Supporting Information

for

Dearomatization of Tryptophols via a Vanadium-Catalyzed Asymmetric Epoxidation and Ring-Opening Cascade

Long Han^{a,b}, Chuan Liu^b, Wei Zhang^{*b}, Xiao-Xin Shi^a and Shu-Li You^{*a,b}

 ^a School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
 ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China), Fax: (+86) 21-54925087

E-mail: zhangwei@sioc.ac.cn or slyou@sioc.ac.cn

Table of Contents

- 1. General methods
- 2. Experimental sections
 - 2.1 General method for the preparation of **1a-1w**
 - 2.2 General procedure for the epoxidation of **1a-1w**
- 3. Copies of ¹H NMR and ¹³C NMR spectra of the compounds
- 4. Copies of HPLC analysis
- 5. Table S1. Optimization of the reaction conditions more protecting groups
- 6. The gram-scale reaction

1. General methods.

Unless stated otherwise, all reactions were carried out in flame-dried glassware. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

2. Experimental sections

To a solution of indole **S1** (10.0 mmol, 1.0 equiv) in dry Et_2O (50 mL) was added dropwise oxalyl chloride (2.7 mL, 30.0 mmol, 3.0 equiv) at 0 °C. Then the ice bath was removed and the resultant yellow slurry was stirred for 6 h at room temperature and then cooled to 0 °C, followed by quenching with MeOH (2.0 mL, 50.0 mmol, 5.0 equiv). The crude reaction mixture was filtered and washed with cold Et_2O . Then the solid was dried and used directly for the next step without further purification. A solution of the above solid in THF (20 mL) was added dropwise to a suspension of LiAlH₄ (1.52 g, 40 mmol, 4.0 equiv) in THF (40 mL) at 0 °C. The solution was stirred for 4 h at room temperature and quenched by H₂O (1.5 mL), 10% aqueous NaOH (3.0 mL), H₂O (4.5 mL) slowly at 0 °C. The solution was then filtered and washed with EtOAc. The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give the corresponding crude product **S2**.

tert-Butyldimethylsilylchloride (1.66 g, 11 mmol, 1.1 equiv) was added to a solution of tryptophol (10.0 mmol, 1.0 equiv) and imidazole (1.36 g, 20.0 mmol, 2.0 equiv) in DMF (50 mL) at 0 °C. The ice bath was then removed and the reaction mixture was stirred at room temperature for 3 h. The mixture was quenched with water (40 mL) and extracted with EtOAc (3×30 mL), then the combined organic layers were washed with water, brine, separated, and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was used directly for the next step without further purification. To a solution of the above TBS-tryptophol in THF (50 mL) was added NaH (400.0 mg, 10.0 mmol, 1.0 equiv, 60% dispersion in mineral oil) at 0 °C. After stirring at 0 °C for 15 min and then at rt for 1 h, the reaction mixture was cooled to 0 °C, treated with MeI (700 µl, 11 mmol, 1.1 equiv) or BnBr (1.88 g, 11 mmol, 1.1 equiv) or 1-(bromomethyl)naphthalene (2.43 g, 11 mmol, 1.1 equiv) or 9-(bromomethyl)anthracene (2.98 g, 11 mmol, 1.1 equiv) or Boc₂O (2.4 g, 11 mmol, 1.1 equiv), and then allowed to stir at rt for 6-12 h. After the reaction was complete (monitored by TLC), aqueous saturated NaHCO₃ (30 mL) was added slowly. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 \times 30 mL). The combined organic layers were washed with brine (30 mL), separated, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was further treated with tetra-n-butylammonium fluoride (15 mmol, 1.5 equiv), after 24 h, the mixture was worked up and purified by column chromatography on silica gel (2:1, PE-EtOAc) to afford the desired product 1. Note: All the yields provided for the substrates 1 (1a to 1q) were calculated from the starting indoles S1.

2-(1H-indol-3-yl)ethanol (1a)

Pale yellow solid, 1.5 g, 93% yield. Analytical data for **1a**: ¹H NMR (300 MHz, CDCl₃) δ 8.07 (brs, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 6.9 Hz, 1H), 7.07 (s, 1H), 3.94-3.88 (m, 2H), 3.04 (t, *J* = 6.3 Hz, 2H), 1.55 (s, 1H).

(S. Gore, S. Baskaran and B. König, Org. Lett., 2012, 14, 4568.)

2-(1-methyl-1H-indol-3-yl)ethanol (1b)

Pale yellow oil, 1.3 g, 74% yield. Analytical data for 1b: ¹H NMR (400 MHz, CDCl₃)
δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 3.6 Hz, 2H), 7.06-7.02 (m, 1H), 6.69 (s, 1H),
3.73 (t, *J* = 6.8 Hz, 2H), 3.48 (s, 2H), 2.88 (t, *J* = 6.8 Hz, 2H), 2.78 (brs, 1H).
(O. Lozano, G. Blessley, T. Martinez del Campo, A. L. Thompson, G. T. Giuffredi, M.
Bettati, M. Walker, R. Borman and V. Gouverneur, *Angew. Chem., Int. Ed.*, 2011, 50, 8105.)

2-(1-benzyl-1H-indol-3-yl)ethanol (1c)

Pale yellow oil, 1.9 g, 76% yield. Analytical data for 1c: ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, J = 7.5 Hz, 1H), 7.30-7.13 (m, 7H), 7.01 (s, 1H), 5.29 (s, 2H), 3.93-3.88 (m, 2H), 3.04 (t, J = 6.3 Hz, 2H), 1.48 (brs, 1H).

(S. J. Garden, R. B. da Silva and A. C. Pinto, *Tetrahedron*, 2002, 58, 8399.)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2014

2-(1-(naphthalen-1-ylmethyl)-1H-indol-3-yl)ethanol (1d)

Yellow solid, 2.3 g, 76% yield. Analytical data for **1d**: Mp = 84-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.89 (m, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.54-7.50 (m, 2H), 7.36-7.32 (m, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 2H), 5.73 (s, 2H), 3.87 (m, 2H), 3.01 (t, *J* = 6.4 Hz, 2H), 1.46 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 133.7, 132.4, 130.9, 128.9, 128.4, 128.1, 126.6, 126.5, 126.0, 125.5, 125.2, 122.6, 122.0, 119.3, 119.1, 111.5, 109.7, 62.7, 47.7, 28.8; IR (film): v_{max} (cm⁻¹) = 3673, 2987, 2901, 1597, 1468, 1376, 1327, 1260, 1177, 1041, 1011, 796, 772, 742; MS (ESI): 302 [M+1]⁺; HRMS (ESI) calcd for C₂₁H₂₀NO [M+1]⁺: 302.1539. Found: 302.1543.

