Supporting information

Three Carboxyphenyl Groups Possessing Zinc Porphyrins: Efficient, Stable, and Cost-effective Sensitizers for Dye-Sensitized Solar Cells

Ram B. Ambre, Gao-Fong Chang, and Chen-Hsiung Hung* Institute of Chemistry, Academia Sinica Nankang, Taipei, 115 Taiwan Tel: +88627898570; E-mail:chhung@gate.sinica.edu.tw

No.	Table of contents	Page
1	Fig. S1. UV–visible absorption spectra of the 1D-π-3A porphyrins	S2
2	Fig. S2. UV–visible absorption spectra of the 1D- π -3A porphyrinson TiO ₂	S2
3	Fig. S3. Cyclic votlammograms of the 1D-π-3A porphyrins	S3
4	Fig. S4. Molecular orbital diagrams of the studied porphyrins as obtained from DFT	
	calculations	S4
5	Fig S5. Absorption spectra of Zn1TPA3A, Zn1ND3A, Zn1NH3A and Zn3TPA1A	
	that were adsorbed onto TiO_2 films after irradiation for 0, 5, and 30 min	S5
6	Fig S6. ATR-FTIR spectra of (a) Zn1U3A and Zn1U3A/TiO ₂ and (b) Zn1TPA3A	
	and Zn1TPA3A/TiO ₂	S6
7	Fig S7. Possible modes of attachment of 1D-π-3A porphyrins onto TiO ₂	S6
8	Experimental Section	S 7
9	Synthesis of 1D- <i>π</i> -3A porphyrin sensitizers	S10
10	NMR and HR-MS of 1D-π-3A porphyrin sensitizers	S17

Fig. S1 UV–visible absorption spectra of the 1D- π -3A porphyrins.

Fig. S2 UV–visible absorption spectra of the 1D- π -3A porphyrins on TiO₂.

Fig. S3 Cyclic votlammograms of the 1D-π-3A porphyrins.

Fig. S4. Molecular orbital diagrams of the studied porphyrins as obtained from DFT calculations.

Fig S5. Absorption spectra of Zn1TPA3A, Zn1ND3A, Zn1NH3A and Zn3TPA1A that were adsorbed onto TiO_2 films after irradiation for 0, 5, and 30 min.

Structure of Zn3TPA1A

Fig S6 ATR-FTIR spectra of (a) Zn1U3A and $Zn1U3A/TiO_2$ and (b) Zn1TPA3A and $Zn1TPA3A/TiO_2$; the ATR-FTIR spectra of the porphyrins on TiO_2 are normalized for comparison.

Fig S7. Possible modes of attachment of $1D-\pi$ -3A porphyrins onto TiO₂; for demonstration purpose only, the relative sizes of the molecules and nanoparticles are not correlated in real dimensions.

Experimental Section

Synthesis

All of the porphyrins were characterized by optical spectroscopy, ATR-FTIR, NMR spectroscopy, and HRMS. All of the chemicals were purchased from Acros Organics or Sigma Aldrich and used without further purification. ¹HNMR spectra were recorded on a Bruker 400MHz spectrometer in CDCl₃ (δ =7.26 ppm), or [D₆]DMSO (δ =2.50 ppm); Chemical shifts are reported in ppm. Coupling constants (*J*) are reported in Hz. The signals are described as s=singlet, d=doublet, t=triplet, or p=pentet. HRMS (FAB or ESI) was performed on a JMS-700 double-focusing mass spectrometer (JEOL, Tokyo, Japan). Flash chromatography was performed on silica gel (40-63 µm, Merck). Analytical TLC was performed on silica-gel plates (Merck). Melting points were recorded on a capillary melting-point apparatus (Electrothermal).

Optical Spectroscopy

UV/Vis absorption spectra of the porphyrins in THF and adsorbed onto TiO_2 electrodes were recorded on a JASCO V-670 UV/Vis/NIR spectrophotometer. For the absorption spectra of the thin films on TiO₂, TiO₂ films (area: $1 \times 1 \text{ cm}^2$) were prepared with thicknesses of about 1 μ m to obtain comparable shapes and peak positions. The films were immersed in 2×10^{-4} M solutions of the porphyrins in THF for 12 h and the films were rinsed with THF, dried, and the absorbance was measured. Steady-state fluorescence spectra were acquired on a Varian Cary Eclipse fluorescence spectrophotometer.

