A Near-infrared Fluorescent Probe for Selective Detection of HClO Based on Se-sensitized Aggregation of Heptamethine Cyanine Dye

Guanghui Cheng , Jiangli Fan ,* Wen Sun ,
Jianfang Cao ,
Chong Hu , and Xiaojun \mbox{Peng}^*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong

Road,

Dalian 116024, P.R. China

fanjl@dlut.edu.cn; pengxj@dlut.edu.cn

Contents

1. Materials and instruments 2
2. UV-vis and fluorescence emission spectra of different concentrations of Cy7Cl, SCy7 and
SeCy7
3. UV-vis spectra of SeCy7 with HClO 4
4. Time-dependent fluorescence spectra of SeCy7 with HClO 4
5. The linear relationship between fluorescence intensity and the concentrations of HClO 5
6. ⁷⁷ Se NMR spectra of the SeCy7 and SeOCy7 5
7. HRMS of SeOCy7
8. Effect of pH values
9. Fluorescence spectra of SeCy7 with HClO in fetal bovine serum
10. Experiment of ICR mouse
11. Synthesis and characterization of compounds9
12. ¹ H NMR, ¹³ C NMR spectra of the compounds 11

1. Materials and instruments

Unless otherwise specified, all materials were obtained from commercial suppliers and used without further purification. Lipopolysaccharides (LPS) and phorbol 12-myristate 13-acetate (PMA) were purchased from Sigma-Aldrich (USA). ¹H NMR and ¹³C NMR spectra were recorded on a VARIAN INOVA-400 spectrometer, using TMS as an internal standard. ⁷⁷Se NMR spectra were recorded on a VARIAN INOVA-500 spectrometer, using CH₃SeCH₃ as an internal standard. Mass spectrometry data were obtained with a HP1100LC/MSD mass spectrometer and a LC/Q-TOF MS spectrometer. UV-visible spectra were collected on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. Fluorescence measurements were performed on a VAEIAN CARY Eclipse Fluorescence Spectrophotometer (Serial No. FL1109-M018).Institute of cancer research (ICR) mice and Nude mice, 4-6 weeks old, were obtained from Laboratory Animal Center of Dalian Medical University. All the animal experiments were carried out in accordance with the guidelines issued by the Ethical Committee of Dalian Medical University.

2. UV-vis and fluorescence emission spectra of different concentrations of Cy7Cl, SCy7 and SeCy7

Fig. S1. UV-vis (a) and fluorescence emission (b) spectra of different concentrations of **Cy7Cl** (5-30 μ M); $\lambda_{ex} = 760$ nm.

Fig. S2. UV-vis (a) and fluorescence emission (b) spectra of different concentrations of SCy7 (5-30 μ M); $\lambda_{ex} = 690$ nm.

Fig. S3. UV-vis (a) and fluorescence emission (b) spectra of different concentrations of SeCy7 (5-30 μ M); $\lambda_{ex} = 690$ nm.

3. UV-vis spectra of SeCy7 with HClO

Fig. S4. UV-vis spectra of SeCy7 (30 μ M) upon the addition of increasing concentrations of sodium hypochlorite (0–2.0 equiv.) in PBS buffer (pH 7.4, 20 mM). The arrows indicate the changes in the absorption spectra with the increased sodium hypochlorite concentrations; $\lambda_{ex} = 690$ nm.

4. Time-dependent fluorescence spectra of SeCy7 with HClO

Fig. S5. Time dependent fluorescence intensity changes of probe **SeCy7** (30 μ M) with 2 equiv. NaClO in PBS buffer (pH 7.4, 20 mM).(λ_{ex} = 690 nm, λ_{em} = 786 nm).

5. The linear relationship between fluorescence intensity and the concentrations of HClO

Fig. S6. The linear relationship between the concentrations of sodium hypochlorite and fluorescence intensity

6. ⁷⁷Se NMR spectra of the SeCy7 and SeOCy7

Fig. S7. ⁷⁷Se NMR of SeCy7 in CD₃OD

Fig. S8. ⁷⁷Se NMR of SeOCy7 in CD₃OD

7. HRMS of SeOCy7

Fig. S9. The HRMS of SeCy7 after addition of HClO

Elemental Co	omposition Report						
Mass	Calc. Mass	mDa	PPM	DI	ЗE	i-FIT	Formula
642.2991	642.2963	2.8	4.4	17.5	0.5	$C_{38}H_4$	₈ N ₃ OSe
Mass	Calc. Mass	mDa	PPM	DI	ЗE	i-FIT	Formula
626.3021	626.3013	0.8	1.3	17.5	0.6	$C_{38}H_4$	₋₈ N ₃ Se

8. Effect of pH values

Fig. S10. pH-dependent fluorescence intensity of **SeCy7**(30 μ M) in the absence (black) and presence (red) of NaClO (2 equiv.).

