Supporting Information

New Gold-Catalysed Azidation of Allenes

César Hurtado-Rodrigo, Stefanie Hoehne, María Paz Muñoz*

School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK.

Phone: +44 (0) 1603597157; Fax: +44 (0) 1603592003;

e-mail: M.Munoz-Herranz@uea.ac.uk

Contents	Page
General experimental details	1-2
• Synthesis of starting materials	2
• Table of conditions	3-6
• Table 1S: Optimisation of conditions: different azides, acids and solvents.	3
• Table 2S: Optimisation of catalyst.	4
• Table 3S: Final optimisation: concentration, temperature, purification.	5-6
 Synthesis of chloro (triphenylphosphite) gold(I) 	7
General procedure for gold-catalysed hydroazidation of allenes	8
Characterisation of products	8-23
• Proposed mechanism for formation of amide 4a	24
Gold-catalysed Schmidt reaction of ethyl methyl ketone	24-25
• Deuteration experiment	26-27
General procedure for gold-catalysed iodoazidation of allenes	28-29
Orthogonal functionalization of allenes using	
the gold-catalysed azidation methodology	29-32
Allenes that did not work	33
• Synthesis of (triphenylphosphite) gold-azide complex	34
Stoichiometric NMR Experiments	34-42
Catalytic NMR experiment	43-44
Catalytic IR experiment	45-47

General experimental details:

All reagents were purchased from commercial sources and used without further purification, unless noted otherwise. Solvents were dried using nitrogen atmosphere and used fresh every day for reaction. Deuterated solvents were acquired from Apollo Scientific Limited and stored over molecular sieves. All the preparative working procedures were carried out under absence of moisture and air under nitrogen atmosphere. Glassware, standard Schlenk tubes, and Schlenk tubes from Carouse 12 Plus Reaction Station from Radleys were flame-dried and flushed with nitrogen. Thin layer chromatography was performed on Aluminium oxide TLC-Cards with Fluorescent indicator 254 nm over aluminium oxide matrix from Sigma-Aldrich, and on Silica TLCplates (60 F₂₅₄ Merk), and components were visualize by illumination with UV light ($\lambda =$ 254 nm), or by staining with potassium permanganate solution. Purification of allenes was performed by flash column chromatography using silica gel from Macherey-Nagel GmbH & Co. KG (particle size of 40 to 63 µm) as stationary phase. Purification of products was performed by flash column chromatography using Aluminum Oxide activated, basic, Brockmann I of pore size 58 Å, pH 9.5 \pm 0.5 in H₂O. Accurate weights were obtained with a Denver Instrument SI-234. Reactions under microwave irradiation were carried out in a Biotage Initiator⁺ Microwave system. ¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃ on a Bruker Avance III 500 MHz NMR spectrometer, fitted with a 5mm broadband observed, BBFO^{plus} Z-gradient SmartProbeTM probe or using a Bruker Avance III nanobay 400 MHz NMR spectrometer, fitted with a 5mm broadband observe BBFO^{plus} Z-gradient probe. Calibration was made using the deuterated solvent ($\delta H = 7.26$ ppm and $\delta C = 77.36$ ppm).¹ Chemical shifts (δ) are given in parts per million (ppm) and coupling constants values (J) are given in Hertz (Hz). Abbreviations for multiplicities are as follows: (s) singlet, (d) doublet, (dd) doublet doublet, (t) triplet, (g) quartet, (m) multiplet. ¹³C NMR was recorded using broad-band proton decoupling. Low resolution mass spectra were recorded using electrospray (ESI) technique in the positive and negative ion mode with a Shimadzu LCMS spectrometer. Phenomenex pre-column filter (Security Guard, ODS C18, 4 x 3 mm i.d.) was used to prevent rapid deterioration of the pre-column. Elution was carried out using a mobile phase comprising methanol, at a flow rate of 0.2 mL min-1. All solvents were HPLC grade. High resolution mass spectra were obtained

¹ H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.

from the EPSRC Mass Spectrometry Service at the University of Swansea by FTMS technique. Melting points were measured with a BÜCHI Melting Point B-545. Infrared spectra were acquired using a Perkin Elmer System 400 FT-IR spectrophotometer. Solid samples were run as thin films of their solution in DCM. Liquid samples were run neat.

Synthesis of starting materials:

Allenes **1a**, **1h**, are commercially available (Sigma-Aldrich) and were used without further purification. Allenes **1b**, **1c**, **1d**, **1e**, **1f**, **1g**, and **1n** were prepared from the corresponding alkynes by Crabbé reaction² using the microwave version.³ Allene **1i** was performed by a modified Crabbé reaction.⁴ Allenes **1j**, **1k**, **1l**, and **1m**, were synthesised by a modified Crabbé homologation under microwave conditions.⁵ Allenes **1o** and **1p** were synthesised by a modified cadmium iodide allenylation of terminal alkynes with aldehydes.⁶

Crabbé reaction under microwave conditions: propargyl-derivative (1.0 Eq.), HCHO (2.5 Eq.), CuBr (0.3 Eq.), iPr_2NH (2 Eq.), in dioxane heated under microwave at 150 °C for 10 min. Straight purification by column chromatography (silica) gave the corresponding allene derivatives in yields: (1b) 49%, (1c) 45%, (1d) 43%, (1e) 53%, (1f) 89%, (1g) 88%, (1n) 35%.

Synthesis of **1i**: 1-Decyne (1.0 Eq.), benzaldehyde (1.8 Eq.), Morpholine (1.4 Eq.), ZnI₂ (0.8 Eq.), in Toluene, reflux at 130°C during 7.2 h. The solution was filtered through Celite washing with Et_2O and purification by silica column chromatography using hexane as eluent, gave the corresponding allene **1i** in 50% yield.

Crabbé homologation for 1,3-disubstituted allenes under microwave conditions: Microwave vial (2-5 ml), 1-Alkyne (1.0 Eq.), aldehyde (1.5 Eq.), Cy₂NH (1.51 Eq.), CuI (0.1 Eq.) in Toluene at 200°C, following conversion reaction by TLC. Straight purification by silica column chromatography gave the corresponding 1,3-disubstituted allenes in (**1j**) 28%, (**1k**) 63%, (**1l**) 39%, (**1m**) 77% yield.

Cadmium iodide allenylation of terminal alkynes with aldehydes: CdI_2 (0.8 Eq.) was added in a previously dried-vacuum schlenk flask under inert atmosphere in a globe

² P. Crabbé, B. Nassim and M.-T. Robert-Lopes, Org. Synth. Coll., 1990, 7, 276; 1985, 63, 203.

³ H. Nakamura, T. Sugiishi and Y. Tanaka, *Tetrahedron Lett.*, 2008, **49**, 7230-7233.

⁴ J. Kuang and S. Ma, J. Am. Chem. Soc. 2010, **132**, 1786-1787.

⁵ S. Kitagaki, M. Komizu and C. Mukai, *Synlett* 2011, **8**, 1129-1132.

⁶ X. Tang, C. Zhu, T. Cao, J. Kuang, W. Lin, S. Ni, J. Zhang and S. Ma, *Nat. Comm.*, 2013, 4:2450.

box. Then the corresponding alkyne (1 Eq.), aldehyde (1.8 Eq.), and pyrrolidine (1.4 Eq.) were dissolved in dry Toluene (0.24 M) at 130 °C during 4 h. Straight purification by silica column chromatography gave the corresponding 1,3-disubstituted allenes in **(10)** 30%, **(1p)** 29% yield.

All these allenes were prepared according to described procedures and their NMR spectra were fully accordance with the described products.

Table 1S. Optimisation of conditions: different azides, acids and solvents.

Entry	Azide (Eq.)	Acid (Eq.)	Solvent	T (°C)	time (h)	Conversion (%)
1	NaN ₃ (1.5)	H ₂ O (2)	THF	30	20	n.r.
2	NaN ₃ (1.5)	HCl (2)	THF	30	21	n.r.
3	$NaN_{3}(3)$	$H_2SO_4(3)$	DCM	30	48	11, 2a 9, 4a
4	$NaN_{3}(3)$	AcOH (3)	THF	30	48	n.r.
5	$NaN_{3}(3)$	HCl (3)	DCM	30	21	n.r.
6	TMSN ₃ (1.5)	AcOH (1.5)	DCM	30	19	7, 2a
7	$TMSN_{3}(3)$	H ₂ O (3)	THF	30	20	n.r.
8	$TMSN_3(3)$	H ₂ O (3)	DCM	30	22	20, 2a:2a':3a':4a , 5.9:1:3:5.3
9	TMSN ₃ (3)	$H_2SO_4(3)$	DCM	30	18	50, 2a (Decomposition of 1a and 2a at 48 h) ^[a]
10	$TMSN_3(3)$	H ₂ SO ₄ (3)/H ₂ O (5)	DCM	30	18	38, 2a:2a':4 , 1.7:1:1.2 ^[b]
11	$TMSN_3(3)$	CF ₃ COOH (3)	DCM	30	18	100, 2a:2a':3a:4a , 5:1:4:4
12	$TMSN_3(3)$	CF_3SO_3H (3)	DCM	30	18	Decomposition

[a] Similar results were obtained with the phosphite-gold complex. [b] Reaction carried out with (PhO)₃PAuCl as catalysts.

Table 2S. Optimisation of catalyst

Entry	Gold complex ^[a]	Time (h)	Conversion (%)	Ratio 2a:2a':3a:4a
1	NHC-1	48	20	1:0:1.3:0
2	NHC-2	48	20	1:0:1.3:0
3	NHC-3	48	10	1:0:0:0
4	Cat-Au SbF ₆ ^[b]	48	65	1.3:0:10:1
5	(PhO) ₃ PAuCl	22	100	8.5:1:1:4.5

[a] See Figure 1 for the structure of the gold complexes. [b] Reaction without silver salt added.

Figure 1. Gold(I) complexes screened in the hydroazidation of allenes. Gold complexes NHC-1, NHC-2, and NHC-3 were synthesised in Prof. Hashmi's laboratories following their reported procedures.⁷

⁷ (a) A. S. K. Hashmi, T. Hengst, C. Lothschutz and F. Rominger, *Adv. Synth. Catal.* 2010, **352**, 1315-1337; (b) A. S. K. Hashmi, C. Lothschutz, C. Bohling, T. Hengst, C. Hubbert and F. Rominger, *Adv. Synth. Catal.* 2010, **352**, 3001-3012.

Table 3S. Final optimisation: concentration, temperature, purification.

Entry	Additive (Eq.)	Concentration (M)	T (°C)	Isolated Yield (Ratio 2a:2a')	Isolated Yield (Ratio 4a)	(Ratio 3a)	(Ratio 3a')	Method of Purification
1 ^[a]	_	0.11	30	(6.6:1)	_	(0.9)	_	Silica
2 ^[a]	_	0.27	30	(2.1:1)	(1.04)	(0.6)	_	Silica
3	H ₂ O (3)	0.41	30	37% (3.2:1)	13% (2.1)	(0.25)	(0.09)	Silica
4	H ₂ O (5)	0.41	30	41% (3.4:1)	15% (2.2)	(0.24)	(0.17)	Silica
5 ^[b]	H ₂ O (5)	0.41	40	46% (3.7:1)	14% (2.0)	(0.33)	(0.32)	Basic Alumina
6	CH ₃ COOH (5)	0.41	r.t.	46% (3.8:1)	8% (2.0)	(0.22)	(0.25)	Basic Alumina
7	NH ₄ OH (5)	0.41	r.t.	40% (4.0:1)	12% (2.4)	(0.38)	(0.22)	Basic Alumina
8	MeOH (5)	0.41	r.t.	43% (4.1:1)	12% (1.44)	(0.25)	(0.15)	Basic Alumina
9	H ₂ O (5)	0.41	0	61% (0.75:1)	9% (0.38)	(0.05)	(0.01)	Basic Alumina
10	H ₂ O (5)	0.41	r.t.	59% (3.7:1)	15% (2.1)	(0.17)	(0.22)	Basic Alumina

[a] After 22h, conversion $\approx 25\%$. [b] Carried out under microwave heating during 4 hours.

Reaction in the absence of acid, gave low conversion ($\approx 30\%$) to the allyl azides **2a**:**2a**', as a 7.3:1 mixture. Reaction without the gold complex and/or the silver salt, reaction in the presence of gold complex and TfOH (no silver), and reaction in the absence of gold and silver but in the presence of 5 mol% TfOH gave no conversion.