Cyclic Voltammetry

The CV measurements of all of the porphyrins were performed on a CHI 600D electrochemical analyzer (CH Instruments, Austin, TX, USA) in degassed THF with 0.1 M TBAPF₆ as a supporting electrolyte. The cell assembly consisted of a glassy carbon working electrode, Ag wire as a reference electrode, and platinum wire as the auxiliary electrode. A ferrocene/ferrocenium redox couple was used as an internal reference.

DFT Calculations

Geometry optimizations and the electronic structures of the porphyrins were performed by using DFT at the B3LYP level of theory with the 6-31G basis set in the Gaussian09 program package.

ATR-FTIR Measurements

ATR-FTIR spectra of the zinc porphyrins were recorded on a VERTEX 70 spectrometer with a Golden Gate diamond ATR accessory on solid powders of the porphyrin samples. For the preparation of the samples with zinc porphyrins adsorbed onto TiO_2 , a 5×10^{-4} M solution of the porphyrin in THF was mixed with TiO_2 powder (5 mg) and left to stand for 12h. Afterwards, the excess solvent was dripped out by pipet. TiO_2 powder was washed twice with THF and dried invacuo and the obtained powder sample was used for the measurements. ATR-FTIR spectra of the zinc porphyrin that was adsorbed onto TiO_2 were recorded at a resolution of 4 cm⁻¹ and averaged over 320 scans.

Photovoltaic Measurements

TiO₂ photoanode films were purchased from Yingkou Opvtech New Energy Co. Ltd. Liaoning, China. The films, which were prepared by using the screen-printing method, were composed of a transparent layer (thickness $\approx 12 \mu m$), a scattering layer (thickness $\approx 4 \mu m$), and a working area of 0.4×0.4 cm² and were used. The films were pretreated according to the following activation procedures before use: Heating at 100 °C for 22 min, at 110 °C for 60 min, at 450 °C for 68 min, at 500 °C 60 min, at 250 °C for 60 min, cooling at 80 °C and keeping at 80 °C before immersion. The TiO₂ films were immersed in a 2×10^{-4} M solution of the porphyrin in THF and a 2×10^{-4} M solution of CDCA at 50 °C. The dye-sensitized TiO₂ films were washed with THF, dried in hot air, and used as the working electrode. The counter electrode was prepared on an indium-doped tin-oxide glass substrate (typical size: 1.0×1.5 cm²) by spin-coating a H₂PtCl₆/isopropanol solution through thermal decomposition at 380 °C for 0.5 h. To fabricate the DSSC device, the two electrodes were tightly clipped together into a sandwich-type cell that was spaced by a 40 µm film spacer. A thin layer of electrolyte, which contained 0.05 M I₂, 0.1m lithium iodide (LiI), 0.6 M dimethyl-propyl-benzimidiazole iodide (DMPII), and 0.6 M 4-tert-butylpyridine (TBP) in dry CH₃CN, was introduced into the space between the two electrodes. The photoelectrochemical characterizations on the solar cells were performed on an Oriel Class A solar simulator (Oriel 91195A, Newport Corp.). Photocurrent-voltage characteristics of the DSSCs were recorded on a potentiostat/galvanostat (CHI650B, CH Instruments, Inc.) at a light intensity of 100mWcm⁻² and calibrated to an Oriel reference solar cell (Oriel 91150, Newport Corp.). The monochromatic quantum efficiency was recorded on a monochromator (Oriel 74100, Newport Corp.) under short-circuit conditions. The intensity of each wavelength was within the range 1-3mWcm^{M-2}.

Stability Study

For the stability study, TiO_2 thin films with areas of $1 \times 1 \text{ cm}^2$ and thicknesses of 3-4 µm were used. The films were immersed in a 2×10^{-4} M solution of the porphyrin in THF for 0.5 h, dried, and the absorbance was measured. Then, the same films were irradiated under standard one sun illumination for 5 min and 30 min and the absorbance was measured again.