2-(1-(anthracen-9-ylmethyl)-1H-indol-3-yl)ethanol (1e)

Yellow solid, 2.6 g, 74% yield. Analytical data for **1e**: Mp = 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.15-8.07 (m, 4H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.52-7.46 (m, 4H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.34 (s, 1H), 6.11 (s, 2H), 3.69-3.65 (m, 2H), 2.77 (t, *J* = 6.3 Hz, 2H), 1.23 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 131.5, 131.3, 129.3, 129.0, 128.3, 127.1, 125.7, 125.3, 125.0, 123.5, 122.0, 119.4, 119.2, 110.8, 109.3, 62.5, 41.9, 28.6; IR (film): v_{max} (cm⁻¹) = 3276, 3055, 2922, 1623, 1458, 1340, 1237, 1098, 891, 731; MS (ESI): 352 [M+1]⁺; HRMS (ESI) calcd for C₂₅H₂₂NO [M+1]⁺: 352.1696. Found: 352.1695.

tert-butyl 3-(2-hydroxyethyl)-1H-indole-1-carboxylate (1f)

Pale yellow oil, 1.7 g, 65% yield. Analytical data for **1f**: ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.47 (s, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.24 (m, 1H), 3.92 (m, 2H), 2.96 (t, *J* = 6.6 Hz, 2H), 1.66 (s, 9H), 1.61 (brs, 1H). (H.-C. Hsu and D.-R. Hou, *Tetrahedron Lett.*, 2009, **50**, 7169.)

2-(1-benzyl-4-methyl-1H-indol-3-yl)ethanol (1g)

Brown yellow solid, 750 mg, 28% yield. Analytical data for **1g**: Mp = 58-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.13 (m, 3H), 7.04-6.97 (m, 4H), 6.83 (s, 1H), 6.79 (d, *J* = 6.4 Hz, 1H), 5.08 (s, 2H), 3.78 (t, *J* = 6.8 Hz, 2H), 3.10 (t, *J* = 6.8 Hz, 2H), 2.65 (s, 3H), 2.19 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.3, 131.1, 128.9, 127.7, 127.0, 126.9, 126.7, 122.1, 121.2, 112.2, 107.9, 63.7, 50.0, 30.6, 20.6; IR (film): v_{max} (cm⁻¹) = 3321, 2918, 2857, 1605, 1548, 1494, 1430, 1358, 1327, 1242, 1158, 1044, 730, 695, 611; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1541.

2-(1-benzyl-5-bromo-1H-indol-3-yl)ethanol (1h)

Brown yellow oil, 2.4 g, 73% yield. Analytical data for **1h**: ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 1.6 Hz, 1H), 7.28-7.21 (m, 4H), 7.11-7.05 (m, 3H), 6.99 (s, 1H),

5.21 (s, 2H), 3.85 (t, J = 6.4 Hz, 2H), 2.94 (t, J = 6.4 Hz, 2H), 1.63 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 135.3, 129.8, 128.8, 127.7, 126.6, 124.6, 121.6, 112.5, 111.2, 111.2, 62.5, 50.0, 28.4; IR (film): v_{max} (cm⁻¹) = 3350, 2925, 1605, 1468, 1354, 1296, 1169, 1051, 864, 788, 733, 698, 646; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇BrNO [M+1]⁺: 330.0488. Found: 330.0487.

2-(1-benzyl-5-methyl-1H-indol-3-yl)ethanol (1i)

Brown yellow solid, 1.3 g, 49% yield. Analytical data for **1i**: Mp = 61-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.30-7.24 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.96 (s, 1H), 5.24 (s, 2H), 3.88 (t, *J* = 6.4 Hz, 2H), 3.00 (t, *J* = 6.4 Hz, 2H), 2.45 (s, 3H), 1.55 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 135.2, 128.7, 128.5, 128.4, 127.5, 126.7, 123.5, 118.7, 110.7, 109.5, 62.6, 49.9, 28.7, 21.4; IR (film): v_{max} (cm⁻¹) = 3263, 2921, 2852, 1603, 1553, 1487, 1450, 1380, 1355, 1311, 1173, 1039, 788, 735, 703, 639; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1543.

2-(1-benzyl-5-methoxy-1H-indol-3-yl)ethanol (1j)

Brown yellow solid, 2.0 g, 71% yield. Analytical data for **1j**: Mp = 44-47 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.23 (m, 3H), 7.14 (d, *J* = 9.2 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 2.4 Hz, 1H), 6.98 (s, 1H), 6.84 (dd, *J* = 8.9, 2.4 Hz, 1H), 5.23 (s, 2H), 3.89 (t, *J* = 6.4 Hz, 2H), 3.85 (s, 3H), 3.00 (t, *J* = 6.4 Hz, 2H), 1.66 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 137.7, 132.0, 128.7, 128.5, 127.5, 127.2, 126.7, 122.0, 111.0, 110.6, 100.9, 62.6, 55.9, 50.0, 28.7; IR (film): v_{max} (cm⁻¹) = 3525,

3420, 2919, 1617, 1577, 1486, 1451, 1394, 1351, 1221, 1180, 1100, 1041, 897, 832, 796, 697, 635; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1492.

2-(1-benzyl-6-fluoro-1H-indol-3-yl)ethanol (1k)

Pale yellow solid, 1.1 g, 41% yield. Analytical data for **1k**: Mp = 62-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 1H), 7.32-7.24 (m, 3H), 7.10 (d, *J* = 6.8 Hz, 2H), 6.98 (s, 1H), 6.94-6.84 (m, 2H), 5.19 (s, 2H), 3.87 (t, *J* = 6.4 Hz, 2H), 2.99 (t, *J* = 6.4 Hz, 2H), 1.64 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9 (d, *J* = 236.8 Hz), 136.9, 128.7, 127.7, 126.8, 126.7, 126.7, 124.6, 119.7 (d, *J* = 10.1 Hz), 111.7, 107.8 (d, *J* = 24.4 Hz), 96.1 (d, *J* = 26.1 Hz), 62.6, 50.0, 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -120.52; IR (film): v_{max} (cm⁻¹) = 3446, 2899, 1618, 1555, 1483, 1449, 1333, 1241, 1162, 1063, 900, 816, 791, 769, 707, 621; MS (ESI): 270 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇FNO [M+1]⁺: 270.1289. Found: 270.1289.

2-(1-benzyl-6-methyl-1H-indol-3-yl)ethanol (11)

Brown yellow oil, 1.3 g, 49% yield. Analytical data for **11**: ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.27-7.21 (m, 3H), 7.07-7.04 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 5.16 (s, 2H), 3.82 (t, *J* = 6.5 Hz, 2H), 2.95 (t, *J* = 6.4 Hz, 2H), 2.41 (s, 3H), 1.93 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 137.2, 131.7, 128.7, 127.5, 126.7, 126.0, 120.9, 118.7, 111.3, 109.6, 62.6, 49.6, 28.7, 21.9; IR (film): v_{max} (cm⁻¹) = 3356, 3028, 2917, 1620, 1554, 1468, 1452, 1377, 1355, 1326,

1170, 1039, 797, 733, 704; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1539.