We have evidence of formation of vinyl triflates and ketones in the reaction of allenes and stoichiometric amounts of TfOH.⁸ See for example:

⁸ L. Cooper, M. P. Muñoz, *unpublished results*. For electrophilic addition to allenes, see: W. Smadja, *Chem. Rev.*, 1983, **83**, 263-320.

Supporting Information

Cyclohexylallene (100 mg, 0.818 mmol) was dissolved in dry chloroform (2 mL) and added to a schlenk. TfOH (71 µl, 0.80 mmol) was added slowly. The reaction mixture was stirred for 3 hours at room temperature. Work up with DCM and Water was carried out. A short filtration was carried out with hexane: diethyl ether (20:1). The solvent was evaporated and the mixture was tentatively characterised without further purification by ¹H NMR, ¹³C NMR, ¹⁹F NMR and 2D NMR experiments HSQC and NOESY. All the attempts to purify the mixture by silica column chromatography gave decomposition so we couldn't obtain a pure sample for HRMS.

¹H NMR (500 MHz, CDCl₃, ppm) δ = 5.38 (d, *J* = 9.94 Hz, 1H, H3, major), 5.07 (d, *J* = 9.94 Hz, 1H, H3, minor), 2.39(m, 1H, minor), 2.07 (m, 1H, major), 2.04 (s, 3H, H1, major), 2.03 (s, 3H, H1, minor), 1.75 - 1.60 (m, 6H), 1.30 - 1.00 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 207 (Cq, C2), 145.53 (CF₃, major), 143.47 (CF₃, minor), 127.59 (CH, C3, major), 127.45 (CH, C3, minor), 36.58 (CH, C4, major), 35.51 (CH, C4, minor), 32.75 (CH₂, x 2, major), 32.54 (CH₂, x 2, minor), 25,91 (CH₂), 25.81 (CH₂ x 2), 25.67 (CH₂ x 2), 25.59 (CH₂), 19.95 (CH₃, C1, minor), 16.33 (CH₃, C1, major). ¹⁹F NMR (470 MHz, CDCl₃, ppm) δ = -73.91 (OTf, major), - 74.98 (OTf, minor).

Synthesis of chloro (triphenylphosphite) gold(I): 9,10

The synthesis was undertaken according to the procedure described by Toste and coworkers. Under nitrogen atmosphere, AuCl₃ (125 mg, 0.41 mmol, 1.0 Eq.) was dissolved in 2.5 ml of absolute methanol. The solution was stirred for a few minutes at 0 °C and under exclusion of light. Me₂S, (76 μ l, 1.03 mmol, 2.5 Eq.) was added dropwise. The decolouration of the solution and formation of a white precipitation could be observed immediately. The reaction was stirred for 1 hour and then the stirring was stopped and the solid left to settle. The yellow solution was extracted with a syringe and the solid was washed with MeOH (2.0 ml), Et₂O (2.0 ml), and with petroleum ether (2.0 ml). The solvent was removed by syringe in all cases and after the last washed, the vial was dried by vacuum for a few minutes. Dry chloroform (2.5 ml) was added to the solid and stirred in the dark at 0°C for a few minutes. Then, a solution of (PhO)₃P (119 μ l, 0.45 mmol, 1.1 Eq) in hexane (3.7 ml) was added dropwise whereby the white solid dissolved. The solution was stirred for 1h at room temperature. After complete reaction the solvent was removed in vacuum, triturated with hexane and filtered by vacuum. 154 mg, 0.28 mmol of a beige powder was obtained (69%).

Chloro (triphenylphospite) gold(I)

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.37 – 7.32 (m, 2H; H_{Ar}), 7.25 – 7.20 (m, 1H; H_{Ar}), 7.17 – 7.13 (m, 2H; H_{Ar}). ³¹P NMR (202 MHz, CDCl₃, 25 °C) δ = 109.96.

⁹P. Mauleon, R. M.Zeldin, A. Z. Gonzalez and F. D. Toste, J. Am. Chem. Soc., 2009, **131**, 6348-6349.

¹⁰ L.-P. Liu, B. Xu, M. S. Mashuta and G. B. Hammond, J. Am. Chem. Soc., 2008, **130**, 17642-17643.

General procedure for gold-catalysed hydroazidation of allenes under best reaction conditions:

 $(PhO)_3PAuCl$, (0.05 Eq.) and silver triflate (0.05 Eq) were added into a previously driedvacuum schlenk flask under N₂. The solids were dissolved in dry dichloromethane (0.41 M) and stirred for a few minutes at 0 °C. Then, the corresponding allene (1 Eq.) was added dropwise neat or dissolved in DCM at 0 °C and under stirring. TMSN₃ (3 Eq.), distilled water (5 Eq.), and trifluoroacetic acid (3 Eq.) were then added dropwise at 0 °C. The mixture was then warmed up and stirred at room temperature until complete conversion, followed by TLC. The crude was filtered through Celite, and washed with dichloromethane. The solvent was removed under vacuum, and the product was purified by column chromatography over basic alumina using Hexane / Et₂O or EtOAc as eluent. Yields were lowered in some cases due to purification issues.

All the products obtained were air stable and in solution, but we recommend to keep them in the fridge or freezer and in the dark.

Characterisation of products:

Products obtained from the gold-catalysed hydroazidation of different allenes using the procedure described before.

Allyl azide 2a

$$\overbrace{\substack{7 \\ 8}}^{5} \overbrace{9}^{3} \overbrace{2}^{1} N_{3}$$

From allene **1a** (119 μ l, 0.82 mmol), (PhO)₃PAuCl (22 mg, 0.04 mmol), silver triflate (10 mg, 0.04 mmol), TMSN₃ (323 μ l, 2.45 mmol), distilled water (74 μ l, 4.09 mmol), trifluoroacetic acid (196 μ l, 2.45 mmol) and 2.0 ml dry DCM. Obtained after column chromatography, Hex/EtOAc, 90:1 then 2:1: **2a:2a'** (3.7:1), 80 mg, 0.48 mmol, 59% (pale yellow oil), and **4a**, 19 mg, 0.12 mmol, 15% (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.73 - 5.68 (m, 1H; H-3), 5.44 (dtd, *J* = 15.4, 6.7, 1.3 Hz, 1H; H-2), 3.69 (d, *J* = 6.7 Hz, 2H; H-1), 2.05 - 1.97 (m, 1H; H-4), 1.77 - 1.63 (m, 5H; H-5 to H-9), 1.32 - 0.94 (m, 5H; H-5 to H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C)

δ = 143.40 (CH; C-3), 120.45 (CH; C-2), 53.29 (CH₂; C-1), 40.79 (CH; C-4), 33.14 (2x CH₂; C-5 and C-9), 26.41 (CH₂; C-7), 26.25 (CH₂; C-6 and C-8).

Allyl azide 2a'

$$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \end{array} \begin{array}{c} N_3 \\ 3 \\ 2 \\ 8 \end{array} \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \end{array}$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.76 (m, 1H; H-2), 5.31- 5.21 (m, 2H; H-1), 3.60 (t, *J* = 7.7 Hz, 1H; H-3), 1.69 - 1.78 (m, 5H; H-5 to H-9), 1.38 (m, 1H; H-4), 0.83- 1.30 (m, 5H; H-5 to H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 134.80 (CH; C-2), 119.24 (CH₂; C-1), 71.34 (CH; C-3), 42.01 (CH; C-4), 29.74 (CH₂), 29.61 (CH₂), 26.65 (CH₂). The other carbon signals of the cyclohexyl ring overlapped with signals from compound **2a**.

2a and **2a'**: IR (Film, cm⁻¹): $\tilde{v} = 740, 802, 971, 1260, 1450, 1646, 2097, 2853, 2924, 3434. MS (ESI⁺ in MeOH): m/z (%): 138.0 [M-N₂+H]⁺. HRMS (FTMS + APCI) Calc. for C₉H₁₆N₃ [M+H]⁺: 166.1339. Found: 166.1336. Calc. for C₉H₁₆N₁ [M-N₂+H]⁺: 138.1277. Found: 138.1276.$

Amide **4a**¹¹

$$7 \xrightarrow{6}{} 5 \xrightarrow{4}{} 3 \xrightarrow{0}{\parallel 2}{} 10 \xrightarrow{1}{} 10$$

¹H NMR (500 MHz, CDCl3, 25 °C, TMS) δ = 5.50 (s_{broad}, 1H; NH-3), 3.08 (t, *J* = 6.4 Hz, 2H; H-4), 1.98 (s, 3H, H-1), 1.78 – 1.62 (m, 5H; H-6 to H-10), 1.50 – 1.38 (m, 1H; H-5), 1.29 – 1.09 (m, 3H; H-5 to H-10), 0.99 – 0.83 (m, 2H; H-5 to H-10). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 170.38 (C_q; C-2), 46.21 (CH₂; C-4), 38.22 (CH; C-5), 31.16 (CH₂; C-6 to C-10), 26.72 (CH₂; C-6 to C-10), 26.13(CH₂; C-6 to C-10), 23.75 (CH₃; C-1). IR (Film, cm⁻¹): $\tilde{\nu}$ = 3592, 3583, 3289, 3090, 2922, 2851, 1653, 1560, 1448, 1301, 991. HRMS

¹¹ R. Pelagalli, M. Feroci, I. Chiarotto and S. Vecchioa, *Green Chem.*, 2012, 14, 2251.

(FTMS + APCI in DCM + NH₄OAc) Calc. for $C_9H_{18}O_1N_1 [M + H]^+$: 156.1383. Found: 156.1380.

Allyl azide 2b

$$9\underbrace{\begin{array}{c}7&5&3\\8&6&4&2\end{array}}_{N_3}$$

From allene **1b** (100 mg, 0.80 mmol), (PhO)₃PAuCl (22 mg, 0.04 mmol), silver triflate (10 mg, 0.04 mmol), TMSN₃ (318 μ l, 2.42 mmol), distilled water (73 μ l, 4.02 mmol), trifluoroacetic acid (193 μ l, 2.42 mmol) and 2.0 ml dry DCM. Obtained after column chromatography, Hex/Et₂O, 60:1 then 2:1: **2b:2b'** (1.9:1), 65 mg, 0.38 mmol, 48% (pale yellow oil) and **4b**, 9 mg, 0.06 mmol, 16% (pale yellow liquid).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.79 - 5.72 (m, 1H; H-3), 5.51 (dtt, *J* = 15.0, 6.7, 1.4 Hz, 1H; H-2), 3.70 (d, *J* = 6.7 Hz, 2H; H-1), 2.12 - 2.05 (m, 2H; H-4), 1.43 - 1.35 (m, 2H; H-5), 1.35 - 1.23 (m, 6H; H-6 to H-8), 0.88 (t, *J* = 6.6 Hz, 3H; H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 137.65 (CH; C-3), 123.02 (CH; C-2), 53.25 (CH₂; C-1), 32.58 (CH₂; C-4), 32.01 (CH₂; C-5), 29.37 (CH₂), 29.09 (CH₂), 22.93 (CH₂), 14.41 (CH₃; C-9).

Allyl azide 2b'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.74 - 5.69 (m, 1H; H-2), 5.28 - 5.24 (m, 2H; H-1), 3.83 - 3.77 (m, 1H; H-3), 1.59 - 1.46 (m, 2H; H-4), 1.44 - 1.38 (m, 2H; H-5), 1.35 - 1.23 (m, 6H; H-6 to H-8), 0.91 - 0.85 (m, 3H; H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 136.31 (CH; C-2), 118.23 (CH₂; C-1), 65.46 (CH; C-3), 34.61 (CH₂; C-4), 29.27 (CH₂; C-5), 29.17 (CH₂), 26.09 (CH₂), 22.90(CH₂), 14.38 (CH₃; C-9).

2b and **2b'**: IR (Film, cm⁻¹) \tilde{v} = 2958, 2929, 2857, 2097, 1643, 1237, 969. HRMS (FTMS + APCI) Calc. for C₉H₁₈N₁ [M-N₂+H]⁺: 140.1434. Found: 140.1430.