Synthesis of 1D-π-3A porphyrin sensitizers.

The zinc porphyrins used in this study Zn1T3A, Zn1U3A, Zn1TPA3A, Zn1NH3A and Zn1ND3A were synthesized in three steps, (I) mixed condensation, (II) Zinc metalation, (III) Base hydrolysis. For detail synthetic procedures please follow our previous article, R. B. Ambre, G.-F. Chang, M. R. Zanwar, C.-F. Yao, E. W.-G. Diau and C.-H. Hung, *Chem. Asian J.* 2013.

(I) Mixed condensation

Condensation of pyrrole, methyl 4-formylbenzoate, and the required aldehyde under Lindsey's conditions catalyzed by boron trifluoride-diethyl etherate followed by subsequent oxidation by DDQ afforded the triester derivatives of porphyrins in good yield along with mixture of five other porphyrins. The yields of the triester derivatives porphyrins 1T3E, 1U3E, 1TPA3E, 1NH3E, and 1ND3E obtained from each separate reaction are reported in Table S1.

 Table S1. Mixed condensation^a

(II) Zn metalation

The subsequent step of zinc metalation has been readily achieved in high yields by reacting free base porphyrin with zinc acetate. The yields of the zinc(II) porphyrins Zn1T3E, Zn1U3E, Zn1TPA3E, Zn1NH3E, and Zn1ND3E are listed in Table S2. The success of zinc metalation of all the porphyrin was confirmed through the complete disappearance of the NMR resonance of inner NH with slight upfield shifts for all remaining protons. In UV–visible spectra the zinc porphyrins shows single strong Soret band and two moderate Q bands.

Zn1X3E	R	Yield (%)
Zn1T3E	\rightarrow	91
Zn1U3E	C ₁₁ H ₂₃	90
Zn1TPA3E		99
Zn1NH3E		92
Zn1ND3E		89

(III) Hydrolysis

Hydrolysis of metal complexes has been achieved straightforwardly by reacting metal complexes in a mixture solution of THF and methanol with excess aqueous KOH. The yields of final hydrolyzed products Zn1T3A, Zn1U3A, Zn1TPA3A, Zn1NH3A, and Zn1ND3A are listed in Table S3. ATR-FTIR spectra of final acid products show shifting of carbonyl peaks in the range of 1675–1700 cm⁻¹ because of intermolecular hydrogen bonding. All of the porphyrins were fully characterized by optical spectroscopy, ATR-FTIR, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry.

Zn1X3A (Dye)	R	Yield (%)
Zn1T3A		97
Zn1U3A	C ₁₁ H ₂₃	99
Zn1TPA3A		98
Zn1NH3A		99
Zn1ND3A	-	90

Characterization Data;

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-methylphenyl)porphyrin (1T3E). mp > 300 °C; ¹H NMR (300 MHz, CDCl₃) δ = 9.91 (d, J = 4.7 Hz, 2H, β -py), 8.81 (m, 4H, β -py), 8.79 (d, J = 4.8 Hz, 2H, β -py), 8.44 (d, J = 8.2 Hz, 6H, Ar-H), 8.30 (d, J = 8.2 Hz, 6H, Ar-H), 8.09 (d, J = 8.1, 2H, Ar-H), 7.56 (d, J = 7.7 Hz, 2 H, Ar-H), 4.11 (s, 9H, COOMe), 2.71 (s, 3 H, Me), -2.71 (s, 2H, NH); IR (Neat, cm⁻¹): 3307 (N-H), 1719 (C=O), 1605, 1434, 1370,1275, 1180, 1100, 1019, 964, 797; λ_{abs} /nm (CH₂Cl₂): 420, 516, 552, 590, 646; HRMS-ESI calcd for C₅₁H₃₈N₄O₆ ([M+H]⁺): 803.2870, found 803.2877.

