	0.093317
Н	16.071270	5.386100	8.756195	0.103380
С	16.947233	2.889125	9.111442	-0.087169
Н	16.642388	2.088865	8.416356	0.116827
Η	16.019577	3.222377	9.606774	0.104496
С	17.903202	2.306295	10.144715	-0.088792
Η	18.206382	3.109865	10.822809	0.138083
Н	17.449966	1.509803	10.760990	0.108899
С	20.338116	2.016433	10.180181	-0.091686
Н	21.111529	1.396576	9.719852	0.153467
Н	20.231647	1.669522	11.224607	0.121055
С	20.814805	3.455932	10.170713	-0.048397
Н	20.058769	4.079637	10.678935	0.103571
Н	21.714940	3.491965	10.808714	0.145226

С	19.786114	6.907602	6.738069	-0.210395
Н	19.722641	7.967469	7.042320	0.121824
Н	19.250653	6.771889	5.799420	0.136826
Н	20.826959	6.646308	6.564726	0.146870
С	18.933118	0.367359	9.185488	-0.239223
Н	18.994996	-0.217968	10.119907	0.118717
Н	19.714010	0.027485	8.501230	0.146124
Н	17.960525	0.169680	8.728892	0.147973

Neutral Trimer [(1,7-Me₂TACD)₃Sc₃H₃]:

scf d	lone: -1981.707	609	
Sc	8.735358	3.649208	0.627220
Н	9.177878	2.187018	2.002730
Sc	8.891664	2.671485	3.989199
Н	7.179192	1.723314	3.754213
Sc	5.901096	1.801255	2.277444
Ν	5.430086	0.774112	0.528711
С	5.477750	-0.661433	0.424999
С	6.364557	-1.245911	1.515688
Ν	6.122914	-0.594551	2.815088
С	7.165273	-0.998794	3.764030
Ν	11.229917	1.913474	3.990658
С	11.934600	3.169279	4.345868
С	11.298363	4.353656	3.602682
N	9.889798	4.523215	3.930969
С	9.729037	5.203796	5.204065
С	8.251823	5.316788	5.569590
Ν	7.490323	4.055431	5.370349
С	6.141456	4.377581	4.880039
Ν	9.322408	2.008065	5.909531
С	8.658773	2.606296	7.038285
С	7.350927	3.241391	6.597971
Ν	9.416324	1.949907	-0.953641
С	8.954485	0.592297	-0.643874
Ν	7.543314	4.073363	-1.035756
Ν	10.608745	4.255259	-0.029055
С	11.388549	3.451258	-0.932376
С	10.890092	2.009166	-0.928819
С	11.796683	1.363529	2.758121
С	11.291855	0.897903	5.057683
С	10.545776	1.365601	6.298247
С	8.858220	2.397343	-2.251665
С	7.473753	3.005682	-2.012823

С	7.960671	5.334908	-1.615642
С	7.939261	6.422628	-0.543946
Ν	8.620083	6.028912	0.718869
С	7.919367	6.612902	1.873411
С	10.038329	6.455222	0.792041
С	10.939875	5.651941	-0.131739
С	4.404889	1.316996	-0.332399
С	4.291475	2.822990	-0.155477
Ν	4.252883	3.248359	1.263968
С	4.482536	4.699762	1.292946
С	2.976122	2.939971	1.959022
С	2.999249	1.603822	2.692789
Ν	4.223100	1.510645	3.459933
С	4.303321	0.286860	4.233647
С	4.784557	-0.895079	3.376813
Н	11.202468	0.508385	2.424739
Н	12.839929	1.038431	2.910336
Н	11.767626	2.121478	1.974440
Н	5.560226	3.461782	4.736044
Η	6.222479	4.888705	3.918998
Η	5.604486	5.028135	5.590819
Н	10.389659	0.486220	6.954353
Η	11.195590	2.044798	6.891860
Н	10.808345	-0.003609	4.660421
Н	12.336311	0.632162	5.296047
Η	13.012293	3.075528	4.124976
Н	11.838433	3.324697	5.423215
Η	11.399818	4.192876	2.520097
Н	11.888680	5.259771	3.836141
Η	10.266905	4.702402	6.030429
Н	10.134431	6.236245	5.177956
Η	8.128891	5.679507	6.602156
Η	7.796236	6.063422	4.913269
Н	6.913090	3.846799	7.410226
Η	6.643802	2.442002	6.354632
Η	9.300425	3.363099	7.537556
Η	8.413101	1.871814	7.831216
Η	9.338344	0.300192	0.336403
Н	9.299605	-0.131980	-1.399939
Η	7.861928	0.573800	-0.598168
Н	8.410334	6.258789	2.783171
Н	6.880154	6.280794	1.880437
Н	7.941810	7.714530	1.839821
Н	12.467897	3.431095	-0.679514