9. Fluorescence spectra of SeCy7 with HClO in fetal bovine serum.

Fig. S11. Fluorescence emission spectra of **SeCy7** (60 μ M) upon the addition of increasing concentrations of sodium hypochlorite (0–40 equiv.) in fetal bovine serum. The arrows indicate the changes in the emission intensities with the increased sodium hypochlorite concentration; $\lambda_{ex} = 690$ nm.

10. Experiment of ICR mouse

Fig. S12. Representative fluorescence images (pseudocolor) of an ICR mouse given a skin-pop injection of **SeCy7** (25 μ L, 60 μ M) and a subsequent (15 minutes later) skin-pop injection of NaClO (2.0 equiv.) at the same region. Images were taken after incubation for 0, 5, 10, 15, 20, 25, 30, 35 and 40 min, respectively. Images were taken with an excitation laser of 690 nm and an emission filter of 820±20 nm.

11. Synthesis and characterization of compounds

A solution of N,N-dimethylformamide (DMF,40mL) and dichloromethane (40mL) was cooled to -10° C and phosphorus oxychloride (38 mL,0.407 mol) was added dropwise with vigorous stirring, followed by cyclohexanone (10.00g, 0.102 mol). The mixture was refluxed for 4 h. After cooled, the solution was poured into 500 g ice and allowed to stand overnight. A yellow solid **1** was collected (8.45 g, 48.0%). The product was used directly for the next reaction without purification.

Under the nitrogen atmosphere, to a round bottom flask containing compound **1**(1.00 g, 5.79mmol) in 15 ml acetic anhydride, 1-ethyl-2,3,3-trimethyl-*3H*-indol-1-ium iodide (3.65g,11.6 mmol) and sodium acetate (0.95 g, 36 mmol) were added. The solution was heated to 130°C for 1 h. The generated mixture was filtered and the precipitate was washed thoroughly with diethyl ether and potassium iodide aqueous solution. A dark green solid (**Cy7Cl**) with metallic luster was obtained (3.35g,90.5%).¹H NMR (400 MHz, CD₃OD) δ 8.46(d,2H), 7.28-7.55(m,8H), 6.30 (d, 2H),4.24(q,4H),2.75(t,4H),1.95(m,2H),1.74(s,12H),1.42(t,6H). ¹³C NMR (100 MHz, CD₃OD) δ 172.47, 154.26, 149.77, 144.28, 141.77, 141.35, 128.54, 126.50, 125.17, 122.17, 110.64, 100.53, 38.95, 26.82, 25.96, 20.73, 11.08.TOF LD⁺ (C₃₄H₄₀N₂Cl⁺) calc. m/z = 511.2880, found m/z = 511.2899.

Cy7Cl (500 mg,0.782 mmol) and thiomorpholine (242 mg, 2.35 mmol) were

dissolved in 8 mL of anhydrous DMF in a 25mL round bottom flask under Ar for 1 h at 90°C. Then the solvent was poured into 200 mL anhydrous diethyl ether. The generated mixture was filtered and the precipitate was washed thoroughly with diethyl ether.The solid purified by silica gel chromatography was usingethyl acetate/methanol=10/1 as eluent to afford**SCv7** (385 mg) with metallic yellow-green powder.Yield: 69.7 %.¹H NMR (400 MHz, CD₃OD) δ 8.03(d,2H),7.49(d,2H), 7.39(t,2H),7.21 (m,4H), 6.09(d,2H), 4.14(q,4H),3.77(t,4H),2.92(t,4H), 2.57(t,4H), 1.87(m,2H), 1.76(s,12H), 1.38(t,6H). ¹³C NMR (100 MHz, CD₃OD) δ171.68, 170.16, 142.41, 142.06, 140.72, 128.35, 126.85, 124.04, 121.99, 109.69, 56.28, 38.25, 28.76, 27.39, 24.78, 21.56, 10.75. TOF LD⁺ ($C_{38}H_{48}N_3S^+$) calc. m/z = 578.3569, found m/z = 578.3565.