Supporting Information

Ketone **4b**^{12,13}

$$\begin{array}{c} 8 & 6 & 4 \\ 9 & 7 & 5 & 3 \end{array} \begin{array}{c} 0 \\ 1 \\ 2 \\ 1 \end{array}$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 2.40 (t, *J* = 7.5 Hz, 2H; H-3), 2.12 (s, 3H; H-1), 1.52 - 1.58 (m, 2H; H-4), 1.20 - 1.35 (m, 8H; H-5 to H-8), 0.87 (t, *J* = 7.0 Hz; 3H, H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 209.75 (C_q; C-2), 44.18 (CH₂; C-3), 32.02 (CH₂), 30.19 (CH₂), 29.49 (CH₂), 29.41 (CH₂), 24.23 (CH₂), 22.95 (CH₂), 14.41 (CH₃; C-9).

Allyl azide 2c

From allene **1c** (50 mg, 0.33 mmol), (PhO)₃PAuCl (9 mg, 0.02 mmol), silver triflate (4 mg, 0.02 mmol), TMSN₃ (131 μ l, 0.98 mmol), trifluoroacetic acid (75 μ l, 0.98 mmol) and 4.0 ml dry DCM. Obtained after column chromatography, Hexane then Hex/Et₂O, 5:1: **2c:2c'** (1.8:1), 30 mg, 0.15 mmol, 47% (colourless oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.79 - 5.72 (m, 1H; H-3), 5.52 (m, 1H; H-2), 3.69 (d, *J* = 6.7 Hz, 2H; H-1), 2.08 (m, 2H; H-4), 1.61 - 1.46 (m, 2H; H-5), 1.40 - 1.27 (m, 10H; H-6 to H-8), 0.88 (t, *J* = 6.8 Hz, 3H; H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 137.66 (CH; C-3), 123.00 (CH; C-2), 53.26 (CH₂; C-1), 32.59 (CH₂; C-4), 32.22 (CH₂), 29.77 (CH₂), 29.60 (CH₂), 29.44 (CH₂), 29.41 (CH₂), 23.00 (CH₂), 14.41 (CH₃; C-9).

Allyl azide 2c'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.74 (m, 1H; H-2), 5.26 (m, 2H; H-1), 3.80 (m, 1H; H-3), 1.59 - 1.23 (m, 12H; H-6 to H-8), 0.88 (t, *J* = 6.8 Hz, 3H; H-9). Protons on the cyclohexyl ring overlapped with protons of **2c**. ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 136.30 (CH; C-2), 118.24 (CH₂; C-1), 65.47 (CH; C-3), 34.62 (CH₂), 32.19 (CH₂), 30.06 (CH₂), 29.79 (CH₂), 29.62 (CH₂), 29.56 (CH₂), 26.15 (CH₂), 14.45 (CH₃; C-9).

¹² V. V. Negrebetskii, Russ. J. Gen. Chem., 1993, 63, 1436-1440.

¹³ A. Arase, M. Hoshi and Y Masuda, Bull. Chem. Soc. Jpn., 1984, 57, 209-213.

2c and **2c'**: IR (Film, cm⁻¹) $\tilde{v} = 2957$, 2926, 2855, 2098, 1645, 1242, 970. HRMS (FTMS + APCI) Calc. for C₁₁H₂₂N [M-N₂+H]⁺: 168.1747. Found: 168.1743. Calc. for C₁₁H₂₂N₃ [M + H]⁺: 196.1808. Found: 196.1805.

Allyl azide **2d**^{14,15,16,17,18}

$$6 \underbrace{\begin{array}{c} 5 & 3 & 1 \\ 7 & 9 & 2 \\ 8 \end{array}}_{8} N_{3}$$

From allene **1d** (100 mg, 0.86 mmol), (PhO)₃PAuCl (23 mg, 0.04 mmol), silver triflate (11 mg, 0.04 mmol), TMSN₃ (340 μ l, 2.58 mmol), distilled water (78 μ l, 4.30 mmol), trifluoroacetic acid (207 μ l, 2.58 mmol) and 2.1 ml dry DCM. Obtained after column chromatography, Hex/Et₂O, 20:1: **2d**, 85 mg, 0.53 mmol, 62% (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.44 - 7.39 (m, 2H; H-5 and H-9), 7.37 - 7.32 (m, 2H; H-6 and H-8), 7.31 - 7.27 (m, 1H; H-7), 6.66 (d, *J* = 15.8 Hz, 1H; H-3), 6.25 (dt, *J* = 15.8, 6.7 Hz, 1H; H-2), 3.95 (dd, *J* = 6.7, 0.7 Hz, 2H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 136.34 (C_q; C-4), 134.89 (CH; C-3), 129.00 (CH_{Ar}; C-5 and C-9), 128.52 (CH_{Ar}; C-7), 126.98 (CH_{Ar}; C-6 and C-8), 122.73 (CH; C-2), 53.35 (CH₂; C-1). IR (Film, cm⁻¹) $\tilde{\nu}$ = 3029, 2927, 2099, 1702, 1654, 1598, 1492, 1235, 967, 747, 693. MS-EI: C₉H₉N₃ *m/z* (%) 159 [M⁺] (3), 118 (31), 117 (100), 115 (32), 105 (20), 91 (28), 77 (20).

Allyl azide 2e¹⁹

From allene **1e** (100 mg, 0.54 mmol), (PhO)₃PAuCl (15 mg, 0.03 mmol), silver triflate (7 mg, 0.03 mmol), TMSN₃ (214 μ l, 1.63 mmol), distilled water, (49 μ l, 2.72 mmol), trifluoroacetic acid (130 μ l, 1.63 mmol) and 1.3 ml dry DCM. Obtained after column

¹⁴ E. Manhart and K. von Werner, Synthesis, 1978, 705-706.

¹⁵ A. Jayanthi, V. K. Gumaste and A. R. A. S. Deshmukh, *Synlett*, 2004, 979-982.

¹⁶ S. Murahashi, Y. Taniguchi, Y. Imada and Y. Tanigawa, J. Org. Chem., 1989, 54, 3292-3303.

¹⁷ M. Rueping, C. Vila and U. Uria, Org. Lett., 2012, 14, 768-771.

¹⁸ M. R. Maddani, S. K. Moorthy and K. R. Prabhu, *Tetrahedron*, 2010, **66**, 329-333.

¹⁹ S.-I. Murahashi, Y. Taniguchi, Y. Imada and Y. Tanigawa, J. Org. Chem., 1989, 14, 3301.

chromatography, Hex/EtOAc, 30:1 then 2:1: **2e:2e'** (3.8:1), 53 mg, 0.23 mmol, 43% (yellow oil), and **4e'**, 19 mg, 0.09 mmol, 17% (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.78 - 5.68 (m, 1H; H-3 or H-2), 5.68 - 5.59 (m, 1H; H-3 or H-2), 3.74 (s, 6H; H-8 and H-9), 3.69 (d, *J* = 6.3 Hz, 2H; H-1), 3.47 (t, *J* = 7.5 Hz, 1H; H-5), 2.68 (m, 2H; H-4). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 169.40 (C_q; C-6 and C-7), 131.80 (CH; C-3), 126.74 (CH; C-2), 52.98 (CH₂; C-1), 52.70 (CH; C-5), 51.74 (CH₂; C-4), 31.75 (CH₃; C-8 or C-9), 30.05 (CH₃; C-8 or C-9).

Allyl azide 2e'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.63 - 5.60 (m, 1H; H-2), 5.35 - 5.31 (m, 2H; H-1), 3.75 (s, 6H; H-8 and H-9), 3.55 (dd, *J* = 8.2, 6.5 Hz, 1H; H-3), 3.46 - 3.42 (m, 1H; H-5), 2.19 - 2.03 (m, 2H; H-4). ¹³C NMR signals could not be extracted from the spectra of the mixture **2e+2e'** due to the low concentration of **2e'**.

2e and **2e'**: IR (Film, cm⁻¹) $\tilde{v} = 2924$, 2853, 2099, 1736, 1437, 1260, 973, 801, 749. MS (ESI⁺ in MeOH): $m/z = 225.05 \text{ C}_9\text{H}_{15}\text{KO}_4 \text{ [M-N}_3 + \text{K}^+ + \text{H}]^+$. HRMS (FTMS + p NSI) (DCM / MeOH + NH₄OAc): Calc. for C₉H₁₇N₄O₄ [M+NH₄]⁺: 245.1244 Found: 245.1247.

Ketone 4e^{,20}

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 3.73 (s, 6H; H-8 and H-9), 3.43 (t, *J* = 7.2 Hz, 1H; H-5), 2.53 (t, *J* = 7.2 Hz, 2H; H-3), 2.16 (m, 2H; H-4), 2.13 (s, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 207.43 (C_q; C-2), 169.85 (C_q; C-6 and C-7), 52.89 (CH₃; C-8 and C-9), 50.64 (CH; C-5), 40.72 (CH₂; C-3), 30.26 (CH₃; C-1), 22.83 (CH₂; C-

²⁰ M. R. Saidi, N. Azizib, E. Akbaria, F. Ebrahimia, J. Mol. Catal., 2008, **292**, 44-48.

4). IR (Film, cm⁻¹) $\tilde{v} = 2941$, 2854, 1732, 1642, 1436, 1275,1156, 750. HRMS (FTMS + p APCI). Calc. for C₉H₁₈NO₅ [M+NH₄]⁺: 220.1179 Found: 220.1176.

Allyl azide 2f

From allene **1f** (100 mg, 0.50 mmol), (PhO)₃PAuCl (14 mg, 0.02 mmol), silver triflate (6 mg, 0.02 mmol), TMSN₃ (198 μ l, 1.51 mmol), distilled water (45 μ l, 2.51 mmol), trifluoroacetic acid (172 μ l, 1.51 mmol) and 1.2 ml dry DCM. Obtained after column chromatography, Hex/EtOAc, 10:1 then 2:1: **2f**, 55 mg, 0.23 mmol, 48% (yellow oil), **2f**', 9 mg, 0.04 mmol, 7% (yellow oil) and **4f**', 35 mg, 0.16 mmol, 32%, (white solid).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.89 - 7.84 (m, 2H; H_{Ar}), 7.75 - 7.71 (m, 2H; H_{Ar}), 5.88 - 5.81(dtt, *J* = 15.4, 5.6, 1.1 Hz, 1H; H-3), 5.81 - 5.85 (dtt, *J* = 15.4, 5.6, 1.1 Hz, 1H; H-2), 4.33 (dd, *J* = 5.6, 1.1 Hz, 2H; H-4), 3.77 (d, *J* = 5.6 Hz, 2H; H-1); ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 168.14 (C_q; C-5 and C-6), 134.42 (CH_{Ar}), 132.41 (C_q; C-7 and C-8), 128.63 (CH; C-3), 127.55 (CH; C-2), 123.74 (CH_{Ar}), 52.27 (CH₂; C-1), 39.10 (CH₂; C-4).

Allyl azide 2f'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.89 – 7.85 (m, 2H; H_{Ar}), 7.77 – 7.69 (m, 2H; H_{Ar}), 5.86 – 5.77 (m, 1H; H-2), 5.42 – 5.38 (m, 1H; H-1), 5.38 – 5.36 (m, 1H; H-1), 4.37 – 4.30 (m, 1H; H-3), 3.83 (dd, *J* = 13.9, 8.3 Hz, 1H; H-4), 3.72 (dd, *J* = 13.9, 6.3 Hz, 1H; H-4). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 168.36 (C_q; C-5 and C-6), 134.54 (2x CH_{Ar}), 132.90 (CH; C-2) 132.20 (2x C_q, C-7 and C-8), 123.86 (2x CH_{Ar}), 121.41 (CH₂; C-1), 62.73 (CH; C-3), 41.07 (CH₂; C-4). IR (Film, cm⁻¹) $\tilde{\nu}$ = 2923, 2852, 2098, 1771, 1717, 1614, 1466, 1426, 1391, 717. HRMS (FTMS + p NSI), ((DCM)/MeOH + NH₄OAc): Calc. for C₁₂H₁₄N₅O₂ [M+NH₄]⁺: 260.1142 Found: 260.1143.

2f and **2f**': IR (Film, cm⁻¹) \tilde{v} = 2922, 2851, 2097, 1771, 1710, 1466, 1426, 1391, 1187, 949, 711. HRMS (FTMS + p NSI) (DCM / MeOH + NH₄OAc): Calc. for C₁₂H₁₄N₅O₂ [M+NH₄]⁺: 260.1142 Found: 260.1145.