5,10,15-tris(4-methoxycarbonylphenyl)20-(undecyl)porphyrin (1U3E). mp > 300 °C; ¹H NMR (300 MHz, CDCl₃) δ = 9.48 (d, J = 4.8 Hz, 2H, β -py), 8.86 (d, J = 4.7 Hz, 2H, β -py), 8.76 (s, 4H, β -py), 8.46- 8.42 (m, 6H, Ar-H), 8.30-8.26 (m, 6H, Ar-H), 4.95 (t, J = 8.0, 2H, CH₂), 4.14 (s, 6H, COOMe), 4.11 (s, 3H, COOMe), 2.53 (p, J = 7.4 Hz, 2H, CH₂) 1.78 (p, J = 7.3 Hz, 2H, CH₂), 1.51 (p, J = 7.4 Hz, 2H, CH₂), 1.37-1.26 (m, 12 H, CH₂), 0.87 (t, J = 6.8 Hz, 3H, CH₃), - 2.73 (s, 2H, NH); IR (Neat, cm⁻¹): 3313 (N-H), 1719 (C=O), 1606, 1434, 1271, 1226, 1192, 1177, 1099, 1021, 962; λ_{abs}/nm (CH₂Cl₂): 418, 516, 552, 592, 648; HRMS-ESI calcd for C₅₅H₅₄N₄O₆ ([M+H]⁺): 867.4122, found 887.4146.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-diphenylaminophenyl)porphyrin (**1TPA3E**). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.09 (d, J = 4.7 Hz, 2H, β-py), 8.83 (d, J = 4.8, 2H, β-py), 8.80 (s, 4H, β-py), 8.86-8.43 (m, 6H, Ar-H), 8.32-8.28 (m, 6H, Ar-H), 8.06 (d, J = 8.3 Hz, 2H, Ar-H), 7.45 (d, J = 8.3 Hz, 2H, Ar-H), 7.42-7.13 (m, 8H, Ar-H), 7.17-7.40 (m, 2H, Ar-H), 4.12 (s, 6H, COOMe), 4.11 (s, 3H, COOMe), -2.75 (s, 2H, NH); IR (Neat, cm⁻¹): 3313 (N-H), 1719 (C=O), 1605, 1590, 1489, 1401, 1311, 1270, 1178, 982, 963, 759, 712; λ_{abs}/nm (CH₂Cl₂): 418, 518, 556, 592, 650, 706; HRMS-ESI calcd for C₆₂H₄₅N₅O₆ ([M+H]⁺): 956.3448, found 956.3452.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-N,N-dihexylaniline)porphyrin (1NH3E). mp > $300 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.06$ (d, J = 4.7 Hz, 2H, β -py), 8.83-8.76 (m, 6H, β -py), 8.46-8.43 (m, 6H, Ar-H), 8.32-8.29 (m, 6H, Ar-H), 8.05 (d, J = 8.4 Hz, 2H, Ar-H), 7.02 (d, J = 8.6 Hz, 2H, Ar-H), 4.12 (s, 6H, COOMe), 4.11 (s, 3H, COOMe), 3.52 (t, J = 7.4 Hz, 4H, CH₂), 1.84 (p, J = 7.2 Hz, 4H, CH₂), 1.47-1.41 (m, 12H, CH₂), 0.97 (t, J = 6.9 Hz, 6H, CH₃), -2.67 (s,