Cy7Cl (500 mg,0.782 mmol) and selenomorpholine (470 mg, 3.13 mmol, The compound was synthesized according to previously reported literature.^{S1}) were dissolved in 8 mL of anhydrous DMF in a 25mL round bottom flask under Ar for 1 h at 90°C. Then the solvent was poured into 200 mL anhydrous diethyl ether. The generated mixture was filtered and the precipitate was washed thoroughly with diethyl purified by silica gel chromatography ether.The solid was usingethyl acetate/methanol=10/1 as eluent to afford SeCy7 (358 mg) with metallickhaki powder.Yield: 60.8 %.¹H NMR (400 MHz, CD₃OD)δ 8.04(d,2H), 7.50(d,2H), 7.42(t,2H),7.23(m,4H),6.12(d,2H),4.16(q,4H),3.86(t,4H),2.96(t,4H),2.59(t,4H), 1.87 (m,2H), 1.78(s,12H), 1.40(t,6H).¹³C NMR (100 MHz, CD₃OD) δ171.82, 170.32, 142.62, 142.05, 140.73, 128.37, 127.44, 124.13, 122.01, 109.76, 97.89, 56.77, 38.31, 27.30, 24.86, 21.54, 18.65, 10.78.⁷⁷Se NMR (95 MHz, CD₃OD)δ149.09. TOF LD⁺ $(C_{38}H_{48}N_3Se^+)$ calc. m/z = 626.3013, found m/z = 626.3049.

Ref

S1 Hu L., Chen Z., Lu S., Li X., Liu Z and Xu H; *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2004, **179**, 1065.

Monoisotopic Mass, Odd and Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

13082902 5	A) 0 (0.833) C	n (Cen, 511.	4, 20.00, Ht); Sn 2899	n (SG, 2x3.0	0); Sb (1	5,10.00);	Cm (42:52)				-	TOF LD+ 1.70e
			Mt									
%-			513.2917									
	477.3	3075	514.2921 535.3648 602	603.3039 .9562 604.3	106	698.245	55 744.7302	836.04	22 877.7150	916.30	60 961.6569	
0 - 11 - 11	450	500	550	600	650	700	750	800	850	900	950	m/z
Minimum: Maximum:			200.0	10.0	-1 10	.00.0						
Mass	Calc.	Mass	mDa	PPM	DE	E	Score	Formul	a			
511.2899	511.2	880	1.9	3.7	15	.5	1	C34 F	40 N2	C1		

Fig. S14. TOF-MS of compound Cy7Cl

C34 H40 N2 C1

Fig. S16. ¹³C NMR of SCy7 in CD₃OD

Elemental Composition	Report						Pay
Single Mass Analysis (d Tolerance = 50.0 PPM / Selected filters: None	isplayin DBE: m	g only nin = -2	valid resul 200.0, max =	ts) = 200.0			Pat
Monoisotopic Mass, Even Elect 13 formula(e) evaluated with 1 Elements Used: C: 0-120 H: 0-150 N: 3-3 CHGH 13032211 20 (0.371) AM (Cen,2, 80.01	tron lons results with S: 1-1 0, Ht,5000.0,	hin limits 0.00,1.00	s (all results (u); Sm (Mn, 2x1.00	up to 1000)); Cm (17:2) for each mass) 1)		11:41:22 1: TOF MS ES+
9%	578	3.3565 579.362	2				1.79e3
274.2940 326.1762 383.2	386 577.386	580.365 0 581.36	0 44			1283.6083	1475.9203
200 300 400	500	600	700 800	900	1000 1100	1200 1300	1400 1500
Minimum: Maximum:	5.0	50.0	-200.0 200.0				
Mass Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
578.3565 578.3569	-0.4	-0.7	16.5	1.6	C38 H48	N3 S	

Fig. S17. TOF-MS of compound SCy7

Fig. S18. ¹H NMR of SeCy7 in CD₃OD

Fig. S20. TOF-MS of compound SeCy7