2-(1-benzyl-6-methoxy-1H-indol-3-yl)ethanol (1m)

Brown yellow solid, 500 mg, 18% yield. Analytical data for **1m**: Mp = 77-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.8 Hz, 1H), 7.29-7.20 (m, 3H), 7.08 (d, *J* = 6.4 Hz, 2H), 6.85 (s, 1H), 6.77 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.71 (d, *J* = 2.0 Hz, 1H), 5.16 (s, 2H), 3.83 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 2.95 (t, *J* = 6.4 Hz, 2H), 1.84 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 137.5, 137.4, 128.7, 127.5, 126.7, 125.4, 122.5, 119.6, 111.4, 108.8, 93.4, 62.6, 55.6, 49.7, 28.7; IR (film): v_{max} (cm⁻¹) = 3263, 2925, 2854, 1621, 1557, 1491, 1451, 1376, 1357, 1261, 1168, 1043, 794, 740, 708, 630; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1490.

2-(1-benzyl-7-methyl-1H-indol-3-yl)ethanol (1n)

Pale yellow solid, 1.2 g, 45% yield. Analytical data for **1n**: Mp = 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.28-7.20 (m, 3H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.93-6.89 (m, 4H), 5.53 (s, 2H), 3.91-3.86 (m, 2H), 3.02 (t, *J* = 6.4 Hz, 2H), 2.51 (s, 3H), 1.57 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 135.5, 129.0, 128.7, 128.5, 127.2, 125.3, 124.8, 121.2, 119.4, 116.9, 111.3, 62.5, 51.9, 28.6, 19.4; IR (film): v_{max} (cm⁻¹) = 3253, 2931, 2861, 1603, 1494, 1450, 1414, 1354, 1330, 1168, 1049, 781, 745, 703, 637; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1539.

tert-butyl 3-(2-hydroxyethyl)-1H-indole-1-carboxylate (10)

Pale yellow oil, 870 mg, 33% yield. Analytical data for **1o**: ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 1H), 7.16-7.12 (m, 4H), 7.09-7.07 (m, 2H), 6.89 (d, *J* = 6.4 Hz, 2H), 5.12 (s, 2H), 3.75 (t, *J* = 6.8 Hz, 2H), 2.97 (t, *J* = 6.8 Hz, 2H), 2.41 (brs, 1H), 2.22 (s, 3H).

(V. Khedkar, A. Tillack, K. Michali and M. Beller, Tetrahedron, 2005, 61, 7622.)

2-(2-phenyl-1H-indol-3-yl)ethanol (1p)

Pale yellow solid, 1.2 g, 51% yield. Analytical data for 1p: ¹H NMR (300 MHz, CDCl₃) δ 8.19 (brs, 1H), 7.61-7.53 (m, 3H), 7.42-7.28 (m, 4H), 7.20-7.09 (m, 2H), 3.89 (t, J = 6.6 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H), 1.73 (brs, 1H).
(C. Liu, W. Zhang, L.-X. Dai and S.-L. You, *Org. Lett.*, 2012, 14, 4525.)

2-(1-benzyl-2-phenyl-1H-indol-3-yl)ethanol (1q)

White solid, 200 mg, 6.1% yield. Analytical data for **1q**: Mp = 113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.69 (m, 1H), 7.38-7.33 (m, 5H), 7.25-7.16 (m, 6H), 6.92 (d, *J* = 6.8 Hz, 2H), 5.20 (s, 2H), 3.84 (t, *J* = 6.8 Hz, 2H), 3.01 (t, *J* = 6.8 Hz, 2H), 1.45 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.1, 136.7, 131.5, 130.6, 128.5, 128.4, 128.3, 128.0, 127.0, 126.0, 122.0, 119.7, 119.0, 110.4, 109.4, 63.2, 47.5, 28.2; IR (film): v_{max} (cm⁻¹) = 2921, 2318, 1603, 1464, 1340, 1043, 1011, 736, 698;

MS (ESI): 328 $[M+1]^+$; HRMS (ESI) calcd for $C_{23}H_{22}NO [M+1]^+$: 328.1696. Found: 328.1695.

2-(1-(4-methylbenzyl)-1H-indol-3-yl)ethanol (1r)

Pale yellow solid, 2.3 g, 88% yield. Analytical data for **1r**: Mp = 42-44 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.12 – 7.07 (m, 3H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.97 (s, 1H), 5.20 (s, 2H), 3.86 (t, *J* = 6.4 Hz, 2H), 3.00 (t, *J* = 6.4 Hz, 2H), 2.29 (s, 3H), 1.61 (brs, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.8, 134.4, 129.4, 128.1, 126.9, 126.5, 121.9, 119.1,119.0, 111.2, 109.8, 62.7, 49.7, 28.7, 21.1; IR (film): v_{max} (cm⁻¹) = 3331, 2920, 1613, 1514, 1466, 1436, 1333, 1179, 1021, 797, 736; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1543.

2-(1-(4-fluorobenzyl)-1H-indol-3-yl)ethanol (1s)

Yellow solid, 1.6 g, 60% yield. Analytical data for **1s**: Mp = 38-40 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.19 (td, *J* = 8.4 Hz, 1.2 Hz, 1H), 7.15 – 7.07 (m, 3H), 7.00 - 6.96 (m, 3H), 5.24 (s, 2H), 3.90 (t, *J* = 6.4 Hz, 2H), 3.03 (t, *J* = 6.4 Hz, 2H), 1.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 161.0, 136.7, 133.2 (d, *J* = 3.2 Hz), 128.5 (d, *J* = 8.1 Hz), 128.1, 126.4, 122.1, 199.2 (d, *J* = 16.7 Hz), 115.7 (d, *J* = 21.5 Hz), 111.6, 109.7, 62.7, 49.3, 28.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.79; IR (film): v_{max} (cm⁻¹) = 3253, 2929, 1603, 1508, 1466, 1331, 1218, 1154, 1053, 816, 737; MS (ESI): 270 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇FNO [M+1]⁺: 270.1289. Found: 270.1290.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

2-(1-(4-methoxybenzyl)-1H-indol-3-yl)ethanol (1t)

Yellow oil, 2.3 g, 83% yield. Analytical data for **1t**: ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.20 (m, 1H), 7.14 – 7.06 (m, 1H), 6.99 (s, 1H), 6.83 (d, J = 8.7 Hz, 2H), 5.21 (s, 2H), 3.88 (s, 2H), 3.77 (s, 3H), 3.02 (t, J = 6.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 136.8, 129.6, 128.3, 128.2, 126.5, 121.9, 119.2, 119.1, 114.2, 111.4, 109.9, 62.7, 55.3, 49.4, 28.8; IR (film): v_{max} (cm⁻¹) = 3356, 2930, 1612, 1511, 1465, 1244, 1174, 1031, 818, 735; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1491.

2-(1-(3-methylbenzyl)-1H-indol-3-yl)ethanol (1u)

Yellow oil, 1.9 g, 72% yield. Analytical data for **1u**: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.00 (s, 1H), 6.98 (s, 1H), 6.91 (d, *J* = 7.4 Hz, 1H), 5.24 (s, 2H), 3.90 (t, *J* = 6.0 Hz, 2H), 3.04 (t, *J* = 6.0 Hz, 2H), 2.30 (s, 3H), 1.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 137.5, 136.8, 128.4, 127.6, 124.0, 121.9, 119.0, 111.3, 109.8, 62.7, 49.9, 28.7, 21.4; IR (film): v_{max} (cm⁻¹) = 3336, 2920, 1610, 1465, 1332, 1260, 1174, 1039, 737; MS (ESI): 266 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO [M+1]⁺: 266.1539. Found: 266.1540.