Н	11.354372	3.858094	-1.965877
Н	11.204673	1.516788	-0.004539
Н	11.321919	1.441098	-1.770344
Н	8.842088	1.560698	-2.971023
Н	9.519208	3.166383	-2.660094
Н	6.802393	2.217538	-1.644189
Н	7.054540	3.341163	-2.978785
Н	8.963585	5.298432	-2.082634
Н	7.273723	5.665530	-2.419753
Н	8.362260	7.365166	-0.924998
Н	6.891959	6.612744	-0.290675
Н	10.120553	7.536172	0.587831
Н	10.347694	6.279381	1.826490
Н	10.844591	6.018009	-1.175386
Н	11.987156	5.874798	0.155343
Н	8.144482	-0.692848	3.386523
Н	7.163175	-2.092177	3.912197
Н	7.018212	-0.502604	4.723762
Н	5.422486	4.916216	0.781604
Н	4.543795	5.045750	2.327264
Н	3.664631	5.243548	0.791381
Н	5.864279	-1.020218	-0.550818
Н	4.460347	-1.099436	0.496413
Н	7.415185	-1.058483	1.267014
Н	6.235024	-2.340176	1.583187
Н	4.811714	-1.842213	3.943424
Н	4.084981	-1.032690	2.547544
Н	5.001599	0.427903	5.070429
Н	3.332677	0.018665	4.688956
Н	2.865321	0.778582	1.966534
Н	2.101100	1.572182	3.340577
Н	2.132983	3.000578	1.252947
Н	2.833167	3.720720	2.712518
Н	3.406019	3.208131	-0.690099
Н	5.179979	3.299782	-0.584345
Н	3.424550	0.833869	-0.142348
Н	4.605945	1.134951	-1.407206
Н	7.166607	3.448469	2.029673

Neutral Dimer [(1,7-Me₂TACD)₂Sc₂H₂]:

scf done: -1321.1342546

Н	4.685591	-2.222504	11.102813	-0.130221
Ν	3.039510	0.055755	11.200623	-0.625697

Ν	1.267816	-2.840170	13.050737	-0.568993
С	1.671495	-3.935675	13.904720	-0.086010
С	2.420759	-5.001218	13.091169	-0.086437
Ν	3.564462	-4.375708	12.393434	-0.482870
С	4.710265	-4.279534	13.301777	-0.212597
С	2.937976	-4.997241	10.061704	-0.072352
Ν	2.394946	-3.668273	9.967812	-0.567207
С	1.295188	-3.625933	9.047501	-0.074374
С	0.556735	-2.296719	9.152289	-0.110557
С	-0.466400	-2.813520	11.327221	-0.091311
Н	1.144076	-1.509285	8.663491	0.139279
С	-0.204010	-0.539877	10.594106	-0.219352
Sc	2.624210	-2.309082	11.551492	0.842103
Sc	4.999268	-0.456704	11.799245	0.282337
Ν	5.350675	-0.331610	9.410163	-0.488875
С	5.685617	-1.578943	8.697226	-0.247651
С	4.023597	0.142624	8.939450	-0.103418
С	3.191764	0.868313	9.994357	-0.073499
С	2.386064	0.798519	12.285804	-0.085787
С	3.335318	1.737048	13.044720	-0.097207
N	4.470377	0.999253	13.642624	-0.481900
С	4.077143	0.404132	14.925380	-0.231661
С	5.664497	1.846908	13.831733	-0.110941
С	6.215243	2.332078	12.497318	-0.076462
Ν	6.165673	1.269733	11.526732	-0.561461
С	6.457111	1.769549	10.207501	-0.072491
С	6.455157	0.630437	9.201983	-0.105319
Н	3.945940	-1.553676	13.012453	-0.102351
Ν	0.381893	-1.879716	10.554782	-0.479319
С	3.980344	-5.088349	11.170063	-0.107581
С	-0.150259	-2.698530	12.820414	-0.078839
Н	3.648955	1.846223	10.217627	0.131556
Н	2.217868	1.101268	9.522534	0.104173
Н	3.465928	-0.750904	8.642189	0.169988
Н	4.136341	0.775340	8.044485	0.129760
Н	6.448363	1.012361	8.166851	0.119633
Н	7.382380	0.061599	9.331931	0.152934
Н	7.446797	2.262948	10.137857	0.106316
Н	5.729446	2.551278	9.899879	0.100787
Н	5.636118	3.217026	12.157041	0.095784
Н	7.237201	2.721309	12.673353	0.110236
Н	6.414348	1.220413	14.331527	0.151347
Н	5.451329	2.695901	14.503827	0.124486
Н	3.739757	2.472443	12.344676	0.152040