Ketone **4f**^{21,22}

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.85 – 7.81 (m, 2H; H-11 and H-12), 7.73 – 7.69 (m, 2H; H-9 and H-10), 3.98 – 3.93 (m, 2H; H-4), 2.87 (t, *J* = 7.4 Hz; 1H, H-3), 2.18 (s, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 206.13 (C_q; C-2), 168.44 (C_q; C-5 and C-6), 134.35 (CH_{Ar}), 132.40 (C_q; C-7 and C-8), 123.63 (CH_{Ar}), 41.95 (CH₂; C-3), 33.32 (CH₂; C-4), 30.27 (CH₃; C-1). IR (Film, cm⁻¹): $\tilde{\nu}$ = 3465, 2957, 2926, 2856, 1709, 1634, 1467, 1435, 1260, 1029, 797, 718. HRMS (FTMS + p APCI), ((DCM)/MeOH + NH₄OAc): Calc. for C₁₂H₁₂NO₃ [M+ H]⁺: 218.0812 Found: 218.0810. M. p.= 111 °C.

Allyl azide 2g

From allene **1g** (100 mg, 0.39 mmol), (PhO)₃PAuCl (11 mg, 0.02 mmol), silver triflate (5 mg, 0.02 mmol), TMSN₃ (154 μ l, 1.17 mmol), distilled water (35 μ l, 1.96 mmol), trifluoroacetic acid (94 μ l, 1.17 mmol) and 957 μ l dry DCM. Obtained after column chromatography, Hex/EtOAc, 10:1: **2g**, 32 mg, 0.15 mmol, 38%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.78 (m, 1H; H-3 or H-2), 5.74 (m, 1H; H-3 or H-2), 4.13 (m, 2H; H-4 or H-1), 4.08 (m, 2H; H-4 or H-1), 1.47 (s, 9H; *t*-Bu H-7, H-8 and H-9). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 154.66 (C_q; C-5), 126.22 (CH; C-3 or C-2), 126.11 (CH; C-2 or C-3), 79.61 (CH; C-6), 53.44 (CH₂; C-1 or C-4), 53.18 (CH₂; C-1 or C-4), 28.87 (3 x CH₃; C-7, C-8 and C-9). IR (Film, cm⁻¹) $\tilde{\nu}$ = 3332 (broad), 2976, 2925, 2853, 2100, 1706, 1685, 1609, 1410, 1368, 1257, 1170, 1140, 887, 765. HRMS of this compound could not be obtained due to rapid decomposition of this product.

²¹ F. Liu,A. Martin-Mingot, M.-P. Jouannetaud, C. Bachmann, G. Frapper, F. Zunino and S. Thibaudeau, J. Org. Chem., 2011, **76**, 1460–1463.

²² M. Viscontini, W. Kaiser and H. A. Leidner, *Helv. Chim. Acta*, 1965, **48**, 1221-1225.

Supporting Information

Allyl azide **2h**^{23,24}

$$4 \underbrace{3}_{5}^{2} N_{3}$$

From allene **1h** (20 mg, 0.29 mmol), (PhO)₃PAuCl (8 mg, 0.01 mmol), silver triflate (4 mg, 0.01 mmol), TMSN₃ (116 μ l, 0.88 mmol), distilled water (26 μ l, 1.47 mmol), trifluoroacetic acid (70 μ l, 0.88 mmol) and 718 μ l dry DCM. Obtained: 100% conversion **2h:2h'** (3.7:1). This product could not be isolated due to volatility issues.

¹H NMR (500 MHz, CDCl₃, 25 °C) δ = 5.35 - 5.29 (m, 1H; H-2), 3.76 (d, *J* = 7.5 Hz, 2H; H-1), 1.79 (s, 3H; H-4 or H-5), 1.71 (s, 3H; H-4 or H-5). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 130.91(C_q; C-3), 117.42 (CH; C-2), 48.48 (CH₂; C-1), 25.90 (CH₃; C-4 or C-5), 18.25 (CH₃; C-4 or C-5).

Allyl azide 2h'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 5.85 (dd, *J* = 17.3, 10.6 Hz, 1H; H-2), 5.22 (dd, *J* = 17.3, 0.5 Hz, 1H; H-1), 5.16 (dd, *J* = 10.6, 0.5 Hz, 1H; H-1), 1.33 (s, 6H; H-4 and H-5). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 141.33 (CH; C-2), 114.26 (CH₂; C-1), 62.57 (C_q; C-3), 26.25 (2x CH₃; C-4 and C-5).

2h and **2h'**: IR (Film, cm⁻¹) $\tilde{v} = 2962$, 2905, 2109, 1679, 1587, 1484, 1261, 1092, 1025, 940, 799, 687.

Allyl azide 2i

From allene **1i** (100 mg, 0.44 mmol), (PhO)₃PAuCl (12 mg, 0.02 mmol), silver triflate (6 mg, 0.02 mmol), TMSN₃ (173 μ l, 1.31 mmol), distilled water (39 μ l, 2.19 mmol),

²³ A. V. Malkov, P. Spoor, V. Vinader and P. Kočovsky, J. Org. Chem., 1999, **64**, 5308-5311.

²⁴ T. Kanai, Y. Kanagawa and Y. Ishii, J. Org. Chem., 1990, **55**, 3274-3277.

trifluoroacetic acid (105 μ l, 1.31 mmol) and 1.1 ml dry DCM. Obtained after column chromatography, using as eluent hexane: **2i**, 91 mg, 0.33 mmol, 76%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.43 - 7.40 (m, 2H; H-17 and H-13), 7.37 - 7.32 (m, 2H; H-16 and H-14), 7.30 - 7.26 (m, 1H; H-15), 6.61 (d, *J* = 15.8 Hz, 1H; H-11), 6.12 (dd, *J* = 15.8, 8.1 Hz, 1H; H-10), 4.00 (q, *J* = 7.2 Hz, 1H; H-9), 1.70 - 1.56 (m, 2H; H-8), 1.45 - 1.36 (m, 2H; H-7), 1.36 - 1.23 (m, 10H; H-6, H-5, H-4, H-3 and H-2), 0.91 - 0.87 (m, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 136.44 (C_q; C-12), 133.44 (CH; C-11), 128.98 (CH_{Ar}; C-14 and C-16), 128.41 (CH_{Ar}; C-15), 127.67 (CH; C-10), 126.98 (CH_{Ar}; C-13 and C-17), 65.27 (CH; C-9), 35.14 (CH₂; C-8), 32.18 (CH₂; C-7), 29.79 (CH₂), 29.64 (CH₂), 29.56 (CH₂), 26.25 (CH₂), 22.99 (CH₂), 14.43 (CH₃; C-1). IR (Film, cm⁻¹) $\tilde{\nu}$ = 3061, 3028, 2957, 2927, 2856, 2097, 1800, 1599, 1494, 1466, 1450, 1260, 1095, 966, 803, 749, 692. HRMS (FTMS + p APCI) (DCM + NH₄OAc): Calc. for C₁₇H₂₆N₁ [M-N₂ + H]⁺: 244.2060 Found: 244.2056, Calc. for C₁₇H₂₅ [M-N₃]⁺: 229.1951 Found: 229.1948

Allyl azide 2j

From allene **1j** (100 mg, 0.58 mmol), (PhO)₃PAuCl (16 mg, 0.03 mmol), silver triflate (7 mg, 0.03 mmol), TMSN₃ (229 μ l, 1.74 mmol), distilled water (52 μ l, 2.90 mmol), trifluoroacetic acid (139 μ l, 1.74 mmol) and 1.4 ml dry DCM. Obtained after column chromatography, using as eluent hexane: **2j:2j'** (1.3:1), 84 mg, 0.39 mmol, 67%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.35 - 7.25 (m, 2H; H_{Ar}), 7.25 - 7.22 (m, 1H; H_{Ar}), 7.21 - 7.17 (m, 2H; H_{Ar}), 5.90 - 5.84 (m, 1H; H-6), 5.49 - 5.44 (m, 1H; H-5), 3.84 (dd, *J* = 14.7, 7.3 Hz, 1H; H-4), 3.49 - 3.38 (m, 2H; H-7), 1.59 - 1.44 (m, 2H; H-3), 1.44 - 1.33 (m, 2H; H-2), 0.88 (t, *J* = 7.3 Hz, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 139.91 (C_q; C-8), 133.92 (CH; C-6), 129.66 (CH; C-5), 128.91 (2x CH_{Ar}), 128.86 (2x CH_{Ar}), 126.98 (CH_{Ar}; C-11), 64.66 (CH; C-4), 38.93 (CH₂; C-7), 37.05 (CH₂; C-3), 22.58 (CH₂; C-2), 14.07 (CH₃; C-1).

Supporting Information

Allyl azide 2j'

$$10 \underbrace{\begin{array}{c} 9 & 8 & 7 & 6 \\ 10 & & & & \\ 11 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ \end{array}}_{10} \underbrace{\begin{array}{c} 9 & 8 & 7 & 6 & 3 \\ & & & & & \\ 13 & N_3 & 4 & 2 & \\ 14 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 11 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 12 & & & & \\ 11 & & & & \\ 12 & & & & \\ 12 & & & & \\ 11 & & & & \\ 12 & & & & \\$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.35 - 7.28 (m, 2H; H_{Ar}), 7.25 - 7.22 (m, 1H; H_{Ar}-11), 7.21 - 7.17 (m 2H; H_{Ar}), 5.70 - 5.63 (m, 1H; H-4), 5.43 - 5.39 (m, 1H; H-5), 4.05 (dd, *J* = 14.8, 7.3 Hz, 1H; H-6), 2.80 (d, *J* = 7.3 Hz, 2H; H-7), 2.08 - 2.00 (m, 2H; H-3), 1.44 - 1.33 (m, 2H; H-2), 0.92 (t, *J* = 7.3 Hz, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 137.88 (C_q; C-8), 136.10 (CH; C-4), 129.80 (2x CH_{Ar}), 128.69 (2x CH_{Ar}), 127.46 (CH; C-5), 126.60 (CH_{Ar}; C-11), 66.12 (CH; C-6), 41.67 (CH₂; C-7), 34.55 (CH₂; C-3) 19.50 (CH₂; C-2), 13.84 (CH₃; C-1).

2j and **2j**': IR (Film, cm⁻¹) \tilde{v} =3029, 2960, 2931, 2873, 2097, 1603, 1454, 1237, 970, 747, 698. HRMS (FTMS + p APCI): Calc. for C₁₃H₂₁N₄ [M+NH₄]⁺: 233.1761 Found: 233.1760.

Allyl azide 2k

From allene **1k** (86 mg, 0.50 mmol), (PhO)₃PAuCl (14 mg, 0.02 mmol), silver triflate (6 mg, 0.02 mmol), TMSN₃ (197 μ l, 1.50 mmol), distilled water (45 μ l, 2.50 mmol), trifluoroacetic acid (120 μ l, 1.50 mmol) and 1.2 ml dry DCM. Obtained after column chromatography, using as eluent hexane: **2k:2k'** (1.67:1), 59 mg, 0.27 mmol, 55%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.34 - 7.29 (m, 2H; H_{Ar}), 7.25 - 7.17 (m, 3H; H_{Ar}), 5.88 (dtd, *J* = 15.2, 6.9, 0.6 Hz, 1H; H-6), 5.48 (ddt, *J* = 15.2, 8.5, 1.5 Hz, 1H; H-5), 3.63 (dd, *J* = 8.5, 6.9 Hz, 1H; H-4), 3.48 - 3.44 (m, 2H; H-7), 1.79 - 1.67 (m, 1H; H-3), 0.95 (d, *J* = 6.9 Hz, 3H; H-1 or H-2), 0.91 (d, *J* = 6.9 Hz, 3H; H-1 or H-2). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 139.95 (C_q; C-8), 134.99 (CH; C-6), 128.90 (2x CH_{Ar}), 128.85 (2x CH_{Ar}), 127.98 (CH; C-5), 126.59 (CH_{Ar}; C-11), 71.32 (CH; C-4), 39.03 (CH₂; C-7), 32.85 (CH; C-3), 19.23 (CH₃; C-1 or C-2), 19.22 (CH₃; C-1 or C-2).