2-(1-(3,4-dimethoxybenzyl)-1H-indol-3-yl)ethanol (1v)

Pale yellow solid, 2.3 g, 74% yield. Analytical data for **1v**: Mp = 48-50 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 6.9 Hz, 1H), 6.98 (s, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.68 (d, *J* = 7.5 Hz, 2H), 5.21 (s, 2H), 3.94 – 3.81 (m, 5H), 3.79 (s, 3H), 3.03 (t, *J* = 6.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 148.5, 136.9, 129.8, 126.4, 121.9, 119.4, 119.2, 119.0, 111.3, 111.2, 110.2, 109.7, 62.7, 55.9, 55.9, 49.7, 28.7; IR (film): v_{max} (cm⁻¹) = 3262, 2916, 1588, 1517, 1463, 1333, 1264, 1240, 1158, 1137, 1017, 871, 734, 669; MS (ESI): 312 [M+1]⁺; HRMS (ESI) calcd for C₁₉H₂₂NO₃ [M+1]⁺: 312.1594. Found: 312.1594.

2-(1-(3,4,5-trimethoxybenzyl)-1H-indol-3-yl)ethanol (1w)

Pale yellow solid, 2.56 g, 75% yield. Analytical data for **1w**: Mp = 95-97 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.22 (m, 1H), 7.14 (m, 1H), 7.00 (s, 1H), 6.36 (s, 2H), 5.20 (s, 2H), 3.89 (t, *J* = 6.0 Hz, 2H), 3.82 (s, 3H), 3.75 (s, 6H), 3.04 (t, *J* = 6.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 137.3, 136.9, 133.1, 128.1, 126.5, 121.9, 119.2, 119.0, 111.5, 109.7, 103.9, 62.7, 60.8, 56.0, 50.1, 28.7; IR (film): v_{max} (cm⁻¹) = 3286, 2933, 1592, 1507, 1464, 1418, 1328, 1235, 1120, 1000, 819, 736; MS (ESI): 342 [M+1]⁺; HRMS (ESI) calcd for C₂₀H₂₄NO₄ [M+1]⁺: 342.1700. Found: 342.1705.

2.2 General procedure for the cascade asymmetric epoxidation/ring opening reaction

To a solution of VO(acac)₂ (0.01 mmol, 2.6 mg) in toluene (1 mL) was added ligand **3** (0.012 mmol), and the mixture was stirred for 1 h at room temperature. The above mixture was cooled to -10 °C, *t*-Butylhydroperoxide (0.75 mmol, 104 ul, 70% aqueous solution) and substrate **1** (0.5 mmol) were then added and the stirring was continued at the same temperature. The process of epoxidation was monitored by TLC. After the reaction was complete, aqueous saturated Na₂SO₃ (2 mL) was added slowly. The organic layer was separated and the aqueous layer was extracted with Et₂O (3 × 2 mL). The combined organic layers were washed with brine (10 mL), separated, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (4:1, PE-EtOAc) to afford the desired product **2**.

Note: The synthesis of ligand **3** was followed the procedures reported by: a) W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino and H. Yamamoto, *Angew. Chem., Int. Ed.*, 2005, **44**, 4389; b) W. Zhang and H. Yamamoto, *J. Am. Chem. Soc.*, 2007, **129**, 286.

(3a*R*,8a*S*)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2a)

Brown oil, 56 mg, 63% yield, 61% ee. Analytical data for **2a**: $[\alpha]_D^{26} = -86.7$ (c = 0.5, CHCl₃, 61% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, *J* = 7.8 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 6.80 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 5.29 (s, 1H), 4.58 (brs, 1H), 3.98-3.94 (m, 1H), 3.64-3.55 (m, 1H), 3.11 (brs, 1H), 2.43-2.33 (m, 1H), 2.30-2.23 (m, 1H). The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 22.6 min, t (minor) = 15.3 min. The absolute configuration was assigned as (3a*R*,8a*S*) by comparing the optical rotation with the same compound reported in the literature. [$[\alpha]_D^{25} = -114$ (c = 0.84, CHCl₃, 99% ee) T. Hirose, T. Sunazuka, D. Yamamoto, N. Kojima, T. Shirahata, Y. Harigaya, I. Kuwajima, S. Ōmura *Tetrahedron*, 2005, **61**, 6015.]

(3a*R*,8a*S*)-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2b)

Brown oil, 63 mg, 66% yield, 43% ee. Analytical data for **2b**: $[\alpha]_D^{26} = -53.5$ (c = 0.5, CHCl₃, 43% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.15 (m, 1H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.39 (d, *J* = 7.8 Hz, 1H), 5.06 (s, 1H), 3.97 (t, *J* = 7.5 Hz, 1H), 3.56-3.48 (m, 1H), 2.93 (s, 1H), 2.85 (s, 3H), 2.39-2.21 (m, 2H). The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 8.4 min, t (minor) = 9.9 min.

(T. Hirose, T. Sunazuka, D. Yamamoto, N. Kojima, T. Shirahata, Y. Harigaya, I. Kuwajima and S. Ōmura *Tetrahedron*, 2005, **61**, 6015.)

(3a*R*,8a*S*)-8-benzyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2c)

Brown oil, 94 mg, 70% yield, 87% ee. Analytical data for **2c**: $[\alpha]_D^{21} = -119.8$ (c = 0.2, CHCl₃, 84% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.21 (m, 5H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.69 (t, *J* = 7.2 Hz, 1H), 6.33 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 4.46 (AB, *J_{AB}* = 16.0 Hz, 1H), 4.38 (BA, *J_{BA}* = 16.0 Hz, 1H), 3.99 (t, *J* = 7.5 Hz, 1H), 3.64-3.57 (m, 1H), 2.77 (brs, 1H), 2.40-2.33 (m, 1H), 2.30-2.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 138.2, 130.3, 130.2, 128.6, 127.4, 127.2, 123.9, 118.0, 106.3, 103.6, 87.9, 67.2, 49.1, 41.4; IR (film): v_{max} (cm⁻¹) = 3359, 2872, 1608, 1488, 1355, 1316, 1259, 1160, 1076, 1011, 942, 796, 742, 696; MS (ESI): 268 [M+1]⁺; HRMS (ESI) calcd for C₂₁H₂₀NO₂ [M+1]⁺: 268.1332. Found: 268.1333. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 10.2 min, t (minor) = 11.3 min.