2H, NH); IR (Neat, cm⁻¹): 3319 (N-H), 1724 C=O), 1604, 1515, 1467, 1434, 1367, 1272, 1191, 1097 1020, 964, 964, 798, 761, 732; λ_{abs}/nm (CH₂Cl₂): 416, 515, 557, 653, 731; HRMS-ESI calcd for C₆₂H₆₁N₅O₆ ([M+H]⁺): 972.4700, found 972.4734.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-N,N-didodecylaniline)porphyrin (1ND3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.06 (d, J = 4.7 Hz, 2H, β -py), 8.80-8.78 (m, 6H, β -py), 8.46-8.43 (m, 6H, Ar-H), 8.46-8.29 (m, 6H, Ar-H), 8.04 (d, J = 8.5 Hz, 2H, Ar-H), 7.02 (d, J = 8.6 Hz, 2H, Ar-H), 4.12 (s, 6H, COOMe), 4.11 (s, 3H, COOMe), 3.52 (t, J = 6.9 Hz, 4H, CH₂), 1.84 (m, 4H, CH₂), 1.47-1.27 (m, 36H, CH₂), 0.91-0.86 (m, 6H, CH₃), -2.67 (s, 2H); IR (Neat, cm⁻¹): 3315 (N-H), 1718 (C=O), 1604, 1513, 1433, 1400, 1271, 1190, 1099, 1020, 962, 796, 759, 720; λ_{abs} /nm (CH₂Cl₂): 416, 516, 567, 655, 731; HRMS-ESI calcd for C₇₄H₈₅N₅O₆ ([M+H]⁺): 1140.6578, found 1140.6624.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-methylphenyl)porphyrinato zinc(II) (Zn1T3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.00 (d, J = 4.9 Hz, 2H, β-py), 8.90 (s, 4H, β-py), 8.89 (d, J = 5.2 Hz, 2H, β-py), 8.42 (d, J = 8.2 Hz, 6H, Ar-H), 8.29 (d, J = 7.8 Hz, 6H, Ar-H), 8.09 (d, J = 7.5, 2H, Ar-H), 7.56 (d, J = 7.6 Hz, 2H, Ar-H), 4.09 (s, 9H, COOMe), 2.71 (s, 3H, Me); IR (Neat, cm⁻¹): 1720 (C=O), 1701 (C=O), 1604, 1432, 1269, 1179, 1100, 1070, 996, 967, 793; λ_{abs} /nm (CH₂Cl₂): 422, 550, 590; HRMS-FAB calcd for C₅₁H₃₆N₄O₆Zn ([M⁺]): 864.1926, found 864.1919.

5,10,15-tris(4-methoxycarbonylphenyl)20-(undecyl)porphyrinato zinc(II) (Zn1U3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.48 (d, J = 4.8 Hz, 2H, β -py), 8.87 (d, J = 4.6 Hz, 2H, β -py), 8.84 (s, 4H, β -py), 8.38- 8.34 (m, 6H, Ar-H), 8.26-8.24 (m, 6H, Ar-H), 4.89 (t, J = 8.1, 2H, CH₂), 4.06 (s, 6H, COOMe), 4.03 (s, 3H, COOMe), 2.52 (p, J = 7.4 Hz, 2H, CH₂) 1.82 (p, J = 7.3 Hz, 2H, CH₂), 1.51 (p, J = 7.4 Hz, 2H, CH₂), 1.41-1.30 (m, 12 H, CH₂), 0.86 (t, J = 8.2 Hz, 3H, CH₃); IR (Neat, cm⁻¹): 1721 (C=O), 1701 (C=O), 1605, 1270, 1207, 1112, 1105, 997, 821; λ_{abs}/nm (CH₂Cl₂): 420, 548, 592; HRMS- MALDI-TOF calcd for C₅₅H₅₂N₄O₆Zn ([M+H]⁺): 929.3257, found 929.3271.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-diphenylaminophenyl)porphyrinato zinc(II) (Zn1TPA3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.13 (d, J = 4.7 Hz, 2H, β-py), 8.92 (d, J = 4.8, 2H, β-py), 8.89 (s, 4H, β-py), 8.41-8.38 (m, 6H, Ar-H), 8.31-8.27 (m, 6H, Ar-H),

8.06 (d, J = 8.3 Hz, 2H, Ar-H), 7.45 (d, J = 8.3 Hz, 2H, Ar-H), 7.41-7.40 (m, 8H, Ar-H), 7.15-7.12 (m, 2H, Ar-H), 4.07 (s, 6H, COOMe), 4.06 (s, 3H, COOMe); IR (Neat, cm⁻¹): 1720 (C=O), 1703 (C=O), 1605, 1590, 1489, 1401, 1307, 1270, 1177, 1023, 996, 867, 762; λ_{abs}/nm (CH₂Cl₂): 422, 516, 550, 592; HRMS-FAB calcd for C₆₂H₄₃N₅O₆Zn ([M⁺]): 1017.2507, found 1017.2528.