Supporting Information

Allyl azide 2k'

$$\begin{array}{c}
9 & 8 & 7 & 5 \\
10 & & & & & \\
11 & & & & & \\
12 & & & & & \\
12 & & & & & \\
\end{array}$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.36 - 7.28 (m, 2H; H_{Ar}), 7.25 - 7.18 (m, 3H; H_{Ar}), 5.64 (ddd, *J* = 15.4, 6.8, 0.6 Hz, 1H; H-4), 5.37 (ddd, *J* = 15.4, 8.1, 1.3 Hz, 1H; H-5), 4.06 - 4.00 (m, 1H; H-6), 2.83 - 2.79 (m, 2H; H-7), 2.32 (dqd, *J* = 13.4, 6.8, 1.3 Hz, 1H; H-3), 1.00 (d, *J* = 6.8 Hz, 3H; H-1 or H-2), 0.99 (d, *J* = 6.8 Hz, 3H; H-1 or H-2). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 143.23 (CH; C-4), 137.88 (C_q; C-8), 129.83 (2x CH_{Ar}), 128.66 (2x CH_{Ar}), 126.97 (CH_{Ar}; C-11), 124.30 (CH; C-5), 65.99 (CH; C-6), 41.71 (CH₂; C-7), 31.22 (CH; C-3), 22.73 (CH₃; C-1 or C-2), 22.60 (CH₃; C-1 or C-2).

2k and **2k'**: IR (Film, cm⁻¹) \tilde{v} = 3064, 3030, 2962, 2929, 2095, 1454, 1260, 1094, 1029, 803, 699, 666. HRMS (FTMS + p APCI): Calc. for C₁₃H₂₁N₄ [M+NH₄]⁺: 233.1761 Found: 233.1760.

Allyl azide 21

From allene **11** (100 mg, 0.54 mmol), (PhO)₃PAuCl (15 mg, 0.03 mmol), silver triflate (7 mg, 0.03 mmol), TMSN₃ (212 μ l, 1.61 mmol), distilled water (48 μ l, 2.69 mmol), trifluoroacetic acid (129 μ l, 1.61 mmol) and 1.3 ml dry DCM. Obtained after column chromatography, using as eluent hexane: **21:21'** (1.13:1), 85 mg, 0.37 mmol, 70%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.33 - 7.27 (m, 2H; H_{Ar}), 7.23 - 7.16 (m, 3H; H_{Ar}), 5.74 - 5.67 (m, 1H; H-4), 5.44 - 5.38 (m, 1H; H-5), 3.82 - 3.78 (m, 1H; H-6), 2.70 - 2.65 (m, 2H; H-8), 2.11 - 2.05 (m, 2H; H-3), 1.91 - 1.75 (m, 2H; H-7), 1.47 - 1.41 (m, 2H; H-2), 0.93 (t, *J* = 7.4 Hz; 3H, H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 141.53 (C_q; C-9), 136.15 (CH; C-4), 128.80 (4x CH_{Ar}), 127.84 (CH; C-5), 126.36 (CH_{Ar}; C-12), 64.34 (CH; C-6), 36.61 (CH₂; C-7), 34.60 (CH₂; C-3), 32.43 (CH₂; C-8), 22.65 (CH₂; C-2), 13.89 (CH₃; C-1).

Supporting Information

Allyl azide 2l'

$$11 \underbrace{10}_{12} \underbrace{987}_{14} \underbrace{5}_{14} \underbrace{7}_{14} \underbrace{5}_{14} \underbrace{3}_{14} \underbrace{2}_{14} \underbrace{13}_{14} \underbrace{11}_{14} \underbrace{11}_{14}$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.33 - 7.27 (m, 2H; H_{Ar}), 7.23 - 7.16 (m, 3H; H_{Ar}), 5.77 - 5.68 (m, 1H; H-6), 5.41 - 5.33 (m, 1H; H-5), 3.78 - 3.74 (m, 1H; H-4), 2.77 - 2.70 (m, 2H; H-8), 2.47 - 2.37 (m, 2H; H-7), 1.55 - 1.47 (m, 2H; H-3), 1.36 - 1.25 (m, 2H; H-2), 0.90 (t, *J* = 7.4 Hz, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 141.75 (C_q; C-9), 134.49 (CH; C-6), 128.86 (CH; C-5), 128.80 (2x CH_{Ar}), 128.68 (2x CH_{Ar}), 126.26 (CH_{Ar}; C-12), 64.78 (CH; C-4), 37.02 (CH₂; C-3), 36.05 (CH₂; C-8), 34.29 (CH₂; C-7), 19.41 (CH₂; C-2), 14.05 (CH₃; C-1).

21 and **21'**: IR (Film, cm⁻¹) $\tilde{v} = 3064$, 3028, 2960, 2932, 2873, 2095, 1666, 1604, 1455, 1238, 1030, 970, 912, 747. HRMS (FTMS+ p APCI) Calc. for C₁₄H₂₃N₄ [M+NH₄]⁺: 247.1917. Found 247.1917, Calc. for C₁₄H₂₀N₁ [M–N₂+H]⁺: 202.1590. Found 202.1591.

Allyl azide 2m

From allene **1m** (100 mg, 0.54 mmol), (PhO)₃PAuCl (15 mg, 0.03 mmol), silver triflate (7 mg, 0.03 mmol), TMSN₃ (212 μ l, 1.61 mmol), distilled water (48 μ l, 2.69 mmol), trifluoroacetic acid (129 μ l, 1.61 mmol) and 1.3 ml dry DCM. Obtained after column chromatography, using as eluent hexane: **2m:2m'** (1:1), 98 mg, 0.43 mmol, 80%, (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.33 - 7.27 (m, 2H; H_{Ar}), 7.23 - 7.16 (m, 3H; H_{Ar}), 5.76 - 5.71 (m, 1H; H-6), 5.43 - 5.37 (m, 1H; H-5), 3.55 (dd, *J* = 8.5, 6.8 Hz, 1H; H-4), 2.80 - 2.71 (m, 2H; H-8), 2.49 - 2.40 (m, 2H; H-7), 1.67 (dq, *J* = 13.5, 6.8 Hz, 1H; H-2), 0.90 (d, *J* = 6.8 Hz, 3H; H-1 or H-3), 0.84 (d, *J* = 6.8 Hz 3H; H-1 or H-3). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 141.53 (C_q; C-9), 135.55 (CH; C-6), 128.80 (2x CH_{Ar}), 128.69 (2x CH_{Ar}), 127.13 (CH; C-5), 126.36 (CH_{Ar}; C-12), 71.48 (CH; C-4), 36.10 (CH₂;

C-8), 34.34 (CH₂; C-7), 32.77 (CH; C-2), 19.18 (CH₃; C-1 or C-3), 19.13 (CH₃; C-1 or C-3).

Allyl azide 2m'

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.33 - 7.27 (m, 2H; H_{Ar}), 7.23 - 7.16 (m, 3H; H_{Ar}), 5.71 - 5.67 (m, 1H; H-4), 5.38 - 5.32 (m, 1H; H-5), 3.80 - 3.73 (m, 1H; H-6), 2.71 - 2.64 (m, 2H; H-8), 2.39 - 2.32 (m, 1H; H-3), 1.91 - 1.75 (m, 2H; H-7), 1.04 (dd, *J* = 6.8, 2.0 Hz, 6H; H-1 and H-2). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 143.43 (CH; C-4), 141.73 (C_q; C-9), 128.80 (CH_{Ar}), 126.26 (CH_{Ar}; C-12) 124.61 (CH; C-5), 64.21 (CH; C-6), 36.61 (CH₂; C-7), 32.43 (CH₂; C-8), 31.28 (CH; C-3), 22.83 (CH₃; C-1 or C-2), 22.71 (CH₃; C-1 or C-2).

2m and **2m'**: IR (Film, cm⁻¹) $\tilde{v} = 3064$, 3028, 2961, 2927, 2870, 2095, 1603, 1496, 1454, 1367, 1241, 971, 747, 699. HRMS (FTMS+ p APCI) Calc. for C₁₄H₂₃N₄ [M+NH₄]⁺: 247.1917. Found: 247.1917.

Allyl azide **2n**²⁵

From allene **1n** (100 mg, 0.54 mmol), (PhO)₃PAuCl (15 mg, 0.03 mmol), silver triflate (7 mg, 0.03 mmol), TMSN₃ (214 μ l, 1.63 mmol), distilled water (49 μ l, 2.72 mmol), trifluoroacetic acid (186 μ l, 1.63 mmol) and 1.3 ml dry DCM. The reaction was then warm up at 30 °C during 60 h. Obtained after column chromatography, Hex/Et₂O, 80:1, 91.1 mg, 0.40 mmol, 74% (pale yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.59 (d, *J* = 8.2 Hz, 2H; H-7 and H-8), 7.50 (d, *J* = 8.2 Hz, 2H; H-5 and H-6), 6.69 (d, *J* = 15.8 Hz, 1H; H-3), 6.33 (dt, *J* = 15.8, 6.4 Hz, 1H; H-2), 3.99 (dd, *J* = 6.4, 0.8 Hz, 2H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ =

²⁵ Y. Uozumi, T. Suzuka, R. Kawade, and H. Takenaka, *Synlett*, 2006, **13**, 2109-2113.

139.82 (C_q; C-4), 133.13 (CH; C-3), 130.33 (q, J = 32.4 Hz, C_q; C-9), 127.14 (CH_{Ar}; C-5 and C-6), 126.00 (q, J = 3.8 Hz, CH_{Ar}-7 and CH_{Ar}-8), 125.63 (CH; C-2), 124.42 (q, J = 271.9 Hz, C-F) , 53.07 (CH₂; C-1). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -62.59$. IR (Film, cm⁻¹): $\tilde{\nu} = 3042$, 2927, 2855, 2644, 2510, 2102, 1616, 1415, 1326, 1124, 1016, 853.

Allyl azide 20

From allene **10** (99.8 mg, 0.44 mmol), (PhO)₃PAuCl (12 mg, 0.02 mmol), silver triflate (6 mg, 0.02 mmol), TMSN₃ (174 μ l, 1.32 mmol), distilled water (40 μ l, 2.21 mmol), trifluoroacetic acid (106 μ l, 1.32 mmol) and 1.1 ml dry DCM. The reaction was then warm up at 30 °C during 60 h. Obtained after column chromatography, Pentane/Et₂O, 80:1, 79 mg, 0.30 mmol, 67% (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.59 (d, *J* = 8.2 Hz, 2H; H-10 and H-11), 7.50 (d, *J* = 8.2 Hz, 2H; H-8 and H-9), 6.64 (d, *J* = 15.8 Hz, 1H; H-6), 6.20 (dd, *J* = 15.8, 7.8 Hz, 1H; H-5), 4.07 – 4.01 (m, 1H; H-4), 1.71 – 1.55 (m, 2H; H-3), 1.51 – 1.37 (m, 2H; H-2), 0.96 (t, *J* = 7.3 Hz, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 139.90 (C_q, C-7), 131.85 (CH; C-6), 130.43 (CH; C-5), 130.24 (q, *J* = 32.5 Hz; C_q; C-12), 127.14 (CH_{Ar}; C-8 and C-9), 125.97 (q, *J* = 3.8 Hz; CH_{Ar}; C-11 and C-10), 124.44 (q, *J* = 271.9 Hz; CF; C-13), 64.61 (CH; C-4), 37.05 (CH₂; C-3), 19.47 (CH₂; C-2), 14.08 (CH₃; C-1). ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.58. IR (Film, cm⁻¹): $\tilde{\nu}$ = 2963, 2936, 2876, 2647, 2483, 2327, 2100, 1617, 1325, 1166, 1067, 1030, 967. HRMS (APCI (ASAP)) with added NH₄OAc: Calc. for C₁₃H₁₅F₃N [M–N₂+H]⁺: 242.1151. Found: 242.1148. Calc. for C₁₃H₁₄F₃ [M–N₃]⁺: 227.1042. Found: 227.1040. Calc. for C₁₃H₁₄F₃N [M]⁺: 269.1140. Found: 269.1143.

Allyl azide 2p

From allene **1p** (106.7 mg, 0.46 mmol), (PhO)₃PAuCl (12 mg, 0.02 mmol), silver triflate (6 mg, 0.02 mmol), TMSN₃ (180 μ l, 1.37 mmol), distilled water (41 μ l, 2.28 mmol), trifluoroacetic acid (109 μ l, 1.37 mmol) and 1.1 ml dry DCM. Obtained after column chromatography, Hex/Et₂O, 80:1, 91.1 mg, 0.33 mmol, 72% (yellow oil).