(3a*R*,8a*S*)-8-(naphthalen-1-ylmethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3 a-ol (2d)

Brown oil, 125 mg, 79% yield, 80% ee. Analytical data for **2d**: $[\alpha]_D^{25} = -90.9$ (c = 0.5, CHCl₃, 80% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.96 (m, 1H), 7.84-7.82 (m, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.46-7.41 (m, 3H), 7.34 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.69 (t, J = 7.2 Hz, 1H), 6.35 (d, J = 8.0 Hz, 1H), 5.15 (s, 1H), 4.89-4.80 (m, 2H), 3.96 (t, J = 8.0 Hz, 1H), 3.66-3.60 (m, 1H), 2.81 (brs, 1H), 2.38-2.25 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 133.8, 132.8, 131.4, 130.5, 130.3, 128.9, 127.9, 126.2, 125.8, 125.6, 125.1, 124.0, 123.0, 118.2, 106.5, 816

103.1, 87.9, 67.5, 46.7, 41.3; IR (film): v_{max} (cm⁻¹) = 3347, 2961, 1607, 1486, 1366, 1162, 1112, 1009, 943, 896, 869, 775, 739, 626; MS (ESI):328 [M+1]⁺; HRMS (ESI) calcd for C₂₁H₂₀NO₂ [M+1]⁺: 318.1489. Found: 318.1486. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 15.6 min, t (minor) = 13.6 min.

(3a*R*,8a*S*)-8-(anthracen-9-ylmethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a -ol (2e)

Brown oil, 104 mg, 56% yield, 10% ee. Analytical data for **2e**: $[\alpha]_D^{22} = -154.4$ (c = 0.1, CHCl₃, 10% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.35 (d, *J* = 8.0 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.50-7.43 (m, 4H), 7.31-7.24 (m, 2H), 6.81-6.77 (m, 2H), 5.37 (AB, *J*_{AB} = 13.6 Hz, 1H), 5.28 (BA, *J*_{BA} = 13.6 Hz, 1H), 4.72 (s, 1H), 3.95-3.91 (m, 1H), 3.61-3.55 (m, 1H), 2.34-2.27 (m, 2H), 1.93 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 131.4, 130.6, 129.1, 128.2, 126.2, 125.0, 124.4, 118.2, 106.1, 100.1, 87.2, 67.5, 40.5, 40.5; IR (film): v_{max} (cm⁻¹) = 3531, 2924, 1605, 1487, 1459, 1299, 1241, 1160, 1117, 1023, 943, 882, 781, 727, 618; MS (ESI): 368 [M+1]⁺; HRMS (ESI) calcd for C₂₅H₂₂NO₂ [M+1]⁺: 368.1645. Found: 368.1643. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 22.6 min, t (minor) = 13.4 min.

(3aR,8aS)-8-benzyl-4-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2g)

Brown oil, 73 mg, 52% yield, 86% ee. Analytical data for **2g**: $[\alpha]_D^{26} = -116.0$ (c = 0.5, CHCl₃, 86% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 4H), 7.23-7.21 (m, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 6.20 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 4.48 (AB, $J_{AB} = 16.0$ Hz, 1H), 4.39 (BA, $J_{BA} = 16.0$ Hz, 1H), 4.05-4.01 (m, 1H), 3.71-3.65 (m, 1H), 2.45-2.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 138.6, 135.7, 130.5, 128.9, 127.6, 127.4, 120.4, 104.8, 104.2, 88.6, 67.3, 49.6, 40.4, 17.9; IR (film): v_{max} (cm⁻¹) = 3375, 2977, 2928, 1720, 1608, 1511, 1468, 1465, 1368, 1254, 1165, 1032; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1489. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 8.6 min, t (minor) = 11.4 min.

(3a*R*,8a*S*)-8-benzyl-5-bromo-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2h) Brown solid, 75 mg, 43% yield, 90% ee. Analytical data for 2h: $[α]_D^{25} = -103.3$ (c = 0.5, CHCl₃, 90% ee); Mp = 106-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 2.0 Hz, 1H), 7.32-7.22 (m, 5H), 7.18-7.15 (m, 1H), 6.21 (d, *J* = 8.4 Hz, 1H), 5.25 (s, 1H), 4.46 (AB, *J*_{AB} = 16.0 Hz, 1H), 4.37 (BA, *J*_{BA} = 16.0 Hz, 1H), 4.05-4.00 (m, 1H), 3.66-3.59 (m, 1H), 2.67 (brs, 1H), 2.42-2.34 (m, 1H), 2.30-2.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 137.5, 132.9, 132.2, 128.7, 127.3, 127.3, 126.9, 109.3, 107.8, 103.6, 87.6, 67.2, 49.0, 41.4; IR (film): v_{max} (cm⁻¹) = 3317, 2883, 1601, 1483, 1351, 1129, 1065, 1013, 926, 882, 819, 753, 697, 639; MS (ESI): 346 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇BrNO₂ [M+1]⁺: 346.0437. Found: 346.0439. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 10.0 min, t (minor) = 13.4 min. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2014

(3a*R*,8a*S*)-8-benzyl-5-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2i) Brown oil, 74 mg, 53% yield, 85% ee. Analytical data for 2i: $[α]_D^{25} = -105.6$ (c = 0.5, CHCl₃, 85% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 4H), 7.23-7.20 (m, 1H), 7.09 (s, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.23 (d, *J* = 8.0 Hz, 1H), 5.23 (s, 1H), 4.46 (AB, *J*_{AB} = 16.0 Hz, 1H), 4.37 (BA, *J*_{BA} = 16.0 Hz, 1H), 4.04-4.00 (m, 1H), 3.67-3.60 (m, 1H), 2.54 (brs, 1H), 2.42-2.35 (m, 1H), 2.32-2.27 (m, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 138.4, 130.7, 130.3, 128.5, 127.3, 127.1, 124.4, 106.3, 103.9, 88.0, 67.2, 49.4, 41.3, 20.7; IR (film): v_{max} (cm⁻¹) = 3400, 3029, 2867, 1614, 1496, 1355, 1315, 1119, 1070, 1017, 945, 799, 736, 696; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1488. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.5 min, t (minor) = 10.3 min.

(3a*R*,8a*S*)-8-benzyl-5-methoxy-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2j)

Brown solid, 79 mg, 53% yield, 88% ee. Analytical data for **2j**: $[\alpha]_D^{24} = -96.3$ (c = 0.5, CHCl₃, 88% ee); Mp = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (m, 4H), 7.24-7.20 (m, 1H), 6.90 (d, J = 2.4 Hz, 1H), 6.66 (dd, J = 8.4, 2.4 Hz, 1H), 6.24 (d, J = 8.4 Hz, 1H), 5.24 (s, 1H), 4.43 (AB, $J_{AB} = 16.0$ Hz, 1H), 4.35 (BA, $J_{BA} = 16.0$ Hz, 1H), 4.06-4.01 (m, 1H), 3.70 (s, 3H), 3.68-3.63 (m, 1H), 2.71 (brs, 1H), 2.43-2.35 (m, 1H), 2.30 (ddd, J = 12.1, 5.4, 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 144.6, 138.4, 131.2, 128.5, 127.4, 127.1, 115.5, 110.4, 107.1, 104.4, 87.9, 67.2, 56.1, 50.0, 41.3; IR (film): v_{max} (cm⁻¹) = 3335, 2956, 1594, 1492, 1281, 1215, 1118, 1038,

1006, 949, 870, 804, 757, 698, 637; MS (ESI): 298 $[M+1]^+$; HRMS (ESI) calcd for $C_{18}H_{20}NO_3$ $[M+1]^+$: 298.1438. Found: 298.1436. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 16.7 min, t (minor) = 19.3 min.