Н	2.788048	2.296351	13.823002	0.123239
Н	1.950556	0.079887	12.992665	0.176567
Н	1.550315	1.410170	11.907588	0.116197
Н	4.898139	-2.315479	8.864177	0.209281
Н	6.619522	-1.987452	9.092851	0.148670
Н	5.813155	-1.395739	7.617351	0.120990
Н	4.890365	-0.220883	15.304774	0.152882
Н	3.208307	-0.239261	14.787039	0.197203
Н	3.851975	1.184799	15.671248	0.117784
Н	3.424943	-5.347081	9.127802	0.098158
Н	2.130863	-5.740985	10.246157	0.093798
Н	4.221647	-6.143624	11.389279	0.117462
Н	4.898150	-4.595564	10.834065	0.165197
Н	2.766056	-5.846113	13.715755	0.104827
Н	1.736452	-5.397060	12.335372	0.153753
Н	0.810105	-4.423757	14.391675	0.096113
Н	2.320512	-3.594084	14.729908	0.114872
Н	-0.549266	-1.737935	13.201600	0.095561
Н	-0.736647	-3.475065	13.340871	0.097283
Н	-0.225674	-3.830218	11.009565	0.159145
Н	-1.534605	-2.628726	11.108267	0.103020
Н	-0.415058	-2.348673	8.629580	0.120292
Н	0.578502	-4.457285	9.230733	0.091471
Н	1.594447	-3.754689	7.986697	0.098434
Н	5.083088	-5.281548	13.575345	0.114686
Н	4.426889	-3.744636	14.209048	0.156741
Н	5.507268	-3.715630	12.811699	0.163646
Н	0.460519	0.171062	10.100051	0.140530
Н	-0.344218	-0.220106	11.628391	0.151267
Н	-1.184721	-0.516219	10.089480	0.121010

Monmer [(1,7-Me₂TACD)ScH]:

scf do	one: -660.549	0160	
С	4.542340	-2.217279	11.175920
Ν	3.731485	-1.014600	11.408381
С	2.440126	-1.358894	12.051803
С	1.432884	-0.209215	11.959138
Ν	1.442826	0.335027	10.627823
Sc	3.100775	0.049218	9.452838
Ν	2.395262	2.134185	8.744552
С	2.592025	2.352626	7.305033
С	4.500626	0.011910	12.155290
С	5.419833	0.806957	11.213293
N	4.673472	1.213344	10.045576

С	4.657908	2.609024	9.673433
С	3.202078	3.088990	9.545560
С	0.690470	1.551468	10.476253
С	0.953166	2.150612	9.091649
Н	3.157511	-1.166860	7.979748
Н	2.182491	3.323093	6.985589
Н	3.659011	2.330093	7.069140
Н	2.103737	1.554682	6.738557
Н	5.483032	-1.941170	10.692778
Н	4.771189	-2.737395	12.118625
Н	4.008860	-2.902010	10.510690
Н	2.041644	-2.220911	11.503982
Н	2.592975	-1.671167	13.097457
Н	0.449925	-0.615236	12.266796
Н	1.673612	0.563289	12.720086
Н	-0.404367	1.411609	10.563808
Н	0.947080	2.292958	11.262195
Н	0.447611	1.532618	8.340296
Н	0.542070	3.170102	9.014697
Н	5.058394	-0.461620	12.981469
Н	3.778156	0.707554	12.590125
Н	5.805499	1.668570	11.784160
Н	6.310725	0.200355	10.965821
Н	5.197415	2.808422	8.729096
Н	5.147495	3.248320	10.427372
Н	2.766906	3.122179	10.547812
Н	3.132155	4.100116	9.109034

References

[1] (a) A. Dumont, V. Jacques, Q. X. Peng, J. F. Desreux, *Tetrahedron. Lett.* 1994, *35*, 3707;
(b) M. Ohashi, M. Konkol, I. D. Rosal, R. Poteau, L. Maron, J. Okuda, *J. Am. Chem. Soc.* 2008, *130*, 6920.

[2] S. Standfuss, E. Abinet, T. P. Spaniol, J. Okuda, Chem. Commun. 2011, 47, 11441.

[3] a) Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999; b) Bruker,

SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004; c) A. Altomare, G. Cascarano,
C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343; d) G. M. Sheldrick, Acta
Crystallogr. Sect. A 2008, 64, 112; e) L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.

[4] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[5] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

[6] J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.

[7] a) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866; b) J. M. L.
 Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408.

[8] a) A. Bergner, M. Dolg, W. Kuchle, H. Stoll, H. Preuss, *Mol. Phys.* 1993, *80*, 1431; b) A.
Hollwarth, M. Bohme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Kohler, R.
Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* 1993, *208*, 237.

[9] a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724; b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257; c) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213.

[10] a) A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* 1988, **88**, 899; b) F. Weinhold, *In The Encyclopedia of Computational Chemistry*; P. v. R., Schleyer, Ed., John Wiley & Sons: Chichester, 1998, 1792.