5,10,15-tris(4-methoxycarbonylphenyl)20-(N,N-dihexylaniline)porphyrinato zinc(II) (Zn1NH3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.15 (d, J = 4.6 Hz, 2H, β -py), 8.89-8.87 (m, 6H, β -py), 8.38-8.35 (m, 6H, Ar-H), 8.30-8.27 (m, 6H, Ar-H), 8.03 (d, J = 8.5 Hz, 2H, Ar-H), 7.00 (d, J = 8.6 Hz, 2H, Ar-H), 4.04 (s, 6H, COOMe), 4.03 (s, 3H, COOMe), 3.51 (t, J = 7.5 Hz 4H, CH₂), 1.83 (p, J = 7.8 Hz, 4H, CH₂), 1.46-1.41 (m, 12H, CH₂), 0.96 (t, J = 6.9 Hz, 6H, CH₃); IR (Neat, cm⁻¹): 1720 (C=O), 1604, 1521, 1434, 1271, 1190, 1112, 995; λ_{abs} (CH₂Cl₂)/nm: 419, 552, 597; HRMS-FAB calcd for C₆₂H₅₉N₅O₆Zn ([M⁺]): 10333756, found 1033.3792.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-N,N-didodecylaniline)porphyrinato zinc(II) (Zn1ND3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.15 (d, J = 4.7 Hz, 2H, β -py), 8.89-8.86 (m, 6H, β -py), 8.37-8.33 (m, 6H, Ar-H), 8.30-8.27 (m, 6H, Ar-H), 8.03 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.6 Hz, 2H, Ar-H), 4.03 (s, 6H, COOMe), 4.01 (s, 3H, COOMe), 3.51 (t, J = 7.3 Hz, 4H, CH₂), 1.83 (p, J = 6.7 Hz, 4H, CH₂), 1.45-1.27 (m, 36H, CH₂), 0.87 (t, J = 7.7 Hz, 6H, CH₃); IR (Neat, cm⁻¹): 1720 (C=O), 1703 (C=O), 1602, 1519, 1434, 1269, 1190, 1112, 1101, 995, 819, 792, 761, 732, 715; λ_{abs}/nm (CH₂Cl₂): 418, 552, 598 HRMS-FAB calcd for C₇₄H₈₃N₅O₆Zn ([M⁺]): 1201.5635, found 1201.5676

5,10,15-tris(4-carbonylphenyl)20-(4-methylphenyl)porphyrinato zinc(II) (Zn1T3A). mp > 300 °C; ¹H NMR (300 MHz, CDCl₃+DMSO-D₆) δ = 12.90 (s, 3H, COOH), 8.82 (d, J = 4.7 Hz, 2H, β -py), 8.77 (s, 4H, β -py), 8.75 (d, J = 4.7 Hz, 2H, β -py), 8.34 (d, J = 8.1 Hz, 6H, Ar-H), 8.24 (d, J = 8.0 Hz, 6H, Ar-H), 8.01 (d, J = 7.8 Hz, 2H, Ar-H), 7.52 (d, J = 7.8 Hz, 2H, Ar-H), 2.65 (s, 3H, Me); IR (Neat, cm⁻¹): 1682 (C=O), 1602, 1404, 1266, 1230, 1179, 1100, 1072, 995, 794, 766, 717; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹ cm⁻¹): 424 (357), 557 (15) 599 (6); λ_{em} /nm (THF): 606, 652; HRMS-FAB calcd for C₄₈H₃₀N₄O₆Zn ([M⁺]): 822.1457, found 822.1464.