(3a*R*,8a*S*)-8-benzyl-6-fluoro-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2k) Brown solid, 83 mg, 58% yield, 83% ee. Analytical data for 2k: $[α]_D^{25} = -89.8$ (c = 0.5, CHCl₃, 83% ee); Mp = 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 5H), 7.16 (dd, J = 8.4, 5.6 Hz, 1H), 6.38-6.33 (m, 1H), 6.04 (dd, J = 10.0, 2.0 Hz, 1H), 5.26 (s, 1H), 4.44 (AB, $J_{AB} = 16.0$ Hz, 1H), 4.38 (BA, $J_{BA} = 16.0$ Hz, 1H), 4.06-4.01 (m, 1H), 3.66-3.60 (m, 1H), 2.55 (brs, 1H), 2.43-2.35 (m, 1H), 2.30-2.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 243.1 Hz), 152.0 (d, J = 12.2 Hz), 137.4, 128.7, 127.4, 127.3, 125.7, 124.7 (d, J = 11.0 Hz), 104.1 (d, J = 23.1 Hz), 103.8, 94.2 (d, J = 27.1 Hz), 87.4, 67.4, 48.9, 41.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.08; IR (film): v_{max} (cm⁻¹) = 3363, 2964, 1599, 1492, 1324, 1245, 1225, 1098, 1008, 949, 899, 823, 758, 698, 622; MS (ESI): 286 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇FNO₂ [M+1]⁺: 286.1238. Found: 286.1239. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 10.1 min, t (minor) = 11.8 min.

(3aR,8aS)-8-benzyl-6-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2l)

Brown solid, 84 mg, 60% yield, 85% ee. Analytical data for **21**: $[\alpha]_D^{25} = -94.7$ (c = 0.5, CHCl₃, 85% ee); Mp = 88-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 4H), 7.23-7.20 (m, 1H), 7.12 (d, J = 7.2 Hz, 1H), 6.51 (d, J = 7.6 Hz, 1H), 6.17 (s, 1H), 5.19 (s, 1H), 4.45 (AB, $J_{AB} = 16.0$ Hz, 1H), 4.37 (BA, $J_{BA} = 16.0$ Hz, 1H), 4.00-3.95 (m, 1H), 3.63-3.57 (m, 1H), 2.72 (brs, 1H), 2.39-2.31 (m, 1H), 2.27-2.23 (m, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 140.6, 138.3, 128.6, 127.4, 127.3, 127.1, 123.6, 118.8, 107.0, 103.8, 87.7, 67.3, 49.0, 41.4, 21.9; IR (film): v_{max} (cm⁻¹) = 3323, 2880, 1619, 1495, 1346, 1290, 1151, 1060, 1015, 955, 823, 760, 700, 635; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1490. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.7 min, t (minor) = 11.3 min.

(3a*R*,8a*S*)-8-benzyl-6-methoxy-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2m)

Brown oil, 64 mg, 43% yield, 83% ee. Analytical data for **2m**: $[\alpha]_D^{26} = -92.4$ (c = 0.5, CHCl₃, 83% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.27 (m, 4H), 7.25-7.21 (m, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 6.24 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.92 (d, *J* = 2.0 Hz, 1H), 5.26 (s, 1H), 4.48 (AB, *J*_{AB} = 16.0 Hz, 1H), 4.40 (BA, *J*_{BA} = 16.0 Hz, 1H), 4.07-4.02 (m, 1H), 3.69 (s, 3H), 3.67-3.61 (m, 1H), 2.45-2.38 (m, 1H), 2.33 (brs, 1H), 2.32-2.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 152.2, 138.3, 128.9, 127.7, 127.5, 124.7, 123.0, 104.2, 102.7, 93.5, 87.8, 67.7, 55.6, 49.2, 41.6; IR (film): v_{max} (cm⁻¹) = 3397, 2939, 1619, 1497, 1268, 1208, 1115, 1016, 946, 815, 697, 637; MS (ESI): 298 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₃ [M+1]⁺: 298.1438. Found: 298.1436. The enantiomeric excess was determined by Daicel Chiralpak OD-H, n-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 7.4 min, t (minor) = 8.9 min.

(3a*R*,8a*S*)-8-benzyl-7-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2n) Yellow solid, 100 mg, 71% yield, 89% ee. Analytical data for 2n: $[α]_D^{26} = -107.4$ (c = 0.5, CHCl₃, 89% ee); Mp = 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.21 (m, 5H), 7.15 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 5.14 (s, 1H), 4.75 (AB, $J_{AB} = 16.8$ Hz, 1H), 4.61 (BA, $J_{BA} = 16.8$ Hz, 1H), 3.98-3.95 (m, 1H), 3.65-3.59 (m, 1H), 2.43-2.35 (m, 2H), 2.28-2.30 (m, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 139.7, 133.5, 131.6, 128.6, 127.0, 126.8, 121.9, 119.7, 119.4, 104.9, 87.2, 67.0, 52.0, 41.2, 19.1; IR (film): v_{max} (cm⁻¹) = 3359, 2870, 1603, 1464, 1308, 1220, 1001, 951, 781, 747, 725, 694; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1488. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.0 min, t (minor) = 12.8 min.

(3a*R*,8a*S*)-8-benzyl-8a-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (20)

Yellow solid, 100 mg, 71% yield, 48% ee. Analytical data for **20**: $[\alpha]_D^{25} = -41.0$ (c = 0.5, CHCl₃, 48% ee); Mp = 73-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 5H), 7.25-7.19 (m, 1H), 7.03 (td, *J* = 8.0, 1.2 Hz, 1H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 7.6 Hz, 1H), 4.51 (AB, *J*_{AB} = 16.8 Hz, 1H), 4.32 (BA, *J*_{BA} = 16.8 Hz, 1H), 3.90-3.86 (m, 1H), 3.49-3.42 (m, 1H), 2.45-2.32 (m, 3H), 1.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 139.3, 130.3, 129.6, 128.5, 126.8, 126.7, 123.7, 117.7, 106.2, 104.2, 87.8, 65.0, 46.4, 41.4, 19.9; IR (film): v_{max} (cm⁻¹) = 3418, 1607, 1483, 1349,

1294, 1133, 1096, 1040, 1019, 922, 732; MS (ESI): 282 $[M+1]^+$; HRMS (ESI) calcd for C₁₈H₂₀NO₂ $[M+1]^+$: 282.1489. Found: 282.1487. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 5.8 min, t (minor) = 9.6 min.

(3aR,8aS)-8a-phenyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2p)

Yellow oil, 113 mg, 89% yield, 85% ee. Analytical data for $2\mathbf{p}$: $[\alpha]_D^{21} = -119.8$ (c = 0.2, CHCl₃, 85% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.48 (m, 2H), 7.39-7.32 (m, 3H), 7.27 (d, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 4.66 (brs, 1H), 4.21-4.15 (m, 1H), 3.79-3.65 (m, 1H), 2.43-2.38 (m, 2H), 1.64 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 139.0, 130.1, 129.2, 128.5, 128.2, 126.8, 124.6, 119.2, 108.5, 104.7, 89.8, 65.9, 40.8; IR (film): v_{max} (cm⁻¹) = 3359, 3030, 2872, 1608, 1488, 1355, 1316, 1259, 1160, 1076, 1011, 942, 796, 742, 696; MS (ESI): 254 [M+1]⁺; HRMS (ESI) calcd for C₁₆H₁₆NO₂ [M+1]⁺: 254.1176. Found: 254.1175. The enantiomeric excess was determined by Phenomenex Lux Cellulose-4, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 12.2 min, t (minor) = 9.3 min.