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.34 – 7.32 (m, 2H; H-13 and H-14), 7.31 – 7.29 (m, 2H; H-11 and H-12), 6.55 (d, *J* = 15.8 Hz, 1H; H-9), 6.08 (dd, *J* = 15.8, 8.0 Hz, 1H; H-8), 4.01 – 3.95 (m, 1H; H-7), 1.70 – 1.53 (m, 2H; H-6), 1.44 – 1.21 (m, 8H; H-5 to H-2), 0.89 (t, *J* = 7.0 Hz, 3H; H-1). ¹³C NMR (126 MHz, CDCl₃, 25 °C) δ = 134.93 (C_q), 134.10 (C_q), 132.11 (CH; C-9), 129.17 (2x CH_{Ar}), 128.41 (CH; C-8), 128.18 (2x CH_{Ar}), 65.09 (CH; C-7), 35.08 (CH₂; C-6), 32.02 (CH₂; C-5), 29.30 (CH₂; C-4), 26.20 (CH₂; C-3), 22.91 (CH₂; C-2), 14.39 (CH₃; C-1). IR (Film, cm⁻¹): \tilde{v} = 2956, 2929, 2857, 2730, 2583, 2470, 2097, 1491, 1238, 1091, 967. HRMS (APCI (ASAP)) with added NH₄OAc: Calc. for C₁₅H₂₁³⁵ClN [M–N₂+H]⁺: 250.1357. Found: 250.1354. Calc. for C₁₅H₂₁³⁷ClN [M–N₂+H]⁺: 252.1328. Found: 252.1323. Calc. for C₁₅H₂₀³⁵Cl [M–N₃]⁺: 235.1248. Found: 235.1247. Calc. for C₁₅H₂₀³⁷Cl [M–N₃]⁺: 237.1219. Found: 237.1215. C₁₅H₂₀³⁵ClN₃ [M]⁺: 277.1346.

Proposed mechanism for formation of amide 4a

Amide **4a** was obtained as by-product in the reaction with cyclohexylallene **1a**. We propose that this amide comes from a gold-catalysed Schmidt reaction of the corresponding ketone with the *in situ* formed hydrazoic acid.²⁶ The ketone can be formed by protonation of the allene by the strong acid and attack of water into the central carbon of the allenic system, which is supported by the isolation of methyl ketones **4b'**, **4e'** and **4f'** in the reaction with allenes **1b**, **1e** and **1f** (entries 2, 5, and 6, Table 1 in the main manuscript).⁸

Gold-catalysed Schmidt reaction of ethyl methyl ketone.

To further test this hypothesis we carried out the reaction of commercially available ethyl methyl ketone, under our reaction conditions, and we observed 53% conversion to the corresponding amide in 28 h.²⁷

(PhO)₃PAuCl (0.05 Eq., 16 mg, 0.03 mmol.) and silver triflate (0.05 Eq., 8 mg, 0,03 mmol) were added into a previously dried-vacuum schlenk flask under N₂. The solids were dissolved in dry dichloromethane (1.4 ml, 0.41 M) and stirred for a few minutes at 0°C. Then ethyl methyl ketone (1 Eq., 62 μ l, 0.58 mmol) was added dropwise at 0°C and under stirring. TMSN₃ (3 Eq., 229 μ l, 1.74 mmol), distilled water, (5 Eq., 52 μ l, 2.90 mmol), and trifluoroacetic acid, (3 Eq., 139 μ l, 1.74 mmol) were added dropwise at 0°C. The mixture was then warmed up and stirred at room temperature during 28h. The reaction was stopped at 28h with 53% conversion of *N*-ethylacetamide. The crude was filtered through Celite,

²⁶ K. F. Z. Schmidt, Angew. Chem. Int. Ed. Engl., 1923, 36, 511.

²⁷ C. Qin, P. Feng, Y. Ou, T. Shen, T. Wang and N. Jiao, *Angew. Chem. Int. Ed.*, 2013, **52**, 7850-78-54.

and washed with dichloromethane. The solvent was removed by vacuum, and the crude was analysed without purification by NMR.

N-ethylacetamide.^{28,29}

$$4 \xrightarrow{3} 2 \stackrel{O}{\parallel} 1$$

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 6.87 (broad s, 1H; *N*H-2), 3.41 - 3.32 (m, 2H; H-3), 2.17 (s, 3H; H-1), 1.19 (t, *J* = 7.2 Hz, 3H; H-4).

²⁸ M. Avalos, R.Babiano, J. L. Barneto, J. L. Bravo, P.Cintas, J. L. Jimenez and J. C. Palacios, *J. Org. Chem.*, 2001, **66**, 7275-7282.

²⁹ A. R. Katritzky, A. E. Hayden, K. Kirichenko, P. Pelphrey and Y. Ji, J. Org. Chem., 2004, **69**, 5108-5111.

Deuteration experiment:

We also carried out deuterium-labelling experiments to support the protonation of the allene in the terminal position by the acid. Thus, reaction with *d*-TFA and D_2O gave the allyl azides *d*-2a and *d*-2a' with high deuterium incorporation in the expected positions, also confirming the involvement of vinyl-gold intermediates, and the amide 4a was obtained as a mixture of compounds with different deuterium incorporation in the methyl group, as well as deuteration in the amidic nitrogen, observed before purification.

Experimental procedure for the deuteration experiment:

(PhO)₃PAuCl (0.05 Eq., 22 mg, 0.04 mmol) and silver triflate (0.05 Eq., 10.5 mg, 0.04 mmol) were added into a previously washed with D₂O and dried-vacuum schlenk flask under N₂. The solids were dissolved in dry dichloromethane (2.0 ml, 0.41 M) and stirred for a few minutes at 0°C. Then, allene **1a** (1 Eq., 119 μ l, 0.82 mmol) was added dropwise to schlenk flask. TMSN₃ (3 Eq., 323 μ l, 2.45 mmol), D₂O (5 Eq., 74 μ l, 4.09 mmol) and *d*-TFA (3 Eq., 189 μ l, 2.45 mmol) were added dropwise at 0°C and under stirring. The mixture was then warmed up and stirred at room temperature during 22h. The crude was filtered through celite and the solvent was removed by vacuum. The mixture was analysed by ¹H and ²H NMR without purification in CDCl₃.

We observed deuterium incorporation in the following positions:

2a: the signal at 5.44 ppm showed 80% of deuterium incorporation.

2a': the signal at 5.76 ppm showed 80% of deuterium incorporation.

4a: we observed deuterium incorporation at the amidic proton 5.50 ppm, before purification and a mixture of d_0 , d_1 , d_2 , d_3 in the signal at 1.98 ppm (methyl group).

Supporting Information

¹H NMR in CDCl₃:

General procedure for gold-catalysed iodoazidation of allenes:

Gold(I)-complex (5 mol%), silver triflate (5 mol%) and NIS (1.05 Eq.) were added into a previously dried-vacuum schlenk flask under N_2 . The corresponding allene (1 Eq.) in dry dichloromethane (0.1 M) and TMSN₃ (3 Eq.) were added and stirred for a few minutes at 0°C. The mixture was then warmed up at 30 °C and stirred at that temperature until complete conversion, followed by TLC. The crude was filtered through Celite, and washed with dichloromethane. The solvent was removed by vacuum, and the product was purified by column chromatography over silica gel using Hexane/Et₂O as eluent.

Entry	Allene	[Au]	Conversion (%)	Isolated yield
				(%)
1	R = Cy, 1a	(PhO) ₃ PAuCl	71	
2	R = Cy, 1a	NHC-1	84	73, 5 a
3	R = Cy, 1a	NHC-2	78	
4	R = Cy, 1a	NHC-3	83	65, 5a
5	R = Cy, 1a	Cat-Au SbF ₆	46	
6	R = Cy, 1a	Ph ₃ PAuCl	100 (E/Z = 1:1)	60, Z -5a
7	R = n-octyl, 1c	NHC-1	100	40, 5c

[a] See Figure 1 in SI for structure of gold-complexes.

Vinyl-iodide 5a

$$6 \underbrace{5}_{7} \underbrace{4}_{9} \underbrace{32}_{9} \underbrace{1}_{N_3}$$

R_f in hexane/ethyl acetate (20:1): 0.73. ¹H NMR (400 MHz, CDCl₃, 25° C, TMS) δ = 5.68 (d, *J* = 8.6 Hz, 1H; H-3), 4.05 (s, 2H; H-1), 2.22-2.32 (m, 1H; H-4), 1.63-1.77 (m, 5H; H-5 to H-9), 1.11-1.40 (m, 5H; H-5 to H-9). ¹³C NMR (101 MHz, CDCl₃, 25° C) δ = 145.09 (CH; C-3), 96.48 (C_q; C-2), 62.51 (CH₂; C-1), 45.05 (CH; C-4), 31.50 (2x CH₂; C-5 and C-9), 25.78 (CH₂; C-7), 25.46 (2x CH₂; C-6 and C-8). IR (Film, cm⁻¹): $\tilde{\nu}$ = 2926, 2815, 2096, 1635, 1448, 1318, 1260, 1060, 1029, 893, 838, 802, 689, 559. MS (ESI⁺ in MeOH): *m/z* (%) = 264.0 [M-N₂+H]⁺. HRMS (FTMS + APCI) (DCM + NH₄OAc) Calcd. for C₉H₁₈IN₄ [M+NH₄]⁺, 309.0569. Found, 309.0571.

Vinyl-iodide 5c

R_f in hexane/ethyl acetate (20:1): 0.68. ¹H NMR (500 MHz, CDCl₃, 25° C, TMS) δ = 5.87 (tt, *J* = 6.6, 0.9 Hz, 1H), 4.08 (s, 2H), 2.18 (m, 2H), 1.30-1.27 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃, 25° C) δ = 139.21 (CH), 98.17 (C_q), 61.54 (CH₂), 34.91 (CH₂), 30.81 (CH₂), 28.35 (CH₂), 28.16 (CH₂), 28.08 (CH₂), 27.00 (CH₂), 21.63 (CH₂), 13.07 (CH₃). IR (Film, cm⁻¹): $\tilde{\nu}$ = 3419, 2955, 2925, 2855, 2099, 1639, 1465, 1269, 1237, 1132, 889, 829, 722. MS (ESI⁺ in MeOH): *m*/*z* = 321.0 [M]⁺, 322.0 [M+H]⁺. HRMS (FTMS (DCM+NH₄OAc)): Calcd. for C₁₁H₂₀IN₃ [M⁺], 321.0696. Found, 321.0693. Calculated for C₁₁H₂₁IN [M-N₂+H]⁺, 294.0713. Found, 294.0714.

Orthogonal functionalization of allenes by using the gold-catalysed azidation methodology

Click reaction of vinyl iodide 5a

Copper (II) sulfate pentahydrate (15 mol%, 9 mg, 0.04 mmol), sodium ascorbate (0.8 Eq., 38 mg, 0.19 mmol) and tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (TBTA) (15 mol%, 19 mg, 0.04 mmol) were added into a (2.0-5.0 ml) microwave vial. To the solids (*Z*)-(3-azido-2-iodoprop-1-en-1-yl)cyclohexane **5a** (1.0 Eq., 70 mg, 0.24 mmol) dissolved in DMF (3 ml) and phenylacetylene (1.0 Eq., 30 μ l, 0.24 mmol) were added. The suspension was heated in the microwave at 70 °C for 1h. The reaction mixture was quenched with water and extracted with dichloromethane (x 3). The combined organic phases were dried over anhydrous sodium sulfate and filtrated. After removing the solvent in vacuum the product was separated and purified by column chromatography over silica gel with hexane/ethyl acetate (5:1 then 3:1) as eluent. After evaporating the solvent **6a** was obtained as a pale yellow solid (54 mg, 57 %).

¹H NMR (500 MHz, CDCl₃, 25° C, TMS) δ = 7.77 (d, *J* = 7.5 Hz, 2H; H-13 and H-17), 7.72 (s, 1H; H-10), 7.35 (t, *J* = 7.5 Hz, 2H; H-14 and H-16), 7.26 (t, *J* = 7.5 Hz, 1H; H-15), 5.70 (d, *J* = 8.5 Hz, 1H; H-3,), 5.17 (s, 2H; H-1), 2.20 (m, 1H; H-4), 1.65 (m, 4H; H-5 and H-9), 1.15 (m, 6H; H6, H-7 and H-8). ¹³C NMR (126 MHz, CDCl₃, 25° C) δ = 147.92 (C_q; C-11), 146.46 (CH; C-3), 130.46 (C_q; C-12), 128.77 (2x CH_{Ar}; C-14 and C-16), 128.16 (CH_{Ar}; C-15), 125.73 (2x CH_{Ar}; C-13 and C-17), 119.54 (CH; C-10),95.32 (C_q; C-2), 61.70 (CH₂; C-1), 45.10 (CH; C-4),31.13 (2x CH₂; C-5 and C-9), 25.66 (CH₂; C-7),25.35 (2x CH₂; C-6 and C-8). IR (Film, cm⁻¹): $\tilde{\nu}$ = 509, 694, 762, 973, 1044, 1075, 1225, 1345, 1447, 1638, 2850, 2923, 3423. HRMS (FTMS (DCM / MeOH + NH₄OAc)): Calc. for C₁₇H₂₀IN₃ [M+H]⁺, 394.0775. Found, 394.0775.