5,10,15-tris(4-carbonylphenyl)20-(undecyl)porphyrinato zinc(II) (Zn1U3A). mp > 300 °C; ¹H NMR (300 MHz, DMSO-D₆) δ = 13.24 (s, 3H, COOH), 9.69 (d, J = 4.5 Hz, 2H, β-py), 8.81 (d, J

= 4.4 Hz, 2H, β-py), 8.72 (s, 4H, β-py), 8.37- 8.33 (m, 6H, Ar-H), 8.29-8.25 (m, 6H, Ar-H), 5.06 (t, J = 7.2, 2H, CH₂), 1.49 (p, J = 6.1 Hz, 2H, CH₂) 1.49 (p, J = 6.1 Hz, 2H, CH₂), 1.33-1.09 (m, 14 H, CH₂), 0.82 (t, J = 6.8 Hz, 3H, CH₃); IR (Neat, cm⁻¹): 1685 (C=O), 1604, 1421, 1314, 1219, 998, 792, 760, 714; λ_{abs}/nm (THF), ($\epsilon/10^3 M^{-1} cm^{-1}$): 425 (474), 559 (20), 601 (9); λ_{em}/nm (THF): 606, 652; HRMS-FAB calcd for C₅₂H₄₆N₄O₆Zn ([M⁺]): 886.2709, found 886.2709.

5,10,15-tris(4-carbonylphenyl)20-(4-diphenylaminophenyl)porphyrinato zinc(II) (Zn1TPA3A). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃+DMSO-D₆) δ =12.90 (s, 3H, COOH), 8.96 (d, J = 4.5 Hz, 2H, β-py), 8.79-8.76 (m, 6H, β-py), 8.35-8,32 (m, 6H, Ar-H), 8.25-8.21 (m, 6H, Ar-H), 8.00-7.99 (m, 2H, Ar-H), 7.39-7.32 (m, 10H, Ar-H), 7.10-7.06 (m, 2H, Ar-H); IR (Neat, cm⁻¹): 1686 (C=O), 1605, 1484, 1406, 1313, 1274, 1230, 1190, 1177, 996, 867; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹ cm⁻¹): 427 (318), 558 (21), 659 (12); λ_{em} /nm (THF): 611; HRMS-FAB calcd for C₆₂H₃₇N₅O₆Zn ([M⁺]): 975.2035, found 975.2037.

5,10,15-tris(4-carbonylphenyl)20-(4-N,N-dihexylaniline)porphyrinato zinc(II) (Zn1NH3A). mp > 300 °C; ¹H NMR (400 MHz, DMSO-D₆) δ = 13.47 (s, 3H, COOH), 8.94 (d, J = 4.6 Hz, 2H, β -py), 8.77-8.75 (m, 6H, β -py), 8.37 (d, J = 7.9 Hz, 6H, Ar-H), 8.30 (d, J = 7.8 Hz, 6H, Ar-H), 7.95 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.3 Hz, 2H, Ar-H), 3.48 (t, J = 6.5 Hz, 4H, CH₂), 1.73 (p, J = 6.2 Hz, 4H, CH₂), 1.37-1.36 (m, 12H, CH₂), 0.91 (t, J = 6.9 Hz, 6H, CH₃); IR (Neat, cm⁻¹): 1683 (C=O), 1602, 15543, 1402, 1338, 1274, 1204, 995, 867, 794, 765, 717; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹ cm⁻¹): 425 (178), 559 (13), 603 (8); λ_{em} /nm (THF): 622; HRMS-FAB calcd for C₅₉H₅₃N₅O₆Zn ([M+H]⁺) 9923365, found 992.3388.

5,10,15-tris(4-carbonylphenyl)20-(4-N,N-didodecylaniline)porphyrinato zinc(II) (Zn1ND3A). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃+DMSO-D₆) $\delta = \delta = 8.97$ (d, J = 4.5 Hz, 2H, β -py), 8.76-8.74 (m, 6H, β -py), 8.34 (d, J = 7.8 Hz, 6H, Ar-H), 8.23 (d, J = 7.9 Hz, 6H, Ar-H), 7.93 (d, J = 8.6 Hz, 2H, Ar-H), 6.95 (d, J = 8.5 Hz, 2H, Ar-H), 3.47 (t, J = 6.6 Hz, 4H, CH₂), 1.77 (m, 4H, CH₂), 1.36-1.21 (m, 36H, CH₂), 0.81 (t, J = 6.1 Hz, 6H, CH₃); IR (Neat, cm⁻¹): 1687 (C=O), 1604, 1519, 1402, 1274, 1261, 1202, 1118, 1024, 993, 794, 765, 717; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹ cm⁻¹): 425 (143), 560 (12), 603 (8); λ_{em} /nm (THF): 624; HRMS-FAB calcd for C₇₁H₇₇N₅O₆Zn ([M+H]): 1160.5243, found 1160.5288.