(3a*R*,8a*S*)-8-benzyl-8a-phenyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2q)

Pale yellow solid, 128 mg, 75% yield, 75% ee. Analytical data for $2\mathbf{q}$: $[\alpha]_D^{21} = -46.1$ (c = 0.5, CHCl₃, 75% ee); Mp = 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.48 (m, 2H), 7.40-7.19 (m, 9H), 7.10 (td, J = 7.6, 1.2 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H), 6.31 (d, J = 8.0 Hz, 1H), 4.31-4.17 (m, 3H), 3.86-3.79 (m, 1H), 2.47-2.43 (m, 2H), 1.58 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.7, 137.3, 128.6, 128.6, 128.3, 127.2, 126.7, 118.2, 109.1, 106.7, 89.2, 65.9, 48.8, 41.4; IR (film): v_{max} (cm⁻¹) = 3499, 2969, 2330, 1609, 1489, 1447, 1357, 1125, 1026, 967, 886, 805, 734, 700, 649; MS (ESI): 344 [M+1]⁺; HRMS (ESI) calcd for C₂₃H₂₂NO₂ [M+1]⁺: 344.1465. Found: 344.1467. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 14.1 min, t (minor) = 13.0 min.

(3aR,8aS)-8-(4-methylbenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2r)

Brown oil, 100 mg, 70% yield, 84% ee. Analytical data for **2r**: $[\alpha]_D^{19} = -106.5$ (c = 0.5, CHCl₃, 84% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 – 7.05 (m, 3H), 6.67 (t, *J* = 7.2 Hz, 1H), 6.33 (d, *J* = 8.0 Hz, 1H), 5.18 (s, 1H), 4.40 (AB, *J*_{AB} = 15.9 Hz, 1H), 4.32 (BA, *J*_{BA} = 16.0 Hz, 1H), 3.95 (t, *J* = 8.8 Hz, 1H), 3.61 – 3.54 (m, 1H), 2.86 (s, 1H), 2.37 – 2.22 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 136.7, 135.0, 130.3, 130.2, 129.2, 127.4, 123.8, 117.9, 106.3, 103.5, 87.8, 67.2, 48.8, 41.4, 21.1; IR (film): v_{max} (cm⁻¹) = 3381, 2867, 1609, 1488, 1316, 1159, 1115, 1011, 944, 805, 740, 627; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1490. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 10.2 min, t (minor) = 13.5 min.

(3aR,8aS)-8-(4-fluorobenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2s) Brown oil, 62 mg, 43% yield, 87% ee. Analytical data for 2s: $[α]_D^{19} = -96.6$ (c = 0.5, CHCl₃, 87% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.25 (m, 3H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.73 (t, *J* = 7.5 Hz, 1H), 6.34 (d, *J* = 8.1 Hz, 1H), 5.25 (s, 1H), 4.47 (AB, *J_{AB}* = 15.9 Hz, 1H), 4.38 (BA, *J_{BA}* = 16.2 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.68 – 3.59 (m, 1H), 2.49 – 2.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 243.7 Hz), 150.1, 133.7 (d, *J* = 3.1 Hz), 130.2 (d, *J* = 26.5 Hz), 128.8 (d, *J* = 7.9 Hz), 123.7, 118.1, 115.4, 115.2, 106.2, 103.5, 87.8, 67.2, 48.5, 41.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.74; IR (film): v_{max} (cm⁻¹) = 3382, 2871, 1608, 1488, 1352, 1219, 1156, 1073, 1011, 944, 822, 742, 624; MS (ESI): 286 [M+1]⁺; HRMS (ESI) calcd for C₁₇H₁₇FNO₂ [M+1]⁺: 286.1238. Found: 286.1239. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 12.1 min, t (minor) = 9.4 min.

(3aR,8aS)-8-(4-methoxybenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2t)

Brown oil, 96 mg, 64% yield, 84% ee. Analytical data for **2t**: $[\alpha]_D^{16} = -116.3$ (c = 0.5, CHCl₃, 84% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.28 – 7.22 (m, 3H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.38 (d, *J* = 8.1 Hz, 1H), 5.24 (s, 1H), 4.44 (AB, *J*_{AB} = 15.6 Hz, 1H), 4.33 (BA, *J*_{BA} = 15.6 Hz, 1H), 4.04 (t, *J* = 7.2 Hz, 1H), 3.76 (s, 3H), 3.67 – 3.59 (m, 1H), 2.47 – 2.37 (m, 2H), 2.34 – 2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 150.3, 130.3, 130.1, 130.0, 128.6, 123.8, 117.9, 113.9, 106.3, 103.4, 87.8, 67.2, 55.2, 48.4, 41.3; IR (film): v_{max} (cm⁻¹) = 3372, 2933, 1609, 1488, 1354, 1243, 1173, 1011, 943, 817, 742, 625; MS (ESI): 298 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₃ [M+1]⁺: 298.1438. Found: 298.1445. The enantiomeric excess was determined by Daicel Chiralcel OD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 17.5 min, t (minor) = 23.1 min. S²²

(3aR,8aS)-8-(3-methylbenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (2u)

Brown oil, 99 mg, 70% yield, 76% ee. Analytical data for **2u**: $[\alpha]_D^{18}$ = -94.6 (c = 0.5, CHCl₃, 76% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 7.6 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.11 – 7.06 (m, 3H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.69 (t, *J* = 7.6 Hz, 1H), 6.35 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 4.43 (AB, *J*_{AB} = 16.0 Hz, 1H), 4.34 (BA, *J*_{BA} = 16.0 Hz, 1H), 4.02 – 3.97 (m, 1H), 3.64 – 3.58 (m, 1H), 2.67 (s, 1H), 2.41 – 2.33 (m, 1H), 2.30 – 2.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 138.1, 138.1, 130.3, 130.1, 128.5, 128.1, 127.9, 124.4, 123.8, 117.9, 106.3, 103.5, 87.9, 67.2, 49.0, 41.4, 21.5; IR (film): v_{max} (cm⁻¹) = 3383, 2868, 1608, 1488, 1346, 1315, 1162, 1074, 1012, 942, 739, 694; MS (ESI): 282 [M+1]⁺; HRMS (ESI) calcd for C₁₈H₂₀NO₂ [M+1]⁺: 282.1489. Found: 282.1491. The enantiomeric excess was determined by Daicel Chiralcel OD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 10.4 min, t (minor) = 14.5 min.