Suzuki-Miyaura cross-coupling of vinyl iodide 6a

Phenylboronic acid (2.0 Eq., 22 mg, 0.18 mmol), PdCl₂ (5 mol%, 0.8 mg, 0.005 mmol), PPh₃ (10 mol%, 2.4 mg, 0.009 mmol) and CsF (2.0 Eq., 27 mg, 0.18 mmol) were added into a flushed schlenk flask under N₂. To the solids (Z)-1-(3-cyclohexyl-2-iodoallyl)-4-phenyl-1H-1,2,3-triazole **6a** (1.0 Eq., 36 mg, 0.09 mmol) dissolved in a mixture of toluene:EtOH:H₂O (1.3 ml : 1.3 ml : 0.4 ml) was added. The mixture was degassed by bubbling N₂ into the solution for 5 min and then stirred at 80 °C for 18h. The reaction mixture was quenched with water and extracted with dichloromethane (x 3). The combined organic phases were dried over anhydrous sodium sulfate and filtrated. After removing the solvent in vacuum the product was separated and purified by column chromatography over silica gel and hexane/ethyl acetate (5:1) as eluent. After evaporating the solvent **7a** was obtained as of a white-yellow solid (26 mg, 85 %).

Rf in hexane/ethyl acetate (3:1): 0.51. ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): δ = 7.68 (dd, J = 7.4, 1.2 Hz, 2H; H-13 and H-17), 7.47 (s, 1H; H-10), 7.31(t, J = 7.4 Hz, 2H; H-14 and H-16), 7.27-7.20 (m, 2H; H-20 and H-22), 7.20-7.13 (m, 2H; H-15 and H-21), 7.00 (dd, J = 6.8, 1.5 Hz, 2H; H-19 and H-23), 5.54 (d, J = 10.1 Hz; 1H, H-3), 5.11 (s, 2H; H-1), 2.01 (m, 1H; H-4), 1.58 (m, 5H; H-5 to H-9), 1.06 (m, 5H; H-5 to H-9). ¹³C NMR (126

MHz, CDCl3, 25 °C) δ = 147.74 (C_q, C-11), 139.78 (CH; C-3), 137.55(C_q, C-18), 133.16 (C_q, C-2), 130.86 (C_q; C-12), 128.87 (2x CH_{Ar}), 128.67 (2x CH_{Ar}), 128.41 (2x CH_{Ar}), 128.13 (CH_{Ar}; C-15), 127.74 (CH_{Ar}; C-21), 125.80 (2x CH_{Ar}; C-13 and C-17), 119.51 (CH; C-10), 57.89 (CH₂; C-1), 37.68 (CH; C-4), 33.05 (2x CH₂; C-6 and C-8), 25.91 (CH₂; C-7), 25.53 (2x CH₂; C-5 and C-9). IR (Film, cm⁻¹): $\tilde{\nu}$ = 764, 973, 1646, 1675, 1225, 1338, 1444, 2850, 2924. HRMS (FTMS (DCM / MeOH + NH₄OAc)): Calc. for C₂₃H₂₅N₃ [M+H]⁺, 344.2127. Found, 344.2121. M. p.: 129 °C.

Attempts to trap the vinyl-gold intermediate via oxidative cross-coupling:

We have unsuccessfully attempted the reaction to engage the vinyl-gold intermediate in a cross-coupling reaction as reported by Zhang *et al.*³⁰ However, the substrates and reaction conditions reported by Zhang are quite different from our catalytic system and more detailed tuning of the reaction might be needed to get a successful outcome. Further efforts into this and other couplings are being made in our lab, as we believe that this transformation will indeed enhance the synthetic utility of this reaction.

- The oxidative cross-coupling was attempted using **Zhang's conditions**:

Ph₃PAuCl, (0.05 Eq., 10 mg, 0.02 mmol), selectfluor (2 Eq., 290 mg, 0.82 mmol), PhB(OH)₂ (4 Eq., 200 mg, 1.64 mmol) were added into a previously dried-vacuum schlenk flask under N₂. The solids were dissolved in dry acetonitrile / H₂O (20:1) (0.05 M) and stirred for a few minutes at 0 °C. Then, allene **1a** (1 Eq., 60 μ l, 0.41 mmol) was added drop wise neat at 0 °C and under stirring. TMSN₃ (3 Eq., 161 μ l, 1.23 mmol), was then added drop wise at 0 °C. The mixture was then warmed up at 80 °C. The reaction was followed by TLC, and after 6 h the crude was filtered through Celite and a pad MgSO₄, and washed with dichloromethane. The solvent was removed under vacuum, and the crude was

³⁰ G. Zhang, Y. Peng, L. Cui, and L. Zhang, Angew. Chem. Int. Ed., 2009, 48, 3112-3115.

analysed by NMR. No signals corresponding of the expected product were observed. The allene signals disappeared possibly by decomposition at 80 °C.

- A second experiment was carried out under the conditions of **our azidation reaction**:

(PhO)₃PAuCl, (0.05 Eq., 11 mg, 0.02 mmol), silver triflate (0.05 Eq., 5 mg, 0.02 mmol), selectfluor (2 Eq., 290 mg, 0.82 mmol), PhB(OH)₂ (4 Eq., 200 mg, 1.64 mmol) were added into a previously dried-vacuum schlenk flask under N₂. The solids were dissolved in dry DCM (0.41 M) and stirred for a few minutes at 0 °C. Then, allene **1a** (1 Eq., 60 μ l, 0.41 mmol) was added drop wise neat at 0 °C and under stirring. TMSN₃ (3 Eq., 161 μ l, 1.23 mmol), was then added drop wise at 0 °C. The mixture was then warmed up and stirred at room temperature. The reaction was followed by TLC, and after 6 h the crude was filtered through Celite, and washed with dichloromethane. The solvent was removed under vacuum and the crude was analysed by NMR. Signals of the unreacted allene and phenyl boronic acid were observed.

Allenes that did not work in the reaction

Allenes bearing oxygen and groups sensitive to acidic conditions gave decomposition products (equation a).

Interestingly, ethyl 2,3-butanodionate and ethyl 2,3-pentanodionate gave very slow reaction and only traces of the corresponding allyl azides were observed after 5 days of reaction (equation b).

Tri- and tetra-substituted allenes gave traces of the azidation products, but side reactions are observed. More investigations are being carried out in our lab with these allenes (equation c).

Synthesis of gold-azide complex

(PhO)₃PAuCl (15 mg, 0.027 mmol, 1 Eq.), and AgOTf (7 mg, 0.027 mmol, 1 Eq.) were dissolved in DCM (2 ml) under N₂. An excess of TMSN₃ (29 μ l, 0.216 mmol, 8 Eq.) was added and the mixture stirred at room temperature for 1h. The mixture was filtered through celite, the solvent was evaporated and the solid washed with hexane to remove excess of azide to give (PhO)₃PAuN₃ as a gummy oil. This complex has to be kept in the fridge and in the dark and decomposes very quickly. No HRMS could be obtained due to fast decomposition. All the attempts to crystallise the complex have failed so far.

¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): δ = 7.43 (app t, *J* = 7.4 Hz, 2H), 7.31 (tq, *J* = 7.4, 1.2 Hz, 1H), 7.23 (app dd, *J* = 7.4, 1.2 Hz, 2H). ³¹P NMR (202 MHz, CDCl₃, 25° C): δ = 105.80 ppm. IR (Film, cm⁻¹): $\tilde{\nu}$ = 2059.66 (ν_{as} N₃⁻).³¹

Stoichiometric NMR Experiments

Three parallel experiments were designed using stoichiometric amounts of all the components and the order of addition of the different components of the reaction were varied as follows:

A) $(PhO)_3PAuCl + AgOTf + TMSN_3 + Allene 1a + TFA + H_2O$

B) (PhO)₃PAuCl + AgOTf + Allene 1a + TMSN₃ + TFA

C) (PhO)₃PAuCl + AgOTf + TFA + TMSN₃ + Allene 1a

¹H, ³¹P NMR and ¹⁹F NMR spectra were recorded at room temperature after each addition and after several time intervals in between additions.

The following amounts were used in CDCl₃ (0.7 ml):

(PhO)₃PAuCl (5 mg, 0.009 mmol)

AgOTf (2 mg, 0.009 mmol)

TMSN₃ (1 μl, 0.009 mmol)

Allene 1a (1 mg, 0.009 mmol)

TFA (1 µl, 0.009 mmol)

H₂O (1 µl, 0.05 mmol, 6 Eq.)

³¹ R₃PAuN₃ complexes have been reported with similar IR bands, for Ph₃PAuN₃ (2050 cm⁻¹), see: W. Beck *et al.*, *Z. Anorg. Allg. Chem.*, 2001, **627**, 1669-1674; for Cy₃PAuN₃ (2049 cm⁻¹), see: D. V. Partyka, *PNAS*, 2008, **105**, 14293-14297.

³¹P NMR profile of Experiment A:

Additiof of TFA 127 ppm	103 ppm
ar minus na kuri prusani je sta visi na kuri pramovna positi na positi pra positi pra (positi pra positi pra po Na kuri pra positi pra p	Max while the Max way was an an an and a second second second a second s
Additiof of allene	
	104 ppm
- กระนักสุรัตร์ แฟรีฟ แก่ไว้ (กระบาทไฟส์ฟ แก่ประเทศไหร์ (ค.ศ. 1986)	นมากมาก ¹ กลุ่มีและสุบารที่สุดที่สาวไปหมุ่มและสารสารที่สารที
Additiof of TMSN ₃	106 ppm
งกระหรู่สมให้เขากับประกัน การแรกที่สมกัดรูปหรือเปลากระไประกำสังเส	
(PhO)₃PAuOTf	104 ррт
	1
(PhO) ₃ PAuN ₃ pure	
marturati wany ang mang mang pang pang bahar na maring	
(PhO)₃PAuCl pure	110 ppm
ĸĸĸĸĸĸŧĸĸĸĸſŢĸţĸĸţĸĸĬġĸĸġĊĸĸĬŢĸĸţŔĸIJĬġſĸġĔĸĸĸĸţŎĸĸţŎĸĸţŎĸĸţ	Land and and an an and an An an

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

³¹P NMR profile of Experiment B:

Additiof of TFA 127 ppm	103 ppm
Additiof of TMSN ₃	<i>рания им-***</i> чителина инжена на имени и и и и и и и и и и и и и и и и и и
and the follow	Waren were and the second of the
	105 ppm และการพระสารครั้งและสารครั้งและการครั้งได้การกระสารที่สารกระสารสารกระสารกระสารกระสารกระสารกระสารกระสารกระสารกระ
(PhO)₃PAuOTf	104 ppm
nnyd∦wathatalanatienatienatienatienatienatienatienati	การการการการการการการการการการการการการก
ar a stater ar an aigte a statement from the far for the form for the form	
(PhO)₃PAuCI pure	110 ppm
n an Malancia Tanga Anga Kapang Anang Tang Kabulan La La Panang Pang Ka	๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚
140 130 120	110 100 90 80 70 ff.com) 40 30 20 10 0 -10 -2

-20
³¹P NMR profile of Experiment C:

	Additiof of allene	98 ppm	Ļ,
•	na italya Abal Milli na talaka atalan Milli	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
	Additiof of TMSN ₃		
		97 ppm	-:
Ì	selanen halla oler heller h	๛๛ๅฃๅ๚๛๛๛๚๚๛๛๛๛๚๛๛๚๛๛๚๛๛๛๚๚๚๚๚๚๛๛๛๚๛๚๚๚๛๛๚๛๛	
	Additiof of TFA	127 ppm 99 ppm	
	e - adverti Male Male II. voji stalo dratati i da		-
	(PhO)₃PAuO1f	104 ppm	Ŀ
,	nashiringipani)/shinjabihani/shilapi	anan menungan perungan perung	
	(PhO)₃PAuN₃ pure	106 nom	
			F:
4	Loven, anna si su sinn fra tinda na pili na pilina ka fili sa si k		
	(PhO) ₃ PAuCl pure	110 ppm	
			-
1	#ANTANÁNINYANYANYANYANYANYANYANYANYANYANYANYANYAN	######################################	