HR-MS of 1T3E

Elemental Composition Report		Page 1
Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2		
Monoisotopic Mass, Even Electron Icns 9 formula(e) evaluated with 1 results within limits (up to 100 closes Elements Used: C: 0-8000 H: 0-4000 N: 4-4 O: 6-6 R4	t results for each mass)	24-Aug-2010 17:09:49
0824_R4 43 (4.189) Cm (43-102)		1: TOF MS ES+ 9.95e+002
100	803.2877	
% 764.2058 772.2230 778.6274 784.8881,786.8651 79	804.2931 805.2945 811.6838 818.8950 825.2408	831.5876 837.1962838.6732 844.8955 855.8726 859.5968 m/z
0 ⁻¹ , 765.0 770.0 775.0 780.0 785.0 790.0 79	5.0 800.0 805.0 810.0 815.0 820.0 825.0	30.0 835.0 840.0 845.0 850.0 \$55.0 860.0
Minimum: -1.5 Maximum: 5.0 10.0 1000.	0	
Mass Calc. Mass mDa PPM DBE	i-FIT i-FIT (Norm) Formula	
803.2877 803.2870 0.7 0.9 34.5	32.0 0.0 C51 H39 N4 O6	

HR-MS of 1U3E

Elemental	Compositio	n Report										Page
Single Ma Tolerance = Element pre Number of it	as Analysis 100.0 PPM / diction: Off sotope peaks	DBE: min =	-1.5, max = 1 = 2	000.0								
Monoisotopic 10 formula(e) Elements Use C: 0-400	Mass, Even Ele evaluated with ed: 1: 0-1000 N:	ctron lons 1 results within 4-4 O: 6-6	limits (all resu	Its (up to 1000) f	for each mass)							
KE257					0428_	R12 3 (0.124)						28-Apr-20 14:02:
1: TOF MS ES	*											2.40e+0
100											933.8311	
-												
					867	.4146						
%-											934.84	04
791.7	037 907	6016811 6481	827 793	8 845.4	4190 864 7599	868.4176	887 5356	905.7877	000 7304		940	9012 040 8384
	007	091001101018	3.7135	839.6738		869.4211	001.0000)	000.1304	922.4661		040.0304
0	800	810 820	810	940 9	60 860	870 8	190 890	900	910	920	930 94	0 950
0 790	800	810 820	830	840 8	50 860	870 8	80 890	900	910	920	930 94	0 950
0- 790 Minimum: Maximum:	800	810 820 5.0	100.0	840 8 -1.5 1000.0	50 860	870 8	80 890	900	910	920	930 94	0 950
0 790 Minimum: Maximum: Mass	800 Calc. Mass	810 820 5.0 mDa	100.0 PPM	840 8 -1.5 1000.0 DBE 1-H	50 860 FIT i-FIT	870 8	180 890 rmula	900	910	920	930 94	0 950

NMR Spectrum of 1TPA3E

HR-MS of 1TPA3E

HR-MS of 1NH3E

NMR Spectrum of 1ND3E

HR-MS of 1ND3E

HR-MS of Zn1T3E

NMR Spectrum of Zn1T3E

HR-MS of Zn1U3E

NMR Spectrum of Zn1TPA3E

HR-MS of Zn1TPA3E

NMR Spectrum of Zn1NH3E

HR-MS of Zn1NH3E

MR Spectrum of Zn1ND3E

NMR Spectrum of Zn1T3A

HR-MS of Zn1T3A

HR-MS of Zn1U3A

NMR Spectrum of Zn1TPA3A

HR-MS of Zn1TPA3A

HR-MS of Zn1NH3A

NMR Spectrum of Zn1ND3A

HR-MS of Zn1ND3A