(3aR,8aS)-8-(3,4-dimethoxybenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3aol (2v)

Brown oil, 91 mg, 55% yield, 66% ee. Analytical data for $2\mathbf{v}$: $[\alpha]_D^{19} = -74.7$ (c = 0.5, CHCl₃, 66% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, *J* = 7.2 Hz, 1H), 7.10 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 10.8 Hz, 2H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.37 (d, *J* = 7.8 Hz, 1H), 5.24 (s, 1H), 4.43 (AB, *J*_{AB} = 15.6 Hz, 1H), 4.31 (BA, *J*_{BA} = 15.9 Hz, 1H), 4.03 (t, *J* = 7.5 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.67 - 3.58 (m,

1H), 2.76 (s, 1H), 2.45 – 2.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 149.1, 148.1, 130.6, 130.4, 130.1, 123.7, 119.5, 118.0, 111.0, 110.7, 106.4, 103.6, 88.0, 67.3, 55.9, 55.8, 49.2, 41.4; IR (film): v_{max} (cm⁻¹) = 3357, 2932, 1609, 1514, 1417, 1251, 1129, 1023, 944, 862, 809, 745, 653; MS (ESI): 328 [M+1]⁺; HRMS (ESI) calcd for C₁₉H₂₂NO₄ [M+1]⁺: 328.1543. Found: 328.1549. The enantiomeric excess was determined by Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 27.3 min, t (minor) = 29.5 min.

(3aR,8aS)-8-(3,4,5-trimethoxybenzyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3 a-ol (2w)

Brown oil, 100 mg, 56% yield, 39% ee. Analytical data for **2w**: $[\alpha]_D^{18} = -40.5$ (c = 0.5, CHCl₃, 39% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.26 (d, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.72 (t, *J* = 7.2 Hz, 1H), 6.58 (s, 2H), 6.37 (d, *J* = 7.8 Hz, 1H), 5.26 (s, 1H), 4.43 (AB, *J*_{AB} = 15.9 Hz, 1H), 4.30 (BA, *J*_{BA} = 15.9 Hz, 1H), 4.05 (t, *J* = 7.5 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 6H), 3.69 – 3.60 (m, 1H), 2.86 (s, 1H), 2.47 – 2.30 (m, 2H) ; ¹³C NMR (75 MHz, CDCl₃) δ 153.2, 150.2, 136.7, 134.0, 130.2, 130.1, 123.7, 118.0, 106.3, 104.0, 103.9, 87.7, 67.1, 60.7, 55.9, 49.9, 41.4; IR (film): v_{max} (cm⁻¹) = 3403, 2938, 1592, 1490, 1327, 1232, 1120, 1006, 910, 730, 622; MS (ESI): 358 [M+1]⁺; HRMS (ESI) calcd for C₂₀H₂₄NO₅ [M+1]⁺: 358.1649. Found: 358.1653. The enantiomeric excess was determined by Daicel Chiralcel OD-H, n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 30.7 min, t (minor) = 24.9 min.

3. Copies of ¹H NMR and ¹³C NMR spectra of the compounds

1a

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

2e ₹233 ₹523 ₹523 ₹523 ₹523 1353 (1359) (135 1478 1442 6773 6773 6773 3049 3034 3011 3011 3511 3511 3571 3544 2339 2230 1933 2000 2000 HO C н 71496 71419 71419 71419 5 2 7.45 7.35 fl (ppm) 7.55 7.25 2691 4851 187 3.56-1.091 2.17-13-Т -00-\$ 4.5 4.0 fl (ppm) 9.0 7.5 8.5 8.0 7.0 6.5 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 6.0131.387 130.615 129.104 128.157 128.157 128.158 128.158 128.157 128.441 128.468 -100.090-150.538 $\begin{array}{c} -87.203 \\ \overbrace{77.033}{77.033} \\ \overbrace{76.715}{76.715} \\ -67.504 \end{array}$ 0.475 HO 190 110 100 fl (ppm) 220 210 200 180 170 160 150 140 130 120 0 -10 90 80 7060 50 40 30 2010

4. Copies of HPLC analysis

S75

2c

0.40-10.860 0.35 0.30 0.25 ₹ 0.20-0.15 0.10 0.05 0.00-4.00 2.00 8.00 12.00 14.00 10.00 0.00 6.00 Minutes RT % Area Height % Area (min) (µV*sec) (µV) Height

52.67

47.33

	RT (min)	Area (µV*sec)	% Area	Height (µ∨)	% Height	
1	10.179	8045499	93.56	480468	94.11	
2	11.317	554021	6.44	30067	5.89	

10.860

12.005

1

2

6018530

6062109

49.82

50.18

396643

356472

2

11.278

8153992

49.96

432628

42.56

0.12					100			
0.10-		NH H			8			
0.08 ₹ - 0.06-		9	,					
0.04 - - 0.02							1.423	
0.00	2.00	4.00	6.00	Minu	8.00 tes	10.00	12.00	14.00
	(mi	Γ Area n) (μ√*sec)	% Area	Height (µ∨)	% Height			

	(min)	(µ√*sec)	70 Alca	(µ∨)	Height
1	8.637	1817465	92.83	128955	94.54
2	11.423	140421	7.17	7448	5.46

2j

	RT (min)	Area (µV*sec)	% Area	Height (µ∨)	% Height
1	16.730	15130959	93.87	487489	94.40
2	19.292	988745	6.13	28918	5.60

21

	(min)	Area (µV*sec)	(µV*sec) % Area		% Height	
1	9.699	4053387	92.26	262765	93.19	
2	11.252	339903	7.74	19200	6.81	

	(min)	(µ∨*sec)	% Area (µV)		Height	
1	9.330	573966	7.65	30413	12.79	
2	12.153	6927982	92.35	207446	87.21	

S91

R R	OH VO(acac) ₂ (2 mol%) ligand 3a (2.4 mol%) <i>t</i> BuOOH (1.5 equiv) toluene, T °C	HO	N H R	$ \begin{array}{c} & & & \\ & & \\ & & \\ H & & \\ $		
1		2	2			3a
entry	1 , R	Т	time (h)	yield of	f 2 (%) ^b	ee (%) ^c
1	1c, Bn	0	12	2c	62	82
	1c , Bn	-10	24	2c	70	87
2	1d, 1-naphthyl	0	18	2d	79	80
	1d, 1-naphthyl	-10	24	2d	62	79
3	1r, 4-methylbenzyl	0	24	2r	70	84
	1r, 4-methylbenzyl	-10	24	2r	69	86
4	1s, 4-fluorobenzyl	0	24	2s	43	87
	1s, 4-fluorobenzyl	-10	24	2s	62	86
5	1t, 4-methoxybenzyl	0	24	2t	64	84
6	1u, 3-methylbenzyl	0	24	2u	70	76
7	1v, 3,4-dimethoxybenzyl	0	24	2v	56	66
8	1w , 3,4,5-trimethoxybenzyl	0	24	2w	56	39

5. Table S1. Optimization of the reaction conditions – more protecting groups

^{*a*} Reaction conditions: 0.5 mmol **1**, 2.0 mol% VO(acac)₂, 2.4 mol% ligand **3a** and 0.75 mmol *t*BuOOH (70% wt aqueous solution) in toluene (1.0 mL) at 0 °C or -10 °C . ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis (Chiralpak AD-H or Chiralcel OD-H).

6. The gram-scale reaction