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 11 (ppm)

¹H NMR profile of Experiment A:

The signals used to measure integrals are: Allene **1a**: 5.07 ppm (q, J = 6.5 Hz, 1H) E-Allyl azide **2a**: 3.69 ppm (d, J = 6.70 Hz, 2H) Allyl azide **2a'**: 3.60 ppm (t, J = 7.73 Hz, 1H) Amide **4a**: 3.10 ppm (t, J = 6.44 Hz, 2H) Ketone: 3.38 ppm (m, 2H) TFA-adduct **3a**: 4.77 (d, J = 6.76 Hz, 2H)

		¹ H NMR in	ntegral				
		(1 H)					
Addition	time (min)	Allene 1a	E-Allyl Azide 2a	Allyl azide 2a'	Amide 4a	Ketone	TFA- adduct 3a
AgOTf	0						
	30						
TMSN ₃	75						
	105						
Allene	145						
	205	5.27	0.3	1	0	0.39	0
TFA	285				0		
	305	3.09	0.64	1	0.3	0.5	0
	425	2.14	0.90	1	0.56	0.5	0.25
H ₂ O	485						
	545	1.96	1.10	1	0.86	0.56	0.4
	1405	0.8	1.84	1	1.16	0.80	0.65
		Conversion (%)					
Addition	Time (min)	Allene 1a	E-Allyl Azide 2a	Allyl azide 2a'	Amide 4a	Ketone	TFA- adduct 3a
AgOTf							
TMSN ₃							
Allene	0	100	0	0	0	0	0
	60	75.72	4.31	14.37	0.00	5.60	0.00
TFA	60	75.72	4.31	14.37	0.00	5.60	0.00
TFA	60 160	75.72 55.88	4.31	14.37 18.08	0.00	5.60 9.04	0.00
TFA	60 160 280	75.72 55.88 39.96	4.31 11.57 16.90	14.37 18.08 18.67	0.00 5.42 10.46	5.60 9.04 9.34	0.00 0.00 4.67
TFA H ₂ O	60 160 280	75.72 55.88 39.96	4.31 11.57 16.90	14.37 18.08 18.67	0.00 5.42 10.46	5.60 9.04 9.34	0.00 0.00 4.67
H ₂ O	60 160 280 400	75.72 55.88 39.96 33.25	4.31 11.57 16.90 18.74	14.37 18.08 18.67 16.96	0.00 5.42 10.46 14.67	5.60 9.04 9.34 9.58	0.00 0.00 4.67 6.79

Supporting Information

¹H NMR integral (1 H) Time Allyl TFA-Addition Allene 1a **E-Allyl** Amide Ketone (min) azide 2a' adduct Azide 4a 3a 2a **AgOTf** 0 30 75 Allene 105 TMSN₃ 145 205 4.97 0.45 1 0.3 0.36 0 285 TFA 305 4.71 0.62 1 0.56 0.63 0 425 3.09 0.78 1 0.66 0.60 0.15 545 3.37 1.19 1 0.89 0.6 0.25 1405 1.23 1.52 1 1.18 0.55 0.5 Conversion (%) TFA-Addition Time Allene 1a E-Allyl Allyl Amide Ketone Azide azide 2a' adduct (min) 4a 3a 2a AgOTf Allene 0 0 100 0 0 0 0 TMSN₃ 60 70.20 6.36 14.12 4.24 5.08 0.00 TFA 160 62.55 8.30 13.28 7.44 8.43 0.00 280 49.09 12.39 15.89 10.56 9.61 2.46 400 46.10 12.24 8.21 3.42 16.35 13.68 1260 16.71 9.19 20.55 25.48 19.72 8.35

¹H NMR profile of Experiment B:

		¹ H NMR in	ntegral				
Addition	time (min)	Allene 1a	E-Allyl Azide 2a	Allyl azide 2a'	Amide 4a	Ketone	TFA- adduct 3a
AgOTf	0						
0	30						
TFA	75						
	105						
TMSN ₃	145						
	205						
Allene	285						
	305	5.68	0.36	1	0.54	0.28	0
	425	2.3	0.70	1	1.01	0.25	0.15
	545	2.03	0.98	1	1.22	0.3	0.28
	1405	0.94	1.53	1	1.68	0.25	0.67
		Conversion					
		(%)					
Addition	Time	Allene 1a	E-Allyl	Allyl	Amide	Ketone	TFA-
	(min)		Azide 2a	azide 2a'	4 a		adduct 3a
			24				Ja
AgOTf							
TFA							
TMSN ₃							
Allene	0	100	0	0	0	0	0
	20	72.17	4.64	12.71	6.86	3.62	0.00
-	140	42.40	13.00	18.43	18.62	4.70	2.86
	260	34.91	16.85	17.20	20.98	5.16	4.90
	1120	15.56	25.19	16.46	27.65	4.12	11.03

¹H NMR profile of Experiment C:

Supporting Information

Catalytic NMR experiment:

(PhO)₃PAuCl, (0.05 Eq., 22 mg, 0.04 mmol), silver triflate, (0.05 Eq., 10.5 mg, 0.04 mmol) and (1 Eq., 119 μ l, 0.82 mmol) of allene **1a** in CDCl₃ (2.0 ml, 0.41 mM) were added into a previously dried-vacuum schlenk flask under N₂ and stirred for a few minutes at 0°C. TMSN₃, (3 Eq., 323 μ l, 2.45 mmol), distilled water, (5 Eq., 74 μ l, 4.09 mmol), and trifluoroacetic acid, (3 Eq., 196 μ l, 114.02 mmol) were added drop wise at 0°C. The mixture was then warmed up and stirred at room temperature during 22h. Samples (0.1 mL) were extracted directly from the schlenk according to the time with a syringe and diluted with CDCl₃ for the NMR experiment.

	¹ H NMR i					
Time	Allene 1a	Allyl Azide 2a	Allyl Azide	3a (TFA)	3a' (OH)	Amide 4a
(h)			2a'			
0	1	0	0	0	0	0
1	0.785	0.65	1	0.3	0	0.5
3	0	3.12	1	0.24	0.03	1.46
5	0	4.03	1	0.23	0.01	1.75
7	0	4.21	1	0.3	0.01	1.91
9	0	4.38	1	0.33	0.11	2.17
11	0	4.23	1	0.33	0.11	2.12
22	0	4.22	1	0.35	0.12	1.71
	Conve	ersion (%)				
Time	Allene 1a	Allyl Azide 2a	Allyl Azide	3a (TFA)	3a' (OH)	Amide 4a
(h)			2a'			
0	100	0	0	0	0	0
1	24.23	20.22	30.86	9.26	0.00	15.43
3	0.00	53.37	17.08	4.10	0.51	24.94
5	0.00	57.37	14.23	3.27	0.14	24.98
7	0.00	56.66	13.46	4.04	0.13	25.71
9	0.00	54.85	12.51	4.13	1.38	27.14
11	0.00	54.30	12.84	4.24	1.41	27.21
22	0.00	57.03	13.51	4.73	1.62	23.11

Catalytic IR experiment:

(PhO)₃PAuCl, (0.14 Eq., 31 mg, 0.06 mmol) and silver triflate (0.14 Eq., 15 mg, 0.06 mmol) were added into a previously dried-vacuum schlenk flask under N₂. The solids were dissolved in CDCl₃ dry over molecular sieves (3A) (0.41 M) and stirred for a few minutes at 0 °C. Then, allene **1a** (1 Eq., 60 μ l, 0.41 mmol) was added drop wise neat at 0 °C and under stirring. TMSN₃ (3 Eq., 161 μ l, 1.23 mmol), distilled water (5 Eq., 37 μ l, 2.05 mmol), and trifluoroacetic acid (3 Eq., 98 μ l, 1.23 mmol) were then added drop wise at 0 °C. The mixture was then warmed up and stirred at room temperature. Drops of the reaction mixture were transferred directly form the schlenk to the IR disc according to the time, and the IR experiments were run neat in the following minutes.

Copies of the IR spectra at some of the times analysed are shown below: The peak of the azide in the final product (2097 cm⁻¹) is observed from the beginning of the reaction, overlapping with the possible peak of the Au-N₃ at 2060 cm⁻¹. No clear conclusion about the formation of Au-N₃ complexes can be extracted from this experiment.

30 min

1h 45 min

6 h

After 9.5 h, the mixture was filtered through celite, and analysed directly by ¹H and ³¹P NMR. The spectra are shown bellow and are consistent with the previous experiments.

New Gold-Catalysed Azidation of Allenes

César Hurtado-Rodrigo, Stefanie Hoehne, María Paz Muñoz*

> School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK. Phone: +44 (0) 1603597157; Fax: +44 (0) 1603592003; e-mail: <u>M.Munoz-Herranz@uea.ac.uk</u>

NMR Spectra

Chloro (triphenylphosphite) gold (I)

¹H NMR (500 MHz, CDCl₃, 25 °C)

³¹P NMR (202 MHz, CDCl₃, 25 °C)

Allyl azides 2a and 2a' (3.7:1):

 N_3 \checkmark N_3 +

¹H NMR (500 MHz, CDCl₃, 25 °C)

Amide 4a:

Ö Ĥ

¹H NMR (500 MHz, CDCl₃, 25 °C)

Allyl azides **2b** and **2b'** (1.9:1):

 N_3 .N₃ +

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

Ketone 4b':

0

¹H NMR (500 MHz, CDCl₃, 25 °C)

Allyl azides **2c** and **2c'** (1.8:1)

¹H NMR (500 MHz, CDCl₃, 25 °C)

¹³C NMR (126 MHz, CDCl₃, 25 °C)

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

9

Allyl azide 2d

¹H NMR (500 MHz, CDCl₃, 25 °C)

10

Allyl azides **2e** and **2e'** (3.8:1):

¹H NMR (500 MHz, CDCl₃, 25 °C)

Ketone 4e':

Ò 0 0= 0=

¹H NMR (500 MHz, CDCl₃, 25 °C)

Allyl azide 2f:

Q .N₃ Ň 'n

¹H NMR (500 MHz, CDCl₃, 25 °C)

Allyl azide 2f':

0 \dot{N}_3

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D gCOSY (CDCl₃):

Ketone 4f':

Q o ↓ Ň ò

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D HSQC (CDCl₃):

Allyl azide 2g:

H N 'N₃

¹H NMR (500 MHz, CDCl₃, 25 °C)

Allyl azides **2h** and **2h'** (3.7:1):

N₃ + N₃

¹H NMR (500 MHz, CDCl₃, 25 °C)

19

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

Allyl azide 2i:

H₃C Ń₃

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

22

Allyl azide 2j and 2j':

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D HSQC (CDCl₃):

Allyl azides 2k and 2k' (:

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

Allyl azides **2l** and **2l'** (1:1.13):

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

28

Allyl azide **2m** and **2m'** (1:1):

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

Allyl azide 2n:

`N₃ F_3C

2D gCOSY (CDCl₃):

Allyl azide **2O**:

 N_3 F₃C

¹H NMR (500 MHz, CDCl₃, 25 °C)

¹⁹F NMR (471 MHz, CDCl₃, 25 °C)

Allyl azide 2P:

 N_3 CI

¹H NMR (500 MHz, CDCl₃, 25 °C)

2D gCOSY (CDCl₃):

2D HSQC (CDCl₃):

Vinyl-iodide 5c:

N₃

¹H NMR (500 MHz, CDCl₃, 25 °C)

<u>SI – NMR Spectra</u>

Vinyl-iodide 5a:

¹H NMR (500 MHz, CDCl₃, 25 °C)

Triazole-vinyl-iodide 6a:

¹H NMR (500 MHz, CDCl₃, 25 °C)

Triazole 7a:

N Ρh

¹H NMR (500 MHz, CDCl₃, 25 °C)

Vinyl triflate 8a:

E/Z, 2:1

¹H NMR (500 MHz, CDCl₃, 25 °C)

(Triphenylphosphite) gold(I) - azide

¹H NMR (500 MHz, CDCl₃, 25 °C)

IR (Film, cm⁻¹